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Implications of different cell death patterns for prognosis and
immunity in lung adenocarcinoma
Yang Zhou1,4, Weitong Gao1,4, Yu Xu2,4, Jiale Wang1, Xueying Wang3, Liying Shan1, Lijuan Du1, Qingyu Sun1, Hongyan Li1 and
Fang Liu 1✉

In recent years, lung adenocarcinoma (LUAD) has become a focus of attention due to its low response to treatment, poor prognosis,
and lack of reliable indicators to predict the progression or therapeutic effect of LUAD. Different cell death patterns play a crucial
role in tumor development and are promising for predicting LUAD prognosis. From the TCGA and GEO databases, we obtained bulk
transcriptomes, single-cell transcriptomes, and clinical information. Genes in 15 types of cell death were analyzed for cell death
index (CDI) signature establishment. The CDI signature using necroptosis+ immunologic cell death-related genes was established
in the TCGA cohort with the 1-, 2-, 3-, 4- and 5-year AUC values were 0.772, 0.736, 0.723, 0.795, and 0.743, respectively. The
prognosis was significantly better in the low CDI group than in the high CDI group. We also investigated the relationship between
the CDI signature and clinical variables, published prognosis biomarkers, immune cell infiltration, functional enrichment pathways,
and immunity biomarkers. In vitro assay showed that HNRNPF and FGF2 promoted lung cancer cell proliferation and migration and
were also involved in cell death. Therefore, as a robust prognosis biomarker, CDI signatures can screen for patients who might
benefit from immunotherapy and improve diagnostic accuracy and LUAD patient outcomes.
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INTRODUCTION
Globally, as the most common malignancy, lung cancer causes the
most deaths from cancer1,2. Lung cancer caused by NSCLC
comprises nearly 80% of cases, while lung adenocarcinoma
(LUAD) accounts for ~50%. Patients with LUAD have experienced
significant improvements in their clinical outcomes thanks to
advances in surgery, molecular-targeted therapy, and immu-
notherapy in recent years. However, it remains rare for patients
with LUAD to survive 5 years after diagnosis3–6. Therefore, the
development of predictive models for LUAD detection, prognosis,
and immunotherapy is therefore urgently needed.
Due to the inborn nature of most tumors and their resistance to

apoptosis, inducing cell death pathways, such as necroptosis and
immunogenic cell death has gradually become a potential
therapeutic means7,8. As a form of programmed cell death,
necroptosis enhances CD8+ T cell-mediated antitumor immunity
via RIPK3 and RIPK1 activation9. Moreover, necroptosis can also
modulate the tumor’s immune microenvironment by altering the
expression of immune checkpoints10. Therefore, necroptosis has
been promised to be a novel target for immunotherapy in LUAD.
Furthermore, the contribution of necroptosis to cancer prognosis
has been explored in depth in recent studies. When RIPK1, RIPK3,
and MLKL are knocked down in colon and esophageal cancers,
tumor growth is inhibited by the reduction of NF-κB activity11.
Another type of cell death, immunogenic cell death (ICD) has been
characterized by the release of molecular signals, referred to as
damage-associated molecular patterns (DAMPs) including cell
surface-mainly calreticulin (CRT), adenosine triphosphate (ATP)
and high mobility group box 1 protein (HMGB1)12,13. The above
DAMPs bind to specific receptors on the surface of dendritic cells
to induce the anti-tumor immune response. Meanwhile, the latest
study demonstrated that eIF2α phosphorylation correlated with

CRT exposure and constitutes a pathognomonic characteristic of
ICD14,15.
Some necroptosis and ICD-related genes have recently been

regarded as prognostic markers for cancer11,16,17. Recently, the
necroptosis-related gene IGF2BP1 was reported to play crucial
roles in the progression and prognosis of lung cancer. In LUAD
patients with high expression of IGF2PB1, the clinical stage and
prognosis were significantly worse18. Mechanically, TFAP4 acti-
vated IGF2BP1 from its transcriptional level, which promoted
proliferation, migration, and invasion of NSCLC cells via m6A
modification19. Besides, IGF2BP1-phase separation is associated
with c-myc-mediated progression and proliferation in lung cancer
cells mediated by MNX1-AS1, implying the MNX1-AS1/IGF2BP1
axis may serve as a potential biomarker and therapeutic target in
NSCLC20. ICD-related gene toll-like receptor 2 (TLR2), a regulator of
oncogene-induced senescence, is an important tumor suppressor
in premalignancy. A recent study has demonstrated that early
TLR2 activation correlates with improved survival and clinical
regression in lung tumorigenesis due to the activation of cell cycle
arrest pathways and proinflammatory phenotype21. And TLR2/
MYD88 axis signaling induces arginase1 mRNA expression in
tumor-related neutrophils in NSCLC, highlighting the critical role
that neutrophil cells play in the suppression of lymphocytes
infiltrated in tumors22. In spite of this, it remains unclear how the
abovementioned genes contribute to LUAD. Thus, a better
understanding of necroptosis and ICD-related genes helps
investigate potential biomarkers and guide immunotherapeutic
interventions in LUAD.
In our study, for training and validation cohorts, we collected

439 patients from the TCGA, 196 patients from GSE37745, 442
patients from GSE68465, 27 patients from GSE135222, 348
patients from IMvigor210 and 27 patients for GSE78220. For
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single-cell RNA transcriptome datasets, we collected 9 samples
of 8 patients from GSE171145. We incorporated necroptosis and
ICD-related genes and selected the genes that were tightly
related to LUAD survival and prognosis. Then we established
the CDI signature based on the above genes and further
explored the difference in prognosis, immune infiltration, and
signaling pathway in high and low CDI groups, offering insights
into prognosis prediction and immune landscape in LUAD
(Supplementary Fig. 1).

RESULTS
The relationship of cell death-related genes with LUAD
prognosis
We investigated the genes which were significantly related with
LUAD prognosis and then analyzed the differential expression of cell
death-related genes in Fig. 1. Forest plots using multivariate analysis
showed that necroptosis-related genes including CCT6A (HR= 1.233,
95% CI= 0.975–1.560, P= 0.081), HNRNPF (HR= 1.593, 95%
CI= 1.115–2.277, P= 0.011), ID1 (HR= 1.117, 95% CI= 0.996–1.252,
P= 0.058), IGF2BP1 (HR= 1.113, 95% CI= 1.005−1.233, P= 0.040),
MYO6 (HR= 0.671, 95% CI= 0.551−0.817, P= 7.22E−05), PPP1R3G
(HR= 1.586, 95% CI= 1.283−1.960, P= 1.97E−05), TPM2 (HR= 1.157,
95% CI= 0.980–1.365, P= 0.085) in which HNRNPF, IGF2BP1, MYO6,
and PPP1R3G were independent predictors of OS. Forest plots using
multivariate analysis also showed that immunologic cell death-related
genes including BIRC (HR= 1.138, 95% CI= 0.997–1.299, P= 0.055),
FGF2 (HR= 1.422, 95% CI= 1.146–1.765, P= 0.001), H2AX (HR=
1.331, 95% CI= 1.076−1.647, P= 0.006), MS4A1 (HR= 0.834, 95%
CI= 0.739−0.941, P= 0.003), NT5E (HR= 1.144, 95% CI=
1.017−1.285, P= 0.024), PSCA (HR= 1.060, 95% CI= 0.993–1.133,
P= 0.081), TLR2 (HR= 0.829, 95% CI= 0.703−0.977, P= 0.025) in
which FGF2, H2AX, MS4A1, NT5E, TLR2 were independent predictors
of OS. Besides, the relationship of other cell death types related genes
with LUAD OS was shown in Supplementary file 1. Then, we
established the necroptosis-related risk score model and immunologic
cell death-related risk score model using genes significantly linked to
LUAD prognosis based on the following formula, respectively: The
necroptosis-related risk score= CCT6A∗0.20954219+HNRNPF∗
0.465856898+ ID1∗0.11066557+ IGF2BP1∗0.106862091−MYO6∗
0.399018963+ PPP1R3G∗0.461256604+ TPM2∗0.145578455 and the
immunologic cell death-related risk score= BIRC3∗0.129259936+
FGF2∗0.352407793+H2AX∗0.2859114−MS4A1∗0.181392849+N-
T5E∗0.134192126+ PSCA∗0.058592815−TLR2∗0.187882913. Other
cell death types related risk score was also calculated based on the
same formula in Supplementary file 2. Based on the best cut-off
values of risk score, we divided patients into high and low-risk groups.
The differential expression of cell death-related genes between high
and low-risk groups was also shown in Fig. 1. For example,
necroptosis-related genes including TPM2, PPP1R3G, IGF2BP1, ID1,
HNRNPF, and CCT6A as well as immunologic cell death-related genes
including PSCA, NT5E, H2AX, FGF2, BIRC3 were significantly expressed
in high-risk groups indicating these genes play potentially critical roles
in cancer development and progression.

The establishment and validation of cell death index (CDI)
signature
According to Fig. 2a, b, the 1-, 2-, 3-, 4-, and 5-year AUC values for 15
types of cell death signatures have been calculated and compared.
To explore the combined cell death-related signatures with the
highest AUC values, we evaluated a series of candidate GLMs that
were composed of different combinations of cell death types. It was
found that the necroptosis+ immunologic cell death signature,
which we named the cell death index (CDI) signature, had higher
predictive performance. The 1-, 2-, 3-, 4-, and 5-year AUC values were
0.772, 0.736, 0.723, 0.795, and 0.743, respectively (Fig. 2b, d). The ROC
curve also supported the above conclusion that the 1-year AUC value

of CDI signature (0.772) was higher than that of necroptosis or
immunologic cell death signature (0.764 and 0.742) in Fig. 2c. Based
on CDI, necroptosis, and immunologic cell death levels, we classified
LUAD patients into high and low-risk groups. The log-rank test was
used to further demonstrate the difference between high and low-
risk groups for LUAD survival. It has been shown that LUAD patients
at low risk have a significantly longer overall survival than those at
high risk (P < 0.05) according to Kaplan–Meier survival curves
(Fig. 2e–g). A uniform manifold approximation and projection
(UMAP) also revealed the classification of genes into high- and
low-risk groups in Fig. 2h–j. In the gene interaction network, CDI
signature was closely associated with genes related to necroptosis
and immunologic cell death genes, especially HNRNPF, PPP1R3G,
IGF2BP1, TLR2, NT5E, BIRC3, PSCA, FGF2, MS4A1, CCT6A, ID1, TPM2
(Fig. 2k). As shown in Fig. 2l, as CDI increased, the survival rate of
LUAD patients decreased.
The GSE68465 and GSE37745 cohorts were used to validate the

predictivity of CDI signature. In the first step, we compared 1-, 2-, 3-,
4-, and 5-year AUC values of CDI signature with immunogenic cell
death and necroptosis signatures using GSE68465 and GSE37745
(Supplementary Fig. 2a, h). The AUC values of 1–5 years of CDI
signature were higher than those of immunogenic cell death and
necroptosis signature. Kaplan–Meier survival curves were then used
to examine the correlation between OS and CDI, immunogenic cell
death, and necroptosis signature (Supplementary Fig. 2b–d, i–k).
Compared with immunogenic cell death and necroptosis signature,
there was a more significant prognostic difference between the high
and low-risk groups stratified by CDI signature. Gene classification
using UMAP was shown in GSE68465 and GSE37745 cohorts based
on CDI (Supplementary Fig. 2e–g, l–n). Especially in Supplementary
Fig. 2l, high and low-risk groups were significantly separated from
each other. On the basis of the above findings, we concluded that
CDI signatures are capable of predicting LUAD prognosis.

The interaction of CDI signature with clinical variables
To investigate the interaction of CDI signature with clinical
variables, we conducted univariate and multivariate Cox regres-
sion and concluded that CDI and N stage were independent
prognostic factors for OS (Fig. 3a, b). By combining clinical factors
including CDI and N stage, a nomogram was established as a
novel prognostic model predicting the survival and guiding
clinical decision-making in patients with LUAD (Fig. 3c). As shown
in Fig. 3d, the 1-year AUC value of nomogram, CDI and N stage in
the training set was 0.774, 0.772, and 0.636, respectively, showing
the superior predictive performance of nomogram. We could get a
similar conclusion from Fig. 3e, f.
As we all know, LUAD is a type of complex and highly

heterogeneous disease with multiple histological phenotypes23,24.
To predict better the prognosis of LUAD histological phenotypes, we
first compared the CDI among several typical LUAD histological
phenotypes including adenocarcinoma with mixed subtypes,
adenocarcinoma (NOS), bronchiolo-alveolar carcinoma and papillary
adenocarcinoma (Fig. 3g). It was shown that there was the
significance of CDI between adenocarcinoma (NOS) and adenocar-
cinoma with mixed subtypes, bronchiolo-alveolar carcinoma as well
as papillary adenocarcinoma. Furthermore, as for adenocarcinoma
with mixed subtypes and adenocarcinoma (NOS) patients, the
prognosis in the high CDI group was statistically worse than that in
the low CDI group (P < 0.01) in Fig. 3h, i. However, we found no
significance in high and low CDI in bronchiolo-alveolar carcinoma
and papillary adenocarcinoma in Fig. 3j, k, further demonstrating the
high heterogeneity of LUAD. We further explored the predictive
value of CDI signature for the prognosis of patients with different
TNM stages. As shown in the K–M curve of Fig. 3l–o, the survival of
the low CDI group was significantly longer than that of the high CDI
group in LUAD patients with I, II, and III stages. There was no
significance between high and low CDI groups in LUAD patients
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with IV stage which might be due to the small number of IV stage
LUAD patients enrolled.

The comparison of CDI signature with other published
prognosis biomarkers
A total of four signatures in previous studies including Necroptosis
signature, ICD signature, Pyroptosis signature, and Ferroptosis
signature were selected to compare with our CDI signature based

on the TCGA LUAD cohort25–28. We calculated the risk score of
each signature using the same methods to make these signatures
comparable. The AUC at 1, 3, and 5 years of these four signatures
were presented in Fig. 4a, respectively. Apparently, 1–5 years AUC
values of our CDI signature were significantly higher than those of
four published signatures (Fig. 4c). And compared with the four
other signatures, the C-index of our CDI signature was the highest
(Fig. 4d). As shown in K–M curve of the four signatures in Fig. 4b,
the prognostic difference between high and low-risk groups was

Fig. 1 The 15 types of cell death-related gene expression in high and low-risk groups and associations of cell death-related genes with
LUAD prognosis using multivariate Cox regression. Red represented the high-risk group while blue represented the low-risk group.
*P < 0.05, **P < 0.01, ***P < 0.001.
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the most significant in our signature. Moreover, the hazard ratio
and p-value of the five signatures were plotted in Fig. 4e. As a
result, our CDI signature showed superior performance in
prognosis prediction compared with the previous models.

The association between immune cell infiltration and CDI
signature
A comparison of immune cell infiltration in low and high CDI
groups was conducted to uncover the mechanism by which CDI is
strongly associated with LUAD prognosis. MCP counter was used

to compare the levels of infiltration of 8 immune cells and 2
stromal cells in high and low CDI groups (Fig. 5a). The absolute
abundance score of T cells, B lineage, myeloid dendritic cells,
neutrophils, and endothelial cells was statistically higher in low
CDI group while that of fibroblasts was higher in high CDI group.
CDI signatures were also correlated with immune cell populations
and stromal cell populations using MCP counters in Fig. 5b.
Additionally, we used the CIBERSORT algorithm to examine the
difference between high and low CDI groups in terms of immune
cell infiltration (Fig. 5c). The results showed that mast resting cells,
naïve B cells, and CD4+ memory resting T cells were mainly

Fig. 2 The prognosis value of CDI signature in LUAD. a, b A comparison of 1-, 2-, 3-, 4-, and 5-year AUC values among 15 types of cell death
signature showed the superiority of CDI signature. c A comparison of ROC curve in CDI signature with necroptosis and immunologic cell
death signature. d The 1-, 3-, and 5-year ROC curve of CDI signature suggested that all AUC values were over 0.70. e–g The Kaplan–Meier
survival curve with log-rank test demonstrated the relationship between OS and CDI signature, necroptosis, and immunologic cell death
signature, respectively. h–j Clustering analysis showed gene classification in high and low-risk groups based on CDI signature, necroptosis,
and immunologic cell death signature, respectively. k Diagram of gene interaction network showed that CDI signature was tightly associated
with necroptosis and immunologic cell death-related genes. l The distribution of survival status based on necroptosis, immunologic cell death
signature and CDI signature.
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Fig. 3 The interaction of CDI signature with clinical variables. a, b Univariate and multivariate Cox regression models for associations of risk
score and clinicopathological factors with LUAD prognosis. c A nomogram consisting of CDI and N stage for predicting 1-, 3-, and 5- years
survival for LUAD patients. d–f The 1-, 3-, and 5-year ROC curve of the nomogram, CDI, and N stage. g The CDI of LUAD histological
phenotypes including adenocarcinoma with mixed subtypes, adenocarcinoma (NOS), bronchiolo-alveolar carcinoma, and papillary
adenocarcinoma. h–k The K–M curve between high and low CDI group in adenocarcinoma with mixed subtypes, adenocarcinoma (NOS),
bronchiolo-alveolar carcinoma, and papillary adenocarcinoma, respectively. l–o The K–M curve between high and low CDI group in LUAD with
I, II, III, and IV stages. *P < 0.05, **P < 0.01, ***P < 0.001.
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enriched in low CDI group. In contrast, macrophage M0 and M1,
CD4+ memory-activated T cells, and NK resting cells were
significantly enriched in the high CDI group. In addition, the role
of CDI signatures in 22 immune cell infiltration was explored using
the CIBERSORT algorithm. The infiltration level of CD4+ memory-
activated T cells, macrophage M0 and M1, mast-activated cells,
and NK resting cells was positively associated with CDI while that
of CD4 memory resting T cells, mast resting cells, and naïve B cells
was negatively associated with CDI (Fig. 5d).
With several algorithms including CIBERSORT, EPIC, QUANTISEQ,

TIMER, and XCELL, we provided insights into the immune
landscape in low and high CDI groups to avoid inaccuracy and
bias caused by the use of a single algorithm. As shown in Fig. 6a,
CDI was correlated with the level of infiltration of immune cells
based on CIBERSORT, EPIC, QUANTISEQ, TIMER, and XCELL. By
using the algorithm described above, we were able to compare
the levels of immune cell infiltration between high and low CDI
groups in Fig. 6b. For example, the infiltration level of B cells was
significantly higher in the low CDI group applying any of the
abovementioned algorithms. We then applied the ESTIMATE
algorithm to compare ESTIMATE Scores, Immunity Scores, Stromal
Scores, and Tumor Purities between high and low CDI groups in
Fig. 6c–f. IMMUNE Score was higher in the low CDI group and a

significantly adverse correlation between IMMUNE Score and CDI
was identified (P < 0.05) (Fig. 6g–j).

Assessment of response to immunotherapy between high and
low CDI groups
In the modern era, cancer immunotherapy represented by ICIs
represents a promising treatment option for recurrent and
metastatic LUAD29. The TIDE score correlates closely with the
immune escape from tumor microenvironments and resistance to
immunotherapy. Higher TIDE scores indicate higher immune
escape potential and lower immunotherapy response rates.
According to Fig. 7a, b, TIDE scores in the low CDI group were
significantly lower than those in the high CDI group, and CDI was
positively correlated with TIDE scores (R= 0.5, P < 2.2e−16),
demonstrating low CDI group had higher response rates of
immunotherapy. Furthermore, we calculated the percentage of
patients who responded to immunotherapy and those who did
not respond using the TIDE score for the high and low CDI groups
(Fig. 7c). As an increased TMB contributes to a stronger antitumor
immune response30, we calculated TMB for each patient and
examined the difference between high and low CDI groups in
Fig. 7d. It was found that the TMB in the group with low CDI was
lower than that of the group with high CDI. Following this, we

Fig. 4 Comparison with other risk signatures. a ROC curve of Necroptosis signature, ICD signature, Pyroptosis signature, Ferroptosis
signature. b K–M survival curve of the four signatures. c 1–5 years AUC values of CDI signature and four signatures. d C-index of our CDI
signature compared with the four other signatures. e Restricted mean survival (RMS) curves for the five risk signatures.
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examined the relationship between prognosis and CDI signature
in the GSE135222 of patients with LUAD receiving immunother-
apy31,32. According to the Kaplan–Meier survival curve, the overall
survival of the low CDI group was higher than that of the high CDI
group (P= 0.022) (Fig. 7e). In LUAD patients receiving immu-
notherapy, the proportion of responders and non-responders in
high and low CDI groups was compared, as well as the CDI
difference between immunotherapy responders and non-
responders in Fig. 7f, g, respectively. The response rate was

significantly higher in the low CDI group (P= 0.019) even though
there was no significance of the CDI value between response
patients and non-response patients (P= 0.21). Similar results were
observed in patients receiving immunotherapy with metastatic
urothelial carcinoma (MuC) from the iMvigor210 cohort and
melanoma from GSE78220 (Fig. 7h–m). As presented in Fig. 7n, the
relative probability to immunophenoscore (IPS) as well as immune
checkpoint inhibitor including anti PD1/PDL1/PDL2, anti-CTLA4,
and both treatments in the low CDI group was higher (P < 0.05).

Fig. 5 Correlation of CDI with immune cell infiltration. a The Wilcoxon rank-sum test compared the absolute abundance scores of 8 immune
cells and 2 stromal cell populations in high and low CDI groups using the MCP counter. b The relationship of CDI with 8 immune cells and
2 stromal cell populations using MCP counter. c The difference of 22 immune cell infiltration levels between high and low CDI groups using
the CIBERSORT algorithm. d The relationship of CDI with 22 immune cells using the CIBERSORT algorithm. *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001.
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Fig. 6 The investigation of the immune landscape in high and low CDI groups using several algorithms. a The correlation of CDI with
infiltration level of immune cells using CIBERSORT, EPIC, QUANTISEQ, TIMER, and XCELL. b The difference in immune cell infiltration level
between high and low CDI groups using CIBERSORT, EPIC, QUANTISEQ, TIMER, and XCELL. c–f The difference of ESTIMATE Score, IMMUNE
Score, Stromal Score, and Tumor Purity between high and low CDI groups, respectively. g–j The relationship of CDI with ESTIMATE Score,
IMMUNE Score, Stromal Score, and Tumor Purity, respectively. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Fig. 7 Correlation of CDI with immunotherapy-related biomarkers. a The difference in TIDE score between high and low CDI groups. b The
relationship of CDI with TIDE score. c The percentage of immunotherapy responders and non-responders in high and low CDI groups using
the TIDE score. d The difference of TMB between high and low CDI groups. e, h, k The Kaplan–Meier survival curve showed the relationship
between OS and CDI in patients receiving immunotherapy with LUAD from GSE135222, metastatic urothelial carcinoma from IMvigor210 and
melanoma from GSE78220, respectively. f, i, l The percentage of immunotherapy responders and non-responders in high and low CDI groups
in patients receiving immunotherapy with LUAD from GSE135222, metastatic urothelial carcinoma from IMvigor210 and melanoma from
GSE78220, respectively. g, j, m The difference of CDI between immunotherapy responders and non-responders in patients from GSE135222,
IMvigor210, and GSE78220, respectively. n The difference of IPS between high and low CDI groups. o The relationship of CDI, MHC, EC, SC, and
IPS in the TCGA cohort. *P < 0.05, **P < 0.01, ***P < 0.001.
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Moreover, we explored the correlation between CDI and
immunotherapy-related biomarkers such as MHC molecules,
effector cells (EC), immune checkpoints, and suppressor cells
(SC). The anti-tumor immune response was promoted by MHC and
EC while the immune response was suppressed by immune
checkpoints and SC. The analogous result was also observed in
Fig. 7o that the CDI was negatively linked with the expression of
IPS and MHC while positively linked with the expression of EC and
SC, although there was no significance.

GENE SET ENRICHMENT ANALYSIS AND DRUG SENSITIVITY OF
THE CDI SIGNATURE
Because of the intense relationship between the CDI signature
and prognosis, immune microenvironment, and immunotherapy
response of LUAD, we aim to apply gene set enrichment analysis
to explore their biological process and internal connection. Using
KEGG functional enrichment analysis, we found that the DEGs
between high and low CDI populations were distinctively enriched
in 9 KEGG pathways (P < 0.05). Among them, KEGG ECM
RECEPTOR INTERACTION, CELL CYCLE, GAP JUNCTION, MISMATCH
REPAIR, PATHWAYS IN CANCER, MAPK SIGNALLING PATHWAY, TGF
BETA SIGNALLING PATHWAY, DNA REPLICATION were abundant in
high CDI group and the low-CDI group had the most significant
way in KEGG VEGF SIGNALLING PATHWAY (Supplementary Fig.
3a). To explore the relationship of tumor-related biological
processes with CDI signature, gene set enrichment analysis (GSEA)
was performed. As shown in Supplementary Fig. 3b, a total of 9
hallmark gene sets were enriched (P < 0.05). Hallmarks (including
WNT BETA CATENIN SIGNALLING, EPITHELIAL MESENCHYMAL
TRANSITION, G2M CHECKPOINT, E2F TARGETS, DNA REPAIR,
CUPROPTOSIS, P13K AKT MTOR SIGNALLING, TNFA SIGNALLING
VIA NFKB) were closely related with high CDI, indicating that the
activation of these biological processes may play the vital role in
tumorigenesis and progression. In contrast, the other hallmarks
(PYROPTOSIS) were related to low CDI, implying that their
activation participated in tumor suppression and prolonged
prognosis in LUAD patients. We then estimated the IC50 value
of drugs between high and low CDI groups in order to guide
clinical treatment in LUAD. We found high CDI group tended to
benefit from Paclitaxel, Gemcitabine, Vinblastine, Docetaxel,
Cytarabine, Cisplatin, and Gefitinib (Supplementary Fig. 3c–j).

HIGH-RESOLUTION SCRNA-SEQ REVEALED THE IMMUNE
LANDSCAPE OF LUAD
We analyzed 9 tumor tissue samples from 8 patients with LUAD to
characterize the immune landscape in LUAD. All immune cells
were classified into 10 cell types based on the expression level of
canonical marker genes as reported previously using t-SNE
method, including T cells, mono cells, B cells, epithelial cells,
neutrophils, NK cells, mast cells, fibroblasts, endothelial cells and
DC cells by well-recognized gene markers (Supplementary Fig. 4a).
The UMAP plot has been uploaded in Supplementary Fig. 5. In the
following step, we examined the fraction of different immune cell
types in each cluster (Supplementary Fig. 4b). The results
suggested that different immune cell types varied significantly
among different clusters. To be specific, T cells were prevalent in
C1–C6 and C9 while epithelial cells were predominant in C7 and
C8. Moreover, the risk scores of necroptosis and ICD were
calculated and demonstrated significantly different among
different cell types in Supplementary Fig. 4c. Dotplot showed
that most of the necroptosis and ICD-related model genes were
generally expressed in each cell subtype and the expression value
difference of the model genes in different cell subtypes further
illustrated the heterogeneity within LUAD microenvironment
(Supplementary Fig. 4d). Using t-SNE analysis, cancer-associated
fibroblasts (CAF) were categorized as myCAF and iCAF cells.

Development trajectory analyses of CAF cells further unveiled that
the stage 1–2 and iCAFs were enriched in the initial differentiation
phase while stage 5–7 and myCAFs were enriched in the terminal
differentiation phase (Supplementary Fig. 4e–i). As shown in
Supplementary Fig. 4j–l, the relationship of expression in BIRC3,
CCT6A, HNRNPF, ID1, MYO6, and TPM2 with the pseudotime
colored by state, cell subtype, and pseudotime, respectively was
investigated.

CELL COMMUNICATION NETWORK ANALYSIS IN LUAD
To illustrate how immune cells regulate tumorigenesis, we studied
the signaling pathways that allow multiple immune cells to
interact with each other during tumorigenesis We described the
number as well as weight and strength of interaction between
immune cell types in Supplementary Fig. 6a, b. There was the
largest number of interactions in epithelial–endothelial cells,
mono–endothelial cells, mono cells–CAFs as well as the largest
weight and strength of interaction in neutrophil–endothelial cells,
mono cells–neutrophils, mono–endothelial cells. As shown in
Supplementary Fig. 6c, d, the interaction number and weights/
strength of CAF cells with other immune cell types were deeply
explored. Furthermore, the role of related signaling pathways in
cell–cell interaction was in-depth studied. According to our
findings, immune cell interactions are closely related to three
pathways involved in executive function (Supplementary Fig.
6e–g). The results showed that CAFs can receive the PERIOSTIN
signaling not only sent by endothelial cells but also by CAFs
themselves in the autocrine form. CAFs as signaling senders can
transmit the activated MK signaling to multiple types of immune
cells including epithelial cells, endothelial cells, DC cells, mono
cells, T cells, B cells, NK cells, and mast cells. Similarly, ANGPTL
signaling was also transmitted by CAFs to endothelial cells,
neutrophils, and mono cells. Supplementary Fig. 6h, i illustrates
the contribution weight of outgoing and incoming signaling
patterns to immune cell types.

BIOLOGICAL FUNCTIONS OF THE SELECTED GENE
To further verify the performance of CDI signature, we selected
the HNRNPF and FGF2 that contributed the most to necroptosis
and immunogenic cell death-related risk models, respectively. We
first examined the expression of HNRNPF and FGF2 in five paired
clinical LUAD specimens. The results showed that the expression
of HNRNPF and FGF2 was elevated in the majority of tumor tissues
(T) compared with the matched adjacent non-tumor tissues (N)
(Fig. 8a). We next determined the expression levels of HNRNPF
and FGF2 in HBE and different lung cancer cell lines (Fig. 8b). In
the follow-up study, we conducted a knockdown analysis on
H1299 cells with high expression of HNRNPF and A549 cells with
high expression of FGF2 (Fig. 8c). The results of the CCK-8 assay
and EDU assay proved that the knockdown of HNRNPF and FGF2
obviously inhibited lung cancer cells proliferation (Fig. 8d, e).
Besides, the wound-healing assay demonstrated that the migra-
tion of cells was suppressed after the knockdown of HNRNPF and
FGF2 (Fig. 8f).
Moreover, chemotherapy often elicits various cell death.

Previous studies unveiled that cisplatin can induce necropto-
sis33,34. Based on the IC50 value of cisplatin in H1299 cells from the
published literature35, we selected 10 μmol/L cisplatin for the
validation of necroptosis. We found that the phosphorylation level
of MLKL was upregulated following cisplatin treatment. The results
suggested cisplatin stimulated necroptosis in H1299 cells, and
knockdown of HNRNPF further increased cisplatin-induced
necroptosis (Fig. 8g). Oxaliplatin is a known ICD inducer. Based
on the IC50 value of oxaliplatin in A549 cells from the previous
studies36, we selected 3 μmol/L oxaliplatin for the validation of
ICD. Oxaliplatin promoted ICD-related proteins (P-eIF2α)
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Fig. 8 Validation of the potential function of HNRNPF and FGF2 in tumors by in vitro assays. a HNRNPF and FGF2 expression in five paired
tumor tissues (T) and their adjacent normal tissues (N). b Comparison of HNRNPF and FGF2 expressions in human bronchial epithelial and
lung cancer cells. c The expression of HNRNPF and FGF2 in 1299 and A549 cells, respectively, after transferring with siRNA. d–f Knockdown of
HNRNPF and FGF2 inhibited the proliferation and migration of lung cancer cells by CCK-8 assay d, EDU assay e, and wound-healing assay (f).
g The effects of cisplatin treatments on necroptosis in the 1299 cells were determined, and cisplatin-induced necroptosis was further
increased in the HNRNPF silencing 1299 cells. h The effects of oxaliplatin treatments on ICD in the A549 cells were determined, and
oxaliplatin-induced ICD was further enhanced in the FGF2-silencing A549 cells. *P < 0.05, **P < 0.01, ***P < 0.001.
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expression in A549 cells, and knockdown of FGF2 further
enhanced oxaliplatin-induced ICD (Fig. 8h).

DISCUSSION
The present study is the first comprehensive analysis of 15 types
of cell death patterns, integrating necroptosis and ICD into CDI
signature and validating its predictivity in TCGA and GEO cohorts.
The CDI signature using necroptosis+ immunologic cell death-
related genes was established in the TCGA cohort with the 1-, 2-,
3-, 4-, and 5-year AUC values were 0.772, 0.736, 0.723, 0.795, and
0.743, respectively. The predictive performance was also verified in
GSE37745 and GSE68465 successfully. We also investigated the
relationship between the CDI signature and clinical variables,
published prognosis biomarkers, immune cell infiltration, func-
tional enrichment pathways as well as immunity biomarkers.
For decades, cell death has been implicated in biological

processes underlying malignant tumor development and metas-
tasis. Among cell death patterns, necroptosis was being increas-
ingly investigated for its role in tumor formation, especially
immune regulation37. The evidence suggested that tumor-specific
antigens were provided to DCs by necrotrophic apoptotic cells,
which then triggered cytotoxic CD8+ T cells38. RIPK3 regulated
cytokine expression in DCs and might be involved in innate and
adaptive immunity. Besides, a series of serine proteases is also
involved in the necrotizing death pathway of neutrophils
mediated by RIPK3-MLKL39. As immune cell recruitment to the
tumor microenvironment is a promising therapeutic strategy, even
in aggressive tumors, ICD has also gained increasing attention in
the clinical management of cancer. For example, ICD played a
crucial role in the response of colorectal adenocarcinoma cells to
oxaliplatin in mice. This is because conventional chemotherapeu-
tics exert tumor-suppressive effects mainly by inducing the release
of DMAPs from cancer cells, activating the presentation of DC
cells, and thus activating CD8+ T cells to kill cancer cells. The
efficacy of these chemo agents varied in their ability to induce ICD.
Due to the strong correlation of necroptosis and ICD with

immune regulation in tumor management, we applied several
algorithms to explore the underlying relationship of CDI signature
with immune infiltration. The findings showed that multiple types
of immune cells including T cells, B cells, myeloid dendritic cells,
neutrophils, and mast cells were more active in the low CDI group
while other types of cells including cancer-associated fibroblasts
(CAF), CD4+ memory-activated T cells, and NK resting cells were
significantly enriched in high CDI group. Based on a large number
of scientific studies, tumor-infiltrating lymphocytes (TILs) including
T cells, B cells, and NK cells have been implicated in improving
patient prognosis and immunotherapy efficacy in LUAD40. A
detailed spatial analysis by Lopez de Rodas et al. found that lung
cancer patients infiltrated with an amount of CD8+ T cells had a
longer survival rate41. Based on WSI analysis of TILs, Park S., et al.
also demonstrated higher immune cytolytic activities, higher
response rates, and better prognosis in the immune phenotype
characterized by high TIL density42. Aside from TILs, other immune
cells within TME play a significant role in the progression and
development of LUAD. For instance, a recent phase II study of the
novel dendritic cell vaccine DCVAC/LuCa combined with standard
carboplatin/pemetrexed for advanced LUAD showed promising
results: the 1-year and 2-year survival rate was 72.73% and 52.57%,
respectively43. Additionally, some inflammation-related pathways
such as TGF BETA SIGNALLING PATHWAY and TNFA SIGNALLING
VIA NFKB were identified to be associated with CDI signature as
shown in GSEA analysis. In accordance with previous research and
our findings, we further identified that CDI signature might be
involved in the development of LUAD by regulating tumor
immunity within TME.
With the advance of scRNA-seq, researchers have been able to

identify CAF subpopulations and better understand CAF

heterogeneity in a wide variety of tumor types. In our study,
CAFs were categorized as myofibroblastic CAFs (myCAFs) and
inflammatory CAFs (iCAFs) through t-SNE analysis. Notably, iCAFs
marked by TPM2 were enriched in the initial differentiation phase
while myCAFs characterized by BIRC3, CCT6A, HNRNPF, and ID1
were enriched in the terminal differentiation phase during tumor
progression. As cancer evolves, CAFs may change dynamically in
their characteristics and interactions with other cell types. The
transcriptional profiles of CAF subsets in breast cancer shifted
from immunoregulation to wound healing as well as antigen
presentation, showing the dynamics of CAF subclusters during
cancer development44 Similarly, recent research by Davidson S.,
etc., found that the abundance of three CAF subpopulations
including stromal 1, stromal 2 and stromal 3 changed throughout
tumor progression and stromal 3 subpopulations dominated
tumor growth at later stages45. Furthermore, we identified that
PERIOSTIN, midkine (MK), and angiopoietin-like (ANGPTL) were
key signaling molecules in the interaction of CAFs with other
immune cells.
In cancer treatment, immunotherapy has revolutionized the

situation of patients with unresectable cancers46. Effective
biomarkers for predicting immunotherapy efficacy include PD-1,
PD-L1, MSI, TMB, etc. In spite of this, the relationship between
these biomarkers is complicated and it is still unclear whether
combining them is better than using one marker alone47,48. As an
increased TIDE score indicates a greater likelihood of immune
escape and less effectiveness of ICI treatment, the TIDE score was
applied by our study in high and low CDI groups. Our study found
that low-risk patients with low TIDE scores may benefit more from
ICI therapy than high-risk patients with high TIDE scores.
Additionally, the immune rejection (Exclusion) and immune
dysfunction (Dysfunction) scores differed significantly between
the two groups, further demonstrating the predictivity of CDI
signature. IPS, primarily developed from TCGA RNA-seq data, was
designed to predict patient responses to immune checkpoint
inhibitor treatments49. It is confirmed that low-risk populations
respond more effectively to immunotherapy, as evidenced by the
higher IPS, which was consistent with our findings. As a result, it
seems reasonable to assume that patients in the low CDI group
benefit more from immunotherapy in terms of the treatment
strategies for LUAD.
Tumor mutation burden (TMB) is referred to as the number of

somatic mutations without germline mutations in the tumor
genome. The high level of TMB was observed in the high CDI
group, showing an increased tumor burden predicted the
increasingly poor prognosis although higher TMB may contribute
to a better immunotherapy response50. Multiple evidence in
various tumor types has illustrated a relationship between the
high level of TMB and the benefit from ICI which could be
explained that there tends to be a higher amount of tumor
neoantigens and a higher possibility of stimulating a stronger
immune response in the tumor types with a higher TMB51,52.
However, it has to be noted that TMB varies greatly across
different tumor types in the TCGA database and kidney
Chromophobe (KICH), diffuse large B-cell lymphoma (DLBC),
adenoid cystic carcinoma (ACC), and low-grade glioma (LGG)
had a better prognosis in the low TMB group. Thus, when
exploring the impact of high TMB on tumor prognosis, the
changes of OS in the high TMB group before and after ICIs should
be considered. In addition to immunotherapy, the effect of TMB
on molecular targeted therapies in LUAD was also explored. A
recent study reported an inverse association between TMB and
clinical response of EGFR tyrosine kinase inhibitors in patients with
EGFR-mutant LUAD53. The scientific rationale might be that a high
level of TMB can cause a high probability of resistance pathways
as TP53 mutations can be significantly observed in patients with
high TMB and TMB when progressing with EGFR-TKI is higher than
pre-treating. We speculated that LUAD samples with driver genes
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mutation we downloaded from TCGA and GEO database are likely
to receive TKI treatment, thus explaining why a high level of TMB
was observed in the high CDI group. In general, TMB is an
intriguing biomarker as its variable and therapy context-specific
impacts on LUAD prognosis need to be deeply validated in routine
clinical application.
In our study, we constructed a signature consisting of 14 CDI-

related genes which was a promising predictor of LUAD prognosis
including HNRNPF, PPP1R3G, IGF2BP1, TLR2, NT5E, BIRC3, PSCA,
FGF2, MS4A1, CCT6A, ID1, TPM2, MYO6, H2AX. Among these
genes, the genes that contributed the most to necroptosis and
ICD-related risk models including necroptosis-related gene
“HNRNPF” and ICD-related gene “FGF2”, respectively, were
selected and performed in vitro experiments to verify the function
of lung cancer. The knockdown of HNRNPF and FGF2 inhibited the
proliferation and migration of lung cancer cells. We next
determined that HNRNPF and FGF2 were involved in the
cisplatin-induced necroptosis and oxaliplatin-induced ICD, respec-
tively. It was observed that fibroblast growth factor 2 (FGF2) can
activate FGFR1 to stimulate the proliferation,
epithelial–mesenchymal transition (EMT), migration, and invasion
in FGFR1-amplified lung cancer cell lines54. Moreover, FGF2
functioned as an angiogenic factor independent of VEGF in lung
cancer cells determined by tube formation and neutralization
assays55. RBM-007, an inhibitory RNA aptamer against FGF2, has
been confirmed to have therapeutic effects on lung cancer in
preclinical trials56. As an alternative splicing factor, HNRNPF played
a major role in the inclusion and exclusion of cryptic exons57. It
was reported to regulate alternative splicing in several cancer-
associated processes, including epithelial to mesenchymal transi-
tions and therapy resistance58. In thyroid cancer, alternative
splicing mediated by HNRNPF can contribute to conventional
cancer-related pathways including RTK/RAS/MAPK and PI3K/AKT/
MTOR signaling59. By binding to the 3’ UTR of Snail1 mRNA,
HNRNPF regulates EMT in bladder cancer60. Nevertheless, the
regulatory mechanism of this gene in lung cancer is still poorly
understood, which deserves further exploration in the future.
Although we conducted a comprehensive data analysis and

multiple data validations in our study, some limitations and
shortcomings remain. Firstly, there were a limited number of
patients and all data were obtained from public databases.
Therefore, more clinical data are needed to validate this
prognostic model. Secondly, clinicopathological information from
TCGA and GEO databases was incomplete so the CDI might not be
an independent predictor of LUAD prognosis. Lastly, the
mechanism of CDI-related genes in LUAD prognosis remains
unknown, a more in-depth investigation of these genes in LUAD
development will be undertaken in vivo or in vitro.
In conclusion, the CDI signature established in this study is a

novel prognostic predictor that uncovers new immunotherapy
targets and new theoretical foundations for LUAD diagnosis,
prognosis assessment, and individual treatment.

METHODS
Data collection
We selected the key regulatory genes for 15 cell death patterns
including pyroptosis, ferroptosis, necroptosis, autophagy, immu-
nologic cell death, entotic cell death genes, cuproptosis,
parthanatos, lysosome-dependent cell death, intrinsic apoptosis,
extrinsic apoptosis, necrosis, anoikis, apoptosis-like morphology,
and necrosis-like morphology using a combination of gene set
enrichment analyses (GSEA) gene sets from MSigDB (http://
software.broadinstitute.org/gsea/msigdb/index.jsp), Kyoto Ency-
clopedia of Genes and Genomes (KEGG), review articles, and
manual collection of gene sets from Genecards website (https://
www.genecards.org/)61,62. GeneCards is an integrative human

gene database in which there is highly comprehensive and user-
friendly gene information to help us better investigate human
genetic research (Supplementary Table 1).
Raw bulk transcriptome counts, normalized and log2 converted

RNA-sequencing profiles FPKM as well as clinical information for
LUAD patients and normal samples were identified from the the
Cancer Genome Atlas (TCGA) database (https://
portal.gdc.cancer.gov/). The IMvigor210 dataset from http://
researchpub.gene.com/IMvigor210CoreBiologies. We downloaded
the bulk RNA-seq datasets (GSE37745, GSE68465, GSE135222, and
GSE78220) and the single-cell RNA-seq dataset (GSE171145) from the
Gene Expression Omnibus (GEO) database (http://
www.ncbi.nlm.nih.gov/geo/). Among them, GSE171145 (including
40,799 single cells from 9 LUAD samples for LUAD patients) was
analyzed by “Seurat V4” R package.

Identification of cell death-related genes associated with
LUAD prognosis
Clinical data including overall survival (OS) were identified from
the TCGA database. We excluded the samples without survival-
related information. First, prognosis-associated genes in 15 cell
death types were screened using univariate Cox regression. Then,
the cell death-related genes tightly linked to LUAD prognosis were
further screened using least absolute shrinkage and selection
operator (LASSO) analysis which was incorporated into the
multivariate Cox regression model. Furthermore, we plotted the
forest plots of selected genes using the R package “forestplot”
through multivariate Cox analysis to explore the independent
predictor of OS. Before establishing the risk score model, the
residual method was used to test the equal proportional risk
hypothesis of the studied variables. The principle of the residual
method test is that the residual does not change significantly with
the change of time (P > 0.05), indicating that the variable
conforms to the assumption of equal proportional risk. Then we
calculated the risk score model based on the model formula: Risk
score= ΣiCoefficient (mRNAi) × Expression (mRNAi), divided into
high and low-risk groups according to the best cut-off values of
risk score and then compared the different expressions of the
screened genes in the high and low-risk groups.

The establishment and validation of cell death-related
prognosis signature
Based on the following model formula: CDI= ΣiCoefficient
(mRNAi) × Expression (mRNAi), we calculated the CDI of each
patient using prognostic cell death-related gene expression. The
cut-off value was determined by the “surv_cutpoint” function of
the R package “survminer”, which calculates statistics based on
maximally selected rank statistics. The methods to determine the
best cut-off value of the function include the minimum P-value
method and the maximum statistics method. The minimum
P-value method refers to calculating the P-value between high
and low-risk groups according to the different cut-off values until
the P-value is the minimum. The maximum statistic method refers
to calculating the statistics of the log-rank test between high and
low-risk groups according to different cut-off values until the
statistic is maximum. Besides, we standardized the included data
in this study, and the criteria for logarithmic conversion of the raw
data was consistent, so the same cut-off values were selected
across all cohorts. Through time-related receiver operating
characteristic (ROC), the predictive reliability of the cell death-
related signature was assessed. To identify the combined cell
death-related signatures with the highest AUC values, we applied
an exhaustive search algorithm in the R package “leaps” to assess
a series of candidate generalized linear models (GLMs) that
contained different combinations of cell death types63. Among 15
types of cell death, we selected a cell death-related risk score
model with AUCs >0.7, paired them, and finally got 28 cell death
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combination types (Supplementary Table 2). Based on the AUC
values, the best CDI signature was chosen and then applied to
predict the prognosis of LUAD patients. The Kaplan–Meier survival
curve was performed to compare the OS between the high and
low CDI groups using R packages “survival” and “survminer”.

Construction of the nomogram
Nomogram is a powerful tool in tumor prognosis prediction,
which integrates multiple clinicopathology prognostic variables
and calculates the occurrence possibility of individual clinical
events64. The nomogram predicting 1-, 3-, and 5-year OS of LUAD
patients was established based on the CDI signature and
clinicopathology factors through the “rms” R package. Besides,
the ROC curve was applied to evaluate the accuracy of the
nomogram in predicting LUAD prognosis.

Immune infiltration and biomarkers analysis
The TIMER2.0 database was applied to explore the relationship
between CDI signature and immune infiltration was identified
(http://timer.comp-genomics.org). Immunedeconv, an R package
integrating six state-of-the-art algorithms including TIMER, xCell,
MCP-counter, CIBERSORT, EPIC, and quanTIseq was utilized65. Each
algorithm was systematically benchmarked and found to have
unique properties and strengths. The MCP-counter generates
absolute abundance scores for ten immune cell and stromal cell
populations based on the normalized FPKM expression matrix
converted by log266. Besides, the enrichment of 22 immune cells
was inferred by the CIBERSORT algorithm67. CIBERSORT can
compute the abundance of specific cell types in a mixed sample
based on the bulk expression. The ESTIMATE (Estimation of Stromal
and Immune cells in Malignant Tumor tissues using Expression data)
algorithm was also used to analyze the difference of stromal score,
immune score, and ESTIMATE score by the R package “estimate”68.
Two primary mechanisms of tumor immune evasion were

modeled using the algorithm tumor immune dysfunction and
exclusion (TIDE). We uploaded the processed expression profile
matrix of LUAD patients to the TIDE database online website (http://
tide.dfci.harvard.edu/) to derive per patient’s TIDE score for
predicting immunotherapy response. We also calculated the
immunophenoscore (IPS) for LUAD patients from The Cancer
Immunome Atlas (TCIA, https://tcia.at/home). The IPS is obtained
according to four significant tumor immunogenicity-related aspects,
including effector cells (EC), immunosuppressive cells (SC), major
histocompatibility complex (MHC) molecules which are character-
ized by antigen processing as well as checkpoints/immunomodu-
lators. We identified the IPS which ranged from 0 to 10 according to
the z-score of related gene expression. Besides, the number of
somatic non-synonymous mutations in the given genomic region is
usually called tumor mutation burden (TMB) which is exhibited as
enzyme mutations per Megabyte (mut/Mb). TMB is highly related to
the neoantigen production within the tumor microenvironment and
is thus used to predict the immunotherapy response in multiple
tumor types. TMB data of LUAD patients was downloaded by
“mutect2” algorithm using the R package “TCGAmutations”.

Gene set enrichment analyses
Using the R packages “clustersProfiler”, “enrichplot”, and
“ggplot2”, we performed gene set enrichment analyses (GSEA)
to improve our understanding of CDI signature function and
pathway. The gene sets “c2.cp.kegg.v7.4. symbols.gmt” and
“h.all.v7.4.symbols.gmt” was chosen as the reference gene set.
The normalized enrichment score (|NES | >1), nominal P-value <
0.05 (NOM P-value), and FDR adjusted q-value < 0.25 were
considered as significant pathway enrichment69–72.

Visualization
ScRNA-seq data were quality-controlled prior to analysis, and cells
with >25% of mitochondria-associated genes were filtered out.
The top 2000 highly variable genes of each sample were
normalized using the ScaleData function based on variance
stabilization transformation (vst). The dimensionality of the PCA
was reduced using the RunPCA function. We chose dim= 20 and
clustered the cells into different cell groups using “FindNeighbors”
and “FindClusters” functions. The resolution was 0.5. t-distributed
stochastic neighbor embedding (T-SNE) and uniform manifold
approximation and projection (UMAP) nonlinear dimension
reduction methods in seurat were applied, to map high
dimensional cellular data into a two-dimensional space, grouping
cells with similar expression patterns and separating those with
different expression patterns. T-SNE can retain local structures
between samples by optimizing the stochastic divergence of
Kullback–Leibler, which has better advantages in visualizing
high–low-risk groups. It can also test whether there are over-
lapping clustering and outlier samples73. UMAP, through error
optimization, makes similar samples closer thus visualization effect
is more stable, and more global structure information can be
retained74. Both algorithms set the seed number to “123456789”.
Two algorithms are used to visualize the results after NMF
clustering, which can further verify the accuracy of the clustering
results. As a result, the differences between cells became more
apparent. In the following step, we made annotations for each cell
type using SingleR. The reference cells were used by SingleR to
identify cell types in order to identify the similar expression
patterns between the cells.

Pseudotime analysis
An analysis of pseudotime, also known as cell trajectory analysis,
helps predict the evolutionary trajectory of apoptosis pathways
and cell subtypes and infer the differentiation trajectory of stem
cells during disease progression. By analyzing key gene expression
patterns using Monocle 2, we performed pseudotime analysis in
the current study. The pseudotime value was used by Monocle to
model the gene expression level as a nonlinear smooth
pseudotime function to show changes in gene expression with
time. FDR <1e−5 was regarded as a significant difference.

Cell–cell interaction analysis
Based on the ligand–receptor information, we used the single-cell
gene expression matrix to unravel the communication between
immune cell subtypes which was contained in CellChat software
(http://www.cellchat.org/) with default parameters, modeling the
communication probability and identifying significant
communications.

Cell culture and treatment
The Human bronchial epithelial cells (HBE) and a collection of lung
cancer cells (A549, NCI-H1299, NCI-H1915, and H1650) were
obtained from the Laboratory of Medical Genetics (Department of
Biology, Harbin Medical University, Harbin, China). Cells were
cultured in the DEME (HBE), or RPMI 1640 (A549, H1299, H1915,
and H1650 cells) medium (Gibco, Invitrogen) supplemented with
10% fetal bovine serum (PAN-Biotech, Germany), penicillin G
(100 U/ml, Beyotime, China) and streptomycin (100 μg/ml, Corn-
ing, China). Cell cultures were kept in a humidified incubator at
37 °C with 5% CO2. Cisplatin and oxaliplatin were obtained from
Qilu Pharmaceutical (China) and dissolved in sterile water. The
cells were treated with cisplatin and oxaliplatin for 72 h before the
follow-up experiments.
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Western blot analysis
Total proteins from LUAD specimens and cells were extracted with
RIPA (Beyotime, China) buffer supplemented with a phenylmetha-
nesulfonyl fluoride (Beyotime, China) for 20 min. Equal amounts of
proteins were electrophoresed in SDS–PAGE (10%) and transferred
to PVDF membranes. After blocking with 5% skimmed milk in
TBST at room temperature for 1 h, the membranes were incubated
overnight at 4 °C with primary antibodies against HNRNPF (1:1000,
Affinity), FGF2 (1:1000, Affinity), MLKL (1:1000, Affinity), P-MLKL
(1:1000, Affinity), eIF2α (1:1000, Affinity), P-eIF2α (1:1000, Affinity),
β-actin (1:1000, Beijing Zhongshan Golden Bridge Biotechnology
Co.Ltd), and GAPDH (1:1000, Absin), as needed. After washing with
TBST, the membranes were incubated with a secondary antibody
(1:10,000, Beijing Zhongshan Golden Bridge Biotechnology Co.
Ltd) for 1 h at room temperature. Finally, an ECL detection system
(Beyotime, China) was used to detect targeted protein bands.
GAPDH and β-actin were used as the internal controls.

Patients and samples
We collected fresh tissue specimens from five patients with LUAD
receiving surgical operations in the Harbin Medical University
Cancer Hospital. These patients did not receive any anticancer
treatments prior to surgery. The approval of this study was
obtained from the Ethics Committee of Harbin Medical University
Cancer Hospital. The study was conducted in accordance with the
Declaration of Helsinki, and written informed consent was
obtained from all patients prior to participation.

Assay for proliferation and migration
The H1299 cells were transfected with HNRNPF siRNA (RiboBio,
China) to knock down the HNRNPF expression according to the
manufacturer’s protocols; the A549 cells were transfected with
FGF2 siRNA (RiboBio, China) to knock down the FGF2 expression
according to the manufacturer’s protocols. The sequences of
HNRNPF-siRNA and FGF2-siRNA were designed according to a
previous study75,76. The siRNA duplex sequences used to target
HNRNPF (HNRNPF-siRNA) were as follows: sense, 5′-CCGCAGGU-
GUCCAUUUCAUTT-3′; and antisense, 5′-AUGAAAUGGACAC-
CUGCGGTT-3′. The siRNA duplex sequences used to target FGF2
(FGF2-siRNA) were as follows: sense, 5′-GGAGUGUGUGCUAACC-
GUUTT-3′; and antisense, 5′-AACGGUUAGCACACACUCCTT-3′.
The proliferation of H1299 and A549 cells was assessed with the

cell counting kit-8 (CCK-8) assay (APExBIO, USA). About 4 × 103

cells were inoculated into 96-well plates, and cultured for 24, 48,
72, and 96 h. Subsequently, the OD values were measured at
450 nm with a microplate reader.
The 5-Ethynyl-20-Deoxyuridine (EDU) incorporation assay kit

(RiboBio, China) was used to measure the proliferation capacity of
cells. About 3 × 103 cells were seeded into 96-well plates per well.
After 48 h, the cells were incubated with a culture medium
containing EDU for 2 h at 37 °C. Finally, A fluorescence microscope
(Olympus, Japan) was utilized to capture images.
We also evaluated cell migration using the wound-healing

assay. While cells reached confluence, we scratched the cell layer
with the tip of a 1000 µL pipette tip. And afterward, a serum-free
medium was used to maintain cells. The wounded areas were
photographed under a light microscope (Nikon, Japan) when the
wound was created (0 h) and 24 h later.

Statistical analysis
R version 4.1.3 was used for all statistical studies. The survival
curve was plotted by the Kaplan–Meier survival curve and the
P-value was obtained by the log-rank test. The Student’s t-test and
Wilcoxon test were used to compare the differences between the
two groups, and Spearman analysis was used to calculate the

correlation coefficients. Double-tailed P < 0.050 was considered
statistically significant.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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