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High-dimensional deconstruction of pancreatic cancer
identifies tumor microenvironmental and developmental
stemness features that predict survival
Erik P. Storrs1,2,15, Prathamesh Chati3,15, Abul Usmani 3,15, Ian Sloan4, Bradley A. Krasnick5, Ramandeep Babbra6, Peter K. Harris3,
Chloe M. Sachs3, Faridi Qaium3, Deyali Chatterjee7, Chris Wetzel5, S. Peter Goedegebuure5,8, Thomas Hollander4, Hephzibah Anthony4,
Jennifer Ponce9, Ateeq M. Khaliq 10, Shahed Badiyan3,8, Hyun Kim3,8, David G. Denardo8,11,12, Gabriel D. Lang4, Natalie D. Cosgrove4,
Vladimir M. Kushnir4,8, Dayna S. Early4,8, Ashiq Masood10, Kian-Huat Lim 8,12, William G. Hawkins5,8, Li Ding1,2,8,9,12,
Ryan C. Fields 2,5,8, Koushik K. Das4,8✉ and Aadel A. Chaudhuri 1,2,3,8,13,14✉

Numerous cell states are known to comprise the pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment (TME).
However, the developmental stemness and co-occurrence of these cell states remain poorly defined. Here, we performed single-cell
RNA sequencing (scRNA-seq) on a cohort of treatment-naive PDAC time-of-diagnosis endoscopic ultrasound-guided fine needle
biopsy (EUS-FNB) samples (n= 25). We then combined these samples with surgical resection (n= 6) and publicly available samples
to increase statistical power (n= 80). Following annotation into 25 distinct cell states, cells were scored for developmental
stemness, and a customized version of the Ecotyper tool was used to identify communities of co-occurring cell states in bulk RNA-
seq samples (n= 268). We discovered a tumor microenvironmental community comprised of aggressive basal-like malignant cells,
tumor-promoting SPP1+ macrophages, and myofibroblastic cancer-associated fibroblasts associated with especially poor
prognosis. We also found a developmental stemness continuum with implications for survival that is present in both malignant cells
and cancer-associated fibroblasts (CAFs). We further demonstrated that high-dimensional analyses predictive of survival are feasible
using standard-of-care, time-of-diagnosis EUS-FNB specimens. In summary, we identified tumor microenvironmental and
developmental stemness characteristics from a high-dimensional gene expression analysis of PDAC using human tissue specimens,
including time-of-diagnosis EUS-FNB samples. These reveal new connections between tumor microenvironmental composition,
CAF and malignant cell stemness, and patient survival that could lead to better upfront risk stratification and more personalized
upfront clinical decision-making.
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INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) is the third leading
cause of cancer death in the United States, with a 5-year survival
rate of 10.8%1. PDAC has remained largely refractory to available
therapeutics, with a hallmark of heterogeneous chemotherapeutic
responses in subsets of patients2. Over the past decade, bulk
tumor sequencing has enabled annotation of the genomic
landscape in PDAC3,4. This has led to several classification systems
for PDAC3,5,6. The general consensus consistently demonstrates
the existence of two major subtypes of PDAC: the classical or
pancreatic progenitor subtype associated with a relatively better
prognosis (characterized by differentiated ductal markers like
PDX1) and the basal-like, squamous, or quasi-mesenchymal
subtype associated with a poorer prognosis (characterized by
the expression of basal-like markers like cytokeratin 81 (KRT81))3,4.
While these insights have allowed for the elucidation of unique

transcriptional networks7,8, they have yet to allow for the
development of effective clinical interventions9. Underlying this,
in part, is the fact that these subtyping techniques rely on gross
analysis of bulk sequencing data, creating blind spots in individual
cell states and features of individual cells within a tumor sample.
This issue is especially pronounced in PDAC, where only 20% of a
sample may be tumor cells, and thus the ability to fully decipher
all cellular variants is limited when using traditional next-
generation sequencing (NGS) methodologies4.
Advances in single-cell RNA sequencing (scRNA-seq) have

provided the ability to describe individual cell profiles and query
individual cell states10–13, enabling a more in-depth analysis of the
tumor microenvironment (TME) and tumor heterogeneity. Several
efforts have demonstrated that PDAC tumors are a heterogeneous
and spatially diverse admixture of “basal-like” and “classical” cells
with the potential for plasticity between transcriptomic states with
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unknown prognostic implications14–16. Recent studies also show
that a variety of cell states have implications for TME to tumor cell
interactions, such as cancer-associated fibroblasts (CAFs)17–20 and
tumor-associated macrophages (TAMs)14. These cell states have
also been described in terms of developmental status, with more
basal-like malignant cells displaying EMT-like characteristics and
CAFs segregating into more and less plastic stroma3,21,22.
In this work, we identify TME communities and developmental

stemness characteristics in PDAC that reveal new connections
between tumor microenvironmental composition, CAF, and
malignant cell stemness and predict patient survival.

RESULTS
Cellular makeup of the PDAC TME
We performed scRNA-seq of PDAC from standard-of-care time-of-
diagnosis endoscopic ultrasound-guided fine needle biopsy (EUS-
FNB) specimens at the time of diagnosis and from surgical
samples obtained from tumor resections to enable a clinically
integrated, comprehensive view of PDAC (Fig. 1A, Supplementary
Table 1). In total, we acquired 31,215 cells across 25 independent
PDAC patients for our in-house EUS-FNB cohort and 11,353 cells
from 6 independent PDAC patients for our in-house surgical
cohort. All samples were acquired from primary tumors. To
increase power, we then combined the in-house scRNA-seq data
with three publicly available datasets: Peng et al., Chan-Seng-Yue
et al., and Lin et al.11–13 (Supplementary Table 2), increasing our
sample size to a total of 198k cells from 80 independent PDAC
tumors. The integrated dataset was clustered and annotated using
known cell type markers, resulting in the labeling of 12 cell types.
(Fig. 1B). These clusters showed representation from samples
across datasets, indicating that dataset-specific batch effects were
largely removed during integration (Supplementary Fig. 1).
Normal epithelial cells were identified via CNA alteration content
with CopyKAT23 and normal epithelial markers20 and were
excluded from downstream analyses (Supplementary Fig. 2A).
The Malignant, NK/T cell, macrophage/DC, and fibroblast

clusters were further sub-clustered into more granular cell states.
Cell states were identified based on a combination of known
marker genes and gene set scores from the literature (Fig. 1C, D,
Supplementary Table 4). For malignant cells, we partitioned cells
into classical and basal-like subtypes based on gene expression
similarity with previously published bulk subtypes3,5,6. Fibroblasts
were split into myofibroblast (myCAF) and inflammatory (iCAF)
fibroblast populations based on gene sets from Elyada et al.; we
did not see the expression of MHC-II genes indicative of antigen-
presenting fibroblasts (apCAFs)17. Macrophages/DCs were split
into the following states based on marker genes and gene set
scores from Raghaven et al.14: TAM–C1QC+, TAM–FCN1+,
TAM–SPP1+, TAM–proliferating, DC, and pDC. The NK/T cell
cluster was subdivided into CD4, CD8, CD8 exhausted, CD4/CD8
proliferating, Treg, and NK cell states based on the presence of
known marker genes.

Stemness in malignant and fibroblast cell states
We then determined the developmental stemness of the
malignant and CAF subclusters. We used CytoTRACE24, a
computational tool, to obtain a developmental stemness score
for each cell, with cells having a high CytoTRACE score being more
stem-like and those with a low CytoTRACE score being less stem-
like. We found that basal-like malignant cells were more stem-like
than their classical counterparts (Fig. 1E, Supplementary Table 5).
This difference has been previously suggested in the literature,
with the more aggressive basal-like subtype being more likely to
undergo epithelial–mesenchymal transition (EMT), resulting in
higher rates of metastasis25,26. Interestingly, we also found that
myCAFs are significantly more stem-like than iCAFs (Fig. 1F).

To investigate this developmental stemness continuum further,
we performed pathway analysis on DEGs between iCAF and
myCAF populations. Notably, pathways involved in ECM organiza-
tion, cell differentiation, and EMT transition were upregulated in
myCAFs (Supplementary Fig. 3B, C). The presence of these
pathways suggests that myCAFs retain a more mesenchymal
stem-like phenotype than the more developmentally mature
iCAFs. To further interrogate genes contributing to CAF differ-
entiation, we identified the genes most highly correlated with
CytoTRACE score (Supplementary Table 6). We found that
expression of ACTG1, TMSB10, S100A11, and ACTB are highly
correlated with CytoTRACE developmental score in CAFs and are
involved in cell motility, adhesion, and proliferation. Additionally,
TMSB10 is known to promote M2 macrophage conversion in lung
adenocarcinoma27. Furthermore, the genes ENO1 and LGALS1
correlated strongly with developmental stemness and have been
previously described by Grünwald et al. as markers associated with
CAF plasticity21. Overall, these data suggest that stem-like myCAFs
have a proclivity toward increased TME remodeling capacity.

Cell state compositions associated with patient survival
Next, we extended our single-cell expression profiles to publicly
available bulk expression datasets with associated clinical
metadata (Supplementary Table 3) to find cell state patterns
associated with patient survival. To this end, we modified the in-
silico TME dissection tool EcoTyper28. In the published Ecotyper
tool, cell states must be discovered de novo, meaning expression
profiles of specific cell states cannot be defined upfront. Since this
would prevent our ability to find associations of specific cell states
defined in our single-cell data, we made adjustments to the
Ecotyper methodology (further described in “Methods”) to allow
for the specification of exactly predefined cell states. Applying our
modified version of Ecotyper to our single-cell expression profiles,
we grouped significantly co-occurring cell states into communities
or “ecotypes” (Fig. 2A, Supplementary Tables 7–9). We thus
discovered 9 distinct pancreatic ecotypes, labeled PE1-PE9, each
with its own distinct pattern of cell state enrichment. Three of
these ecotypes—PE1, PE5, and PE6—were also present in
significant numbers of tumor tissue bulk RNA-seq samples from
PDAC patients (Supplementary Fig. 4A, Supplementary Fig. 5A, B).
Notably, samples with a PE5-dominant ecotype showed

consistently poor survival across all bulk RNA-seq datasets
(Fig. 2B, C, Supplementary Figs. 4C, D, 6A), including at the time
of diagnosis in the EUS-FNB cohort (Supplementary Fig. 4B). PE5
showed enrichment for several cell states known to be associated
with aggressive tumor behavior and poor prognosis3,29,30, includ-
ing basal-like tumor cells, myCAFs, and SPP1+ tumor-associated
macrophages (Fig. 2D). PE5 also overlapped most strongly with
the pan-carcinoma ecotypes shown recently by Luca et al.28 to be
associated with worst survival (Supplementary Fig. 5D). In contrast,
PE1 and PE6 were associated with better survival outcomes than
PE5 (Fig. 2B, C, Supplementary Fig. 4B–D). PE1 is immune-
enriched, containing plasma cells, mast cells, B cells, and FCN1+
TAMs, while PE6 contains CD4 T cells and classical malignant cells.
Overall, the makeup of PE1 and PE6 corroborates known biology,
with immune fraction being associated with increased survival31

and the relatively improved prognosis of the classical PDAC
subtype compared to basal-like3,5,6.
We also assessed our pancreatic ecotypes in colon adenocarci-

noma (COAD) (Supplementary Table 13) and head and neck
squamous cell carcinoma (HNSCC) (Supplementary Table 14)
patient tumors profiled by TCGA32,33, and in murine pancreatic
cancer gene expression data from Mueller et al.34. Interestingly, we
observed pancreatic ecotypes to be present in these three other
settings (Supplementary Fig. 7A). And while there was no
significant pancreatic ecotype survival association in HNSCC, we
observed the same overall survival association in COAD
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(p-value= 0.027) that we saw in PDAC (Supplementary Fig. 7B, C).
This suggests that the prognostic utility of pancreatic ecotypes
could generalize to cancers of the gastrointestinal system, but not
necessarily outside of it (Supplementary Fig. 7B, C). Additionally,

we further investigated the accuracy of pancreatic ecotypes in
COAD by assigning them to samples in a scRNA-seq dataset from
Lee et al.35. Once assigned, we compared our ecotype assign-
ments to bulk consensus molecular subtype (CMS) classifications

Fig. 1 Study overview and pancreatic cancer single-cell analysis. A Single-cell RNA sequencing (scRNA-seq) was performed on treatment-
naïve pancreatic ductal adenocarcinoma (PDAC) tumor tissue samples acquired by esophageal ultrasound-guided fine needle biopsy (n= 25).
These were integrated with in-house surgical resection PDAC samples from six patients and samples from three publicly available PDAC
scRNA-seq datasets resulting in a combined dataset of ~190k cells from 80 independent PDAC patients. The resulting data were used to
identify PDAC cell states, including malignant and immune subtypes based on gene sets and known expression markers from published
studies. With single-cell annotations in hand, we determined fibroblast and malignant cell states and stemness and used a modified version of
the Ecotyper tool to identify co-occurring patterns of cell states (termed ecotypes) in bulk RNA-seq samples. We found that pancreatic ecotype
PE5, comprised of Malignant Basal-like cells, myCAFs, and SPP1+ TAMs, was associated with worse survival. B UMAP decomposition of scRNA-
seq expression profiles. C Regenerated and sub-clustered UMAP plots for malignant, cancer-associated fibroblast (CAF), and tumor-associated
macrophage (TAM) cell states. D Gene set scores from published data for the previously mentioned cell states. E, F CytoTRACE developmental
stemness scores for CAF and malignant cell states. Higher values indicate more stem-like cells. *** indicates p-value << 0.005 as calculated by
the Wilcoxon rank sum test. The upper and lower bounds signify the first and third quartiles, respectively. The median is denoted by the
center line. The whiskers represent data points within 1.5 times the interquartile range.
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assigned by Lee et al. (Supplementary Fig. 7D). Overall, there was
an agreement between ecotype classification and CMS subtype:
the aggressive PE5 ecotype overlapped most with CMS4 (the most
EMT-like CMS subtype), while PE1 and PE6 were most associated
with CMS1 (immune-like) and CMS2 (canonical), respectively36.

Impact of developmental stemness on patient survival
Given the developmental continuum in CAF and malignant cell
states found in our single-cell data, along with pancreatic ecotype
PE5’s enrichment for myCAFs and basal-like malignant cells, we
sought to more directly quantify the impact of developmental
stemness on patient survival for these cell states. To do so, we

calculated a developmental stemness score for bulk RNA-seq
samples based on the expression of developmental stemness-
associated genes in CAF and malignant cell states that we learned
from scRNA-seq data analyzed by CytoTRACE (Fig. 1E, Supple-
mentary Table 6). When partitioned into low vs. high differentia-
tion groups based on this developmental stemness score, we
observed inferior survival with more stem-like CAFs or more stem-
like malignant cells across PDAC bulk RNA-seq cohorts (Fig. 3A–D,
Supplementary Fig. 8A–D, Supplementary Table 11). Additionally,
when genes specific to CAF and malignant cell states were
correlated with CytoTRACE scores from the PDAC single-cell data,
the states associated with PE5 (myCAF and malignant basal-like)
were significantly more stem-like than their non-PE5 related cell

Increasing
 sig

nificance

Fig. 2 Pancreatic cancer ecotype discovery and survival analysis. A Ecotypes discovered within our pancreatic cancer single-cell RNA-seq
dataset (n= 190 K cells) and their association with cell state abundances. B Kaplan–Meier curves showing patient survival in PDAC patients
profiled by TCGA, stratified by the dominant ecotype (PE1, PE5, or PE6) measured in surgical tumor resection tissue. C −log2 (p-value)
associated with overall survival for each of these pancreatic ecotypes in TCGA. D Fraction of each cell state within each pancreatic ecotype in
scRNA-seq expression data.
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states (Fig. 3E, F). These data highlight the importance of the
developmental stemness continuum in both malignant and CAF
cell states as it pertains to survival in pancreatic cancer.

DISCUSSION
Using microarrays, Moffitt et al. categorized PDAC into classical
and basal-like populations3. Multiple groups have since performed
bulk RNA sequencing to corroborate these findings and identify
potential other tumor cell subtypes5,6,12,14. Unlike bulk RNA-seq,
scRNA-seq allows us to individually profile each cell and thus
appreciate the full breadth, granularity, and diversity in cell states
and profiles within the tumor microenvironment. This is especially
important in a cancer like PDAC, where only ~20% of cells in a
biopsy sample are tumor cells, with the remaining cells
representing various components of the TME37. Thus, in this
study, we followed our scRNA-seq analysis of 80 patients,
including 25 EUS-FNB biopsies obtained at the time of diagnosis
and 6 surgical resections, with digital dissection of bulk expression
profiles from 268 predominantly early-stage and surgically
resected PDAC tumors.
While scRNA-seq has traditionally been felt to be impractical

within the clinical workflow of patients, we have demonstrated
with a collaborative, multidisciplinary approach that not only is
scRNA-seq feasible but also high-dimensional deconstruction is

clinically actionable from standard-of-care EUS-FNB samples at the
time of diagnosis. With only 1–2 additional passes, adding less
than ~5min to the procedure time and no increased morbidity,
samples can be routinely acquired when obtaining a diagnosis.
Among the 25 in-house patients processed, PE1/6 and
PE5 subtypes were identified and showed similar trends to the
bulk cohorts, with PE5-dominant samples showing worse overall
survival. This may allow for more personalized clinical decision-
making for patients starting from the time of diagnosis.
By performing both scRNA-seq and bulk RNA-seq on such a

large scale, we not only recapitulated known tumor subtypes
(classical and basal-like) but also uncovered a spectrum of tumor
heterogeneity with PDAC tumors harboring different mixtures of
malignant subtypes and TME cell states. Furthermore, we
discovered a developmental dichotomy in malignant and CAF
cell states that we identified using CytoTRACE24. By modifying the
Ecotyper framework28, we then inferred ecotypes in nearly 300
PDAC patients, where we found a pancreatic ecotype (PE5) that
conferred a significantly worse prognosis as compared to other
pancreatic ecotypes.
This aggressive PE5 pancreatic ecotype was enriched for

malignant basal-like, myCAF, and SPP1+ TAM cell states. It is
tempting to speculate that identifying tumors enriched for the
PE5 ecotype could be used to personalize more aggressive

Fig. 3 Association of CAF and malignant cell stemness with overall survival. A, B Kaplan–Meier plots for TCGA PDAC bulk RNA-seq samples
when partitioned into more versus less stem-like groups of fibroblasts (p-value= 0.03) and malignant cells (p-value= 0.01). Groups were
selected based on the average Cytotrace correlation of cell type-specific genes. The median score was used as a threshold to partition the two
groups. C, D Multivariate Cox regression hazard ratios and confidence intervals for fibroblast (p-value= 0.03) and malignant (p-value= 0.01)
developmental stemness scores in PDAC TCGA while also including clinical features. E, F Distribution of CytoTRACE stemness correlation
coefficients for fibroblast and malignant cell state-specific genes identified by Ecotyper in PDAC single-cell RNA-seq data. *** indicates
p-value << 0.005 as calculated by the Wilcoxon rank sum test. The upper and lower bounds signify the first and third quartiles, respectively.
The median is denoted by the center line. The whiskers represent data points within 1.5 times the interquartile range.
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targeted systemic therapy regimens and closer monitoring for
tumor progression in these high-risk patients.
In contrast to PE5, PE1 and PE6 were associated with improved

survival. PE1 is immune-enriched and predominantly composed of
immune cell states like plasma cells, mast cells, B cells, and FCN1+
TAMs. Previous literature has shown that higher immune cell
fractions and lower tumor cell fractions are associated with a
positive prognosis31. Additionally, PE6 is significantly enriched for
classical malignant cells, which are less aggressive than their
basal-like counterparts in PE53,5,12.
Additionally, we showed that the CAF and malignant cell states

within PE5 are less differentiated and more stem cell-like,
suggesting that tumors associated with inferior survival harbor
an environment supportive of more EMT-like cell states. We also
showed that the expression of a gene set associated with these
immature cell states is indicative of worse survival for patients.
Gulati et al. demonstrated that knocking down genes associated
with the immature malignant cell state led to decreased tumor
growth in vivo in a breast cancer xenograft model24. Similar
methods could potentially be applied to PDAC to improve clinical
outcomes for otherwise high-risk patients.
This study has several limitations. First, we utilized publicly

available sequencing and clinical-correlative data in addition to
performing in-house scRNA-seq of 31 tumor samples. While all
public data utilized for this study were previously published and
also secondarily analyzed4–6,11,13,38, it will be important to further
corroborate our findings in a prospective setting. Second, scRNA-
seq from time-of-diagnosis EUS-FNB samples is technically
challenging given the limited sample material obtained. While
we demonstrated promising ability to risk-stratify patients at the
time of diagnosis by deconvolving pseudo-bulked scRNA-seq
data, it will be important to corroborate these findings with bulk
RNA-seq. Third, the biomarker-based survival data we show here
are correlative in nature. It will be important to perform clinical
trials in the future where, for example, patients with PE5-like
tumors are selected to receive treatments targeting molecular
pathways specific to TAM, myCAF, or more stem-like malignant or
CAF cell states.
In summary, we identified pancreatic ecotypes and develop-

mental continuums from a large-scale high-dimensional analysis
of PDAC RNA sequencing data, including time-of-diagnosis EUS-
FNB specimens, that revealed connections between tumor
microenvironmental composition, malignant cell and CAF devel-
opmental stemness, and patient survival that could lead to better
upfront risk stratification and more personalized clinical decision-
making in the future.

METHODS
PDAC tumor collection and processing
Following written informed consent, endoscopic ultrasound was
performed on patients with suspected solid pancreatic masses
based on CT or MRI imaging (Fig. 1A, Supplementary Table 1). The
diagnosis of pancreatic adenocarcinoma was confirmed by a
formal pathologic evaluation. After clinical diagnostic tissue
acquisition was completed with 2–3 passes of a 22-gauge needle,
an additional pass was obtained with a backfin “fine-needle
biopsy” (FNB) needle. Tissue was carefully washed with cold PBS,
collected in RPMI 1640 media (Gibco) on ice when processed
fresh, or collected in freezing media (90%FBS+ 10% DMSO, when
processed at a later time point) and dissociated into single-cell
suspension both mechanically and enzymatically as previously
described39. Resected surgical tumor tissue was also dissociated in
a similar way to obtain single-cell suspensions. Subsequently,
single-cell suspensions were diluted to a final concentration of
~1000 cells/μl, and sequencing libraries were prepared using the
10× Genomics Chromium Single Cell 5’ library platform.

Complementary DNA libraries were then sequenced on an
Illumina NovaSeq S4 flow cell with a target of 50,000 reads/cell.
The methods were performed in accordance with relevant
guidelines and regulations and approved by the institutional
review board at the Washington University in St. Louis School of
Medicine.

In-house scRNA-seq data processing
We aligned sequencing reads to the GRCh38 reference genome
and obtained gene expression counts using 10× Cell Ranger V2-
3.0.2 with default parameters40. FASTQ files were aligned to the
GRCh38 reference genome with the STAR aligner41. Cell-specific
unique molecular identifiers (UMIs) were then used to generate
gene expression matrices.

Integration of public scRNA-seq datasets
Filtered in-house EUS-FNB and surgical samples (n= 31) were
integrated with three publicly available scRNA-seq datasets. These
datasets include Peng et al.11, Lin et al.13, and Chan-Seng-Yue
et al.12. Peng et al. was downloaded from the Genome Sequence
Archive under project PRJCA001063, Lin et al. was downloaded
from the GEO database at accession number GSE154778, and
Chan-Seng-Yue et al. from the EGA under accession code
EGAS00001002543 (Supplementary Table 2). Peng et al. FASTQ
files were reprocessed in the same manner as the in-house data in
the previous section. Clinical metadata used in survival analyses
on the public bulk expression datasets can be found in
Supplementary Tables 10–12.
First, cells expressing less than 200 total genes and genes that

were expressed in fewer than 3 cells were filtered from the
dataset. Additionally, cells with a mitochondrial DNA percentage
of over 25% were filtered from the dataset. Doublets were
removed from each sample using Scrublet. Scrublet’s scrub_doub-
lets function was used individually on each sample with default
parameters. Counts were then normalized by total count, log-
transformed, and scaled. Principal components (PCs) were
generated using the 3000 most variable genes. PCs were batch-
corrected, and cells were integrated using the Harmony42 batch
correction tool. These steps were performed with the Scanpy
single-cell analysis library43.

Cell state identification
Cell states were identified through multiple rounds of clustering.
Initially, cells were clustered into macro-level cell types. For initial
clustering, adjacent normal and metastasis samples were
included. Following initial clustering, these samples were
removed, so downstream analysis and reclustering were done
with only primary tumor samples. Clustering was done using the
Leiden algorithm44. For initial clustering, a resolution of 2 and 40
PCs was used. Clusters were merged and assigned to cell states
based on known expression markers: fibroblast (BGN+, FAP+,
SPARC+), NK/T cell (CD45+, CD3G+ and/or NKG7+), monocyte/
DC (LYZ+, CD14+ and/or FCER1A+), Epithelial cell (EPCAM+,
KRT18+), endothelial cell (PECAM1+), erythrocyte (HBA1+), B cell
(MS4A1+), mast cell (CPA3+, KIT+), plasma cell (SDC1+, IGHG1+),
acinar cell (PRSS1+, CDH5+), stellate cell (RGS5+), and platelets
(ITGA2B+).
Four clusters were then further refined (as described below):

epithelial cell, monocyte/DC, fibroblast, and NK/T cell. For each of
these clusters, counts data were renormalized and batch-
corrected for each cluster separately prior to reclustering of the
cells using the same methodology as the previous paragraph. The
top 10 PCs and a resolution of 1 were used for reclustering.
Following this, clusters were manually grouped based on gene
expression markers. Notably, cell state fractions were similar
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between surgical resection and EUS-FNB PDAC patients (Supple-
mentary Fig. 5C).

Cluster refinement
To exclude normal epithelial cells from the analysis, CopyKAT23

was used to identify cells with large numbers of copy number
alterations (CNAs), and cells were further scored with a normal
epithelial marker gene set from Cui Zhou et al.20 to identify
putative normal epithelial cells (Supplementary Fig. 2A, B,
Supplementary Table 4). Epithelial clusters with low numbers of
CNAs and a high normal epithelial gene set score were excluded
from downstream analysis. After 9k normal epithelial cells were
removed, there were 76k malignant cells remaining. They were
then labeled based on subtype markers previously described in
the literature. We used 6 gene marker sets (Bailey et al., Moffitt
et al., Chan-Seng-Yue et al., Raghavan et al., and Collisson
et al.)3,5,6,12,14 for cluster assignment. Genes used for scoring each
subtype are available in the supplemental materials (Supplemen-
tary Table 4). Ultimately, we partitioned the cells into two
consensus subtypes: Basal-like and Classical.
The monocyte/DC cluster was further separated into the

following five cell states based on marker expression and tumor-
associated macrophage gene sets from Raghavan et al.14 Dendritic
cells were separated into two groups: DC (FCER1A+) and pDC
(BST2+). The following macrophage cell states were annotated
based on enrichment for Raghavan et al. TAM gene sets:
TAM–SPP1, TAM–C1QC, and TAM–FCN1 (Supplementary Table 4).
NK/T cells were separated based on the following marker genes:

CD4 T cell (CD3G+, IL7R+), CD8 T cell (CD3G+, CD8A+), CD8 T cell
exhausted (CD3G+, CD8A+, LAG3+, ITGAE+), T cell proliferating
(CD3G+, TOP2A+), NK cell (GZMK+), and Treg (FOXP3+).
Fibroblasts were split into two groups of CAFs based on gene

sets from Elyada et al.17 (Supplementary Fig. 3A, Supplementary
Table 4).

Bulk expression data acquisition
TCGA PDAC clinical and bulk RNA-seq expression data were
downloaded from the NCI Genomic Data Commons (https://
portal.gdc.cancer.gov/). Following removal of patients with
<1 month survival and removal of neuroendocrine tumors, we
were left with 136 tumors/patients (Supplementary Table 10). We
then further restricted our analysis to samples reported in the
study by Raphael et al. (n= 125 tumors/patients)4. Bailey et al.5

bulk RNA-seq and clinical data (n= 87 tumors/patients) were
downloaded from the ICGC Data Portal (https://dcc.icgc.org/
projects/PACA-AU). Kirby et al.38 bulk RNA-seq and clinical data
(n= 45 tumors/patients) were downloaded from the GEO
databank under GSE79670 (Supplementary Table 3).
TCGA COAD and HNSCC bulk RNA-seq datasets were down-

loaded from the NCI Genomic Data Commons (https://
portal.gdc.cancer.gov/) (Supplementary Tables 13 and 14). The
Mueller et al.34 murine microarray dataset was downloaded from
the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE107458).

Ecotype scRNA-seq cell state discovery
Ecotype discovery was performed with a modified version of
EcoTyper28. Four macro cell types in our labeled single-cell data
could be broken down by cell state: Malignant (Basal-like and
Classical), Fibroblast (myCAF and iCAF), Macrophage (TAM–C1QC,
TAM–SPP1, TAM–FCN1, DC, pDC, DC/Macrophage–proliferating),
NK/T cell (CD4 T cell, CD8 T cell, CD8 T cell exhausted, NK cell, Treg,
T cell proliferating). The remaining cell types were treated as state-
absent cell types (i.e., treated as a single cell state) and included
endothelial cells, mast cells, erythrocytes, plasma cells, stellate

cells, platelets, acinar cells, and B cells. Normal epithelial cells were
excluded from the EcoTyper analysis.
The Ecotyper framework requires cell states to be present for all

cell types, even those labeled as state-absent in our single-cell
dataset. To remedy this, cell states were identified for the state-
absent cell types by applying the EcoTyper scRNA-seq discovery
framework to a subsampled scRNA-seq expression matrix
(N= 17,033 cells) containing only state-absent cells. Discovered
cell states for each state-absent cell type were then used in
conjunction with the aforementioned manually identified single-
cell states for downstream ecotype discovery.
The entire scRNA-seq expression dataset contained a total of

~190k cells, of which 50,435 originated from state-absent cell
types. Of these 50,435 cells, 45,864 were labeled with discovered
cell states, while the remaining 4571 cells were filtered out during
the EcoTyper quality-control stage.

Generation of the cell states coefficient matrix for EcoTyper
The published EcoTyper framework (Luca et al.28) applies non-
negative matrix factorization (NMF) to infer cellular states from
gene expression data.
Since we had already defined cellular states from our scRNA-seq

dataset (as described above), we modified the EcoTyper frame-
work to recover a basis matrix for downstream recovery when
supplied with predefined cell state labels for specific cell types,
thereby removing the need to conduct traditional NMF and
discover de novo cell states. Specifically, let G represent a g × n
cell type-specific scRNA-seq expression matrix G for cell type i,
containing g genes along the rows and n samples (cells) along the
columns. Given s cell states, for cell type i, let H’ represent an s × n
binary coefficient matrix with s cell states along the rows and n
samples (cell) along the columns. For a sample (cell) j, if the
prelabeled or assigned cell state is q, then H’(q,j) is set to 1;
otherwise, H’(q,j) is set to O. Thus, H’ represents the membership
of each sample (cell) to its respective prelabeled or assigned cell
state and is fitted in a reference-based manner to recover W’ for
each cell type, which corresponds to a g × s basis matrix with g
genes along the rows and s cell states along the columns and
represents the average gene expression for each cell state. W’ was
then used in the traditional EcoTyper framework for cell state
recovery in bulk RNA-seq expression data.
To perform ecotype discovery, a cell state abundance matrix

was generated using the above cell state labels. Mapping was
generated for cell types with predefined cell state labels; where
each cell corresponds to a given cell state label. For cell types that
were assigned cell states using the EcoTyper scRNA-seq discovery
framework, the mapping was generated by the EcoTyper pipeline.

Ecotype recovery
Human bulk RNA-seq expression data were TPM-normalized upon
input to the EcoTyper framework. Murine microarray data were
kept as raw values in non-logarithmic space. Ecotype recovery was
then performed using the modified basis matrix W′ applied to
each bulk gene expression cohort independently to recover cell
states and ecotypes.
Recovery of carcinoma ecotypes (CEs) from Luca et al.28 was

performed in line with the associated documentation (https://
github.com/digitalcytometry/ecotyper) in Tutorial 1: Recovery of
Cell States and Ecotypes in User-Provided Bulk Data.

Kaplan–Meier analysis
Kaplan–Meier curves were generated with the Python lifelines
package based on the most prevalent ecotype per patient tumor
sample or the inferred developmental state of tumor cells or
fibroblasts. For each survival analysis, log-rank p-values were
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computed with the lifelines logrank_test function using a one-
versus-rest technique.

Pseudo-bulk analysis
Pseudo-bulk mixtures were generated from the in-house EUS-FNB
samples (n= 25) by summing read counts across all genes per
sample. The total read counts matrix was TPM-normalized, and
ecotypes were recovered by applying EcoTyper’s bulk recovery
method as described in Ecotype discovery and recovery. Due to the
modest sample size and to increase statistical power, ecotypes
PE1 and PE6 were grouped and analyzed against PE5.
Kaplan–Meier curves were generated with the Python lifelines
package and statistical analysis was performed with the Gehan-
Breslow-Wilcoxon test to calculate the P-value and
Mantel–Haenszel method to calculate the hazard ratio using
GraphPad Prism 9 (Supplementary Fig. 4B).
The same pseudo-bulk analytical procedure detailed above was

used to classify ecotypes in the Lee et al.35 scRNA-seq COAD
dataset.

Development stemness analysis
CytoTRACE24 was independently applied to Malignant and
Fibroblast scRNA-seq counts matrices to determine cellular
developmental stemness. Counts matrices were CPM-normalized
and run through CytoTRACE using default parameters. Differences
in stemness between the Basal-like and Classical Malignant cell
states and myCAF and iCAF Fibroblast cell states were determined
using a two-sided Wilcoxon rank sum test (p-value « 0.05 for both
cell types).

Cell state-specific CytoTRACE gene distributions
Cell state-specific gene sets derived from EcoTyper were used to
filter outputted CytoTRACE gene sets in order to retain gene
expression profiles that were inferred to be specific to a given cell
state. CytoTRACE values for these genes were then compared
between cell states. High correlation values indicate genes that
are associated with less differentiated, more stem-like cells.
Significance values between distributions were determined using
a two-sided Wilcoxon rank sum test.

Bulk RNA-seq developmental score
Bulk RNA-seq developmental scores were calculated by taking the
average gene expression of the top 20 CytoTRACE-correlated
genes (those most associated with stemness) for fibroblast and
malignant cells in the PDAC TCGA, Bailey et al., and Kirby et al.
datasets5,6,38. The median developmental score for each cell type
was used to partition samples into more stem-like versus less
stem-like cell state groups. Significance between groups was
calculated using the Wilcoxon rank sum test.

Cox regression for overall survival
Univariate Cox proportional hazards regression was conducted for
overall survival with respect to the bulk RNA-seq developmental
score (described above) for malignant and fibroblast cell states in
each dataset (Supplementary Table 11). Additional multivariate
Cox proportional hazards regressions were conducted for overall
survival in PDAC TCGA for PE5, along with clinical covariates
including tumor stage, age, resection site, gender, race, treatment
type, metastasis status, nodal status, and ethnicity (Fig. 3C, D,
Supplementary Fig. 6A, Supplementary Table 12). Hazard ratios
were calculated using the exp(beta) method, and covariate
p-values were calculated using the Wald test.

Gene set enrichment analysis (GSEA) and gene set scoring
Single-cell gene set scores were computed for various cell states
by taking the mean expression of genes within the set. The gene
sets used are available in Supplementary Table 4.
Pathway enrichment analysis for genes significantly associated

with the myCAF cell state was done with the enrichrpy Python
package (https://pypi.org/project/enrichrpy). Significant GO: Mole-
cular Function pathways45 were selected based on enrichment of
the top 30 differentially expressed genes in myCAFs (when
compared to iCAFs). Top pathways were then rank-ordered by
their −log10 FDR-corrected p-values.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Data for the scRNA-seq EUS-FNB cohort is available to download from GEO at
accession number GSE242230. Data for the six scRNA-seq in-house surgical samples
is available for download via dbGaP from the Human Tumor Atlas Network (HTAN)
data portal under the Washington University Human Tumor Atlas Research Center
(https://humantumoratlas.org/explore). Annotations and metadata for our single-cell
dataset can be downloaded from Zenodo.

CODE AVAILABILITY
The code used in the modified EcoTyper framework is available in a public GitHub.

Received: 6 April 2023; Accepted: 26 September 2023;

REFERENCES
1. Cancer of the Pancreas—Cancer Stat Facts. SEER https://seer.cancer.gov/statfacts/

html/pancreas.html (2020).
2. Falcomatà, C. et al. Context-specific determinants of the immunosuppressive

tumor microenvironment in pancreatic cancer. Cancer Discov. 13, 278–297 (2023).
3. Moffitt, R. A. et al. Virtual microdissection identifies distinct tumor- and stroma-specific

subtypes of pancreatic ductal adenocarcinoma. Nat. Genet. 47, 1168–1178 (2015).
4. Cancer Genome Atlas Research Network. Electronic address: andrew_a-

guirre@dfci.harvard.edu & Cancer Genome Atlas Research Network. Integrated
Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell 32,
185–203.e13 (2017).

5. Bailey, P. et al. Genomic analyses identify molecular subtypes of pancreatic
cancer. Nature 531, 47–52 (2016).

6. Collisson, E. A. et al. Subtypes of pancreatic ductal adenocarcinoma and their
differing responses to therapy. Nat. Med. 17, 500–503 (2011).

7. Hamdan, F. H. & Johnsen, S. A. DeltaNp63-dependent super enhancers define
molecular identity in pancreatic cancer by an interconnected transcription factor
network. Proc. Natl Acad. Sci. USA 115, E12343–E12352 (2018).

8. Adams, C. R. et al. Transcriptional control of subtype switching ensures adapta-
tion and growth of pancreatic cancer. Elife 8, e45313 (2019).

9. Springfeld, C. et al. Neoadjuvant therapy for pancreatic cancer. Nat. Rev. Clin.
Oncol. https://doi.org/10.1038/s41571-023-00746-1 (2023).

10. Baslan, T. & Hicks, J. Unravelling biology and shifting paradigms in cancer with
single-cell sequencing. Nat. Rev. Cancer 17, 557–569 (2017).

11. Peng, J. et al. Author correction: single-cell RNA-seq highlights intra-tumoral
heterogeneity and malignant progression in pancreatic ductal adenocarcinoma.
Cell Res. 29, 777 (2019).

12. Chan-Seng-Yue, M. et al. Transcription phenotypes of pancreatic cancer are dri-
ven by genomic events during tumor evolution. Nat. Genet. 52, 231–240 (2020).

13. Lin, W. et al. Single-cell transcriptome analysis of tumor and stromal compart-
ments of pancreatic ductal adenocarcinoma primary tumors and metastatic
lesions. Genome Med. 12, 80 (2020).

14. Raghavan, S. et al. Microenvironment drives cell state, plasticity, and drug
response in pancreatic cancer. Cell 184, 6119–6137.e26 (2021).

15. Werba, G. et al. Single-cell RNA sequencing reveals the effects of chemotherapy
on human pancreatic adenocarcinoma and its tumor microenvironment. Nat.
Commun. 14, 1–16 (2023).

EP Storrs et al.

8

npj Precision Oncology (2023)   105 Published in partnership with The Hormel Institute, University of Minnesota

https://pypi.org/project/enrichrpy
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE242230
https://humantumoratlas.org/explore
https://zenodo.org/record/8301823
https://github.com/prathameshchati/Modified_EcoTyper_Code
https://seer.cancer.gov/statfacts/html/pancreas.html
https://seer.cancer.gov/statfacts/html/pancreas.html
https://doi.org/10.1038/s41571-023-00746-1


16. Lee, J. J. et al. Elucidation of tumor-stromal heterogeneity and the ligand-receptor
interactome by single-cell transcriptomics in real-world pancreatic cancer biop-
sies. Clin. Cancer Res. 27, 5912–5921 (2021).

17. Elyada, E. et al. Cross-species single-cell analysis of pancreatic ductal adeno-
carcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Dis-
cov. 9, 1102–1123 (2019).

18. Vaish, U., Jain, T., Are, A. C. & Dudeja, V. Cancer-associated fibroblasts in pan-
creatic ductal adenocarcinoma: an update on heterogeneity and therapeutic
targeting. Int. J. Mol. Sci. 22, 13408 (2021).

19. Öhlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibro-
blasts in pancreatic cancer. J. Exp. Med. 214, 579–596 (2017).

20. Cui Zhou, D. et al. Spatially restricted drivers and transitional cell populations
cooperate with the microenvironment in untreated and chemo-resistant pan-
creatic cancer. Nat. Genet. 54, 1390–1405 (2022).

21. Grünwald, B. T. et al. Spatially confined sub-tumor microenvironments in pan-
creatic cancer. Cell 184, 5577–5592.e18 (2021).

22. Martinelli, P. et al. GATA6 regulates EMT and tumour dissemination, and is a
marker of response to adjuvant chemotherapy in pancreatic cancer. Gut 66,
1665–1676 (2017).

23. Gao, R. et al. Delineating copy number and clonal substructure in human tumors
from single-cell transcriptomes. Nat. Biotechnol. 39, 599–608 (2021).

24. Gulati, G. S. et al. Single-cell transcriptional diversity is a hallmark of develop-
mental potential. Science 367, 405–411 (2020).

25. Puleo, F. et al. Stratification of pancreatic ductal adenocarcinomas based on
tumor and microenvironment features. Gastroenterology 155, 1999–2013.e3
(2018).

26. Chen, S. et al. LncRNA STXBP5-AS1 suppresses stem cell-like properties of pan-
creatic cancer by epigenetically inhibiting neighboring androglobin gene
expression. Clin. Epigenetics 12, 168 (2020).

27. Zeng, J., Yang, X., Yang, L., Li, W. & Zheng, Y. Thymosin β10 promotes tumor-
associated macrophages M2 conversion and proliferation via the PI3K/Akt
pathway in lung adenocarcinoma. Respir. Res. 21, 328 (2020).

28. Luca, B. A. et al. Atlas of clinically distinct cell states and ecosystems across
human solid tumors. Cell 184, 5482–5496.e28 (2021).

29. Toullec, A. et al. Oxidative stress promotes myofibroblast differentiation and
tumour spreading. EMBO Mol. Med. 2, 211–230 (2010).

30. Matsubara, E. et al. SPP1 Derived from macrophages is associated with a worse
clinical course and chemo-resistance in lung adenocarcinoma. Cancers 14, 4374
(2022).

31. Collisson, E. A., Bailey, P., Chang, D. K. & Biankin, A. V. Molecular subtypes of
pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 16, 207–220 (2019).

32. Cancer Genome Atlas Network. Comprehensive molecular characterization of
human colon and rectal cancer. Nature 487, 330–337 (2012).

33. Cancer Genome Atlas Network. Comprehensive genomic characterization of
head and neck squamous cell carcinomas. Nature 517, 576–582 (2015).

34. Mueller, S. et al. Evolutionary routes and KRAS dosage define pancreatic cancer
phenotypes. Nature 554, 62–68 (2018).

35. Lee, H.-O. et al. Lineage-dependent gene expression programs influence the
immune landscape of colorectal cancer. Nat. Genet. 52, 594–603 (2020).

36. Valenzuela, G. et al. Consensus molecular subtypes of colorectal cancer in clinical
practice: a translational approach. World J. Clin. Oncol. 12, 1000–1008 (2021).

37. Di Maggio, F. & El-Shakankery, K. H. Desmoplasia and biophysics in pancreatic
ductal adenocarcinoma: can we learn from breast cancer? Pancreas 49, 313–325
(2020).

38. Kirby, M. K. et al. RNA sequencing of pancreatic adenocarcinoma tumors yields
novel expression patterns associated with long-term survival and reveals a role
for ANGPTL4. Mol. Oncol. 10, 1169–1182 (2016).

39. Zilionis, R. et al. Single-cell transcriptomics of human and mouse lung cancers
reveals conserved myeloid populations across individuals and species. Immunity
50, 1317–1334.e10 (2019).

40. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single
cells. Nat. Commun. 8, 14049 (2017).

41. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21
(2013).

42. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with
Harmony. Nat. Methods 16, 1289–1296 (2019).

43. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene
expression data analysis. Genome Biol. 19, 15 (2018).

44. Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing
well-connected communities. Sci. Rep. 9, 5233 (2019).

45. Saverimuttu, S. C. C. et al. Gene Ontology curation of the blood-brain barrier to
improve the analysis of Alzheimeras and other neurological diseases. Database
2021, baab067 (2021).

ACKNOWLEDGEMENTS
We are grateful to the patients and families involved in this study and to the clinical
research team for the collection of samples and clinical data. We also thank A.
Newman for providing critical feedback on the manuscript. This study utilized the
computational resources of the McDonnell Genome Institute at Washington
University. Images from Biorender.com were used in Fig. 1. This work was supported
by the National Institutes of Health (NIH), National Cancer Institute (NCI), Washington
University SPORE in Pancreatic Cancer under award number 5P50CA196510 (W.G.H.
and R.C.F.), including a Career Enhancement Program sub-award to A.A.C. This work
was also supported by the Washington University Human Tumor Atlas Research
Center funded by the NCI under award number U2CCA233303 (L.D. and R.C.F.), an
NCI K08 career development award under award number K08CA238711 (A.A.C.), the
Cancer Research Foundation Young Investigator Award (A.A.C.), the Washington
University Alvin J. Siteman Cancer Research Fund (A.A.C.), and the V Foundation for
Cancer Research V Scholar Award (A.A.C.). The funders played no role in study design,
data collection and analysis, decision to publish, or preparation of the paper.

AUTHOR CONTRIBUTIONS
E.S., A.U., P.C., R.C.F., K.D., and A.A.C. conceived of the study, developed strategies for
related experiments and wrote the paper. Data analysis was performed by E.S., A.U.,
and P.C. with assistance from B.A.K., R.B., and P.K.H. Data interpretation was
performed by E.S., P.C., A.U., K.D. and A.A.C. Patient specimens were collected by A.U.,
I.S., B.A.K., P.K.H., C.W., S.P.G., T.H., H.A., G.D.L., N.D.C., V.M.K., and D.S.E., and were
processed for expression profiling by A.U. Clinical characteristics and outcomes were
determined by I.S., B.A.K., R.B., and K.K.D. Clinical data were curated by A.U., I.S., and
K.K.D. All authors commented on the paper at all stages.

COMPETING INTERESTS
E.S. and A.A.C. have patent filings related to cancer biomarkers. F.Q. has stock options
in Centene, Gilead, and Horizon Therapeutics. H.K. has received research funding,
travel accommodations, and honoraria from Varian Medical Systems and from
ViewRay, and has consulted for Varian Medical Systems. W.G.H. is a member of the
board of directors for Accuronix Therapeutics. A.A.C. has licensed technology to
Droplet Biosciences, LiquidCell Dx, Tempus Labs, and Biocognitive Labs. A.A.C. has
served as a consultant/advisor to Roche, Tempus, Geneoscopy, Illumina, Invitae,
Myriad Genetics, NuProbe, Daiichi Sankyo, AstraZeneca, AlphaSights, DeciBio and
Guidepoint. A.A.C. has received honoraria from Roche, Foundation Medicine, Agilent,
and Dava Oncology. A.A.C. has stock options in Geneoscopy, research support from
Roche, Illumina, and Tempus Labs, and ownership interests in Droplet Biosciences and
LiquidCell Dx. No potential conflicts of interest were disclosed by the other authors.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41698-023-00455-z.

Correspondence and requests for materials should be addressed to Koushik K. Das
or Aadel A. Chaudhuri.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

EP Storrs et al.

9

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2023)   105 

https://doi.org/10.1038/s41698-023-00455-z
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	High-dimensional deconstruction of pancreatic cancer identifies tumor microenvironmental and developmental stemness features that predict survival
	Introduction
	Results
	Cellular makeup of the PDAC TME
	Stemness in malignant and fibroblast cell states
	Cell state compositions associated with patient survival
	Impact of developmental stemness on patient survival

	Discussion
	Methods
	PDAC tumor collection and processing
	In-house scRNA-seq data processing
	Integration of public scRNA-seq datasets
	Cell state identification
	Cluster refinement
	Bulk expression data acquisition
	Ecotype scRNA-seq cell state discovery
	Generation of the cell states coefficient matrix for EcoTyper
	Ecotype recovery
	Kaplan–Meier analysis
	Pseudo-bulk analysis
	Development stemness analysis
	Cell state-specific CytoTRACE gene distributions
	Bulk RNA-seq developmental score
	Cox regression for overall survival
	Gene set enrichment analysis (GSEA) and gene set scoring
	Reporting summary

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




