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Colorectal cancer risk stratification on histological slides based
on survival curves predicted by deep learning
Julia Höhn1,11, Eva Krieghoff-Henning1,11, Christoph Wies 1,2, Lennard Kiehl1, Martin J. Hetz1, Tabea-Clara Bucher 1,
Jitendra Jonnagaddala 3, Kurt Zatloukal4, Heimo Müller 4, Markus Plass 4, Emilian Jungwirth 4, Timo Gaiser5,6, Matthias Steeg5,
Tim Holland-Letz7, Hermann Brenner8,9,10, Michael Hoffmeister8,11 and Titus J. Brinker 1,11✉

Studies have shown that colorectal cancer prognosis can be predicted by deep learning-based analysis of histological tissue
sections of the primary tumor. So far, this has been achieved using a binary prediction. Survival curves might contain more detailed
information and thus enable a more fine-grained risk prediction. Therefore, we established survival curve-based CRC survival
predictors and benchmarked them against standard binary survival predictors, comparing their performance extensively on the
clinical high and low risk subsets of one internal and three external cohorts. Survival curve-based risk prediction achieved a very
similar risk stratification to binary risk prediction for this task. Exchanging other components of the pipeline, namely input tissue
and feature extractor, had largely identical effects on model performance independently of the type of risk prediction. An ensemble
of all survival curve-based models exhibited a more robust performance, as did a similar ensemble based on binary risk prediction.
Patients could be further stratified within clinical risk groups. However, performance still varied across cohorts, indicating limited
generalization of all investigated image analysis pipelines, whereas models using clinical data performed robustly on all cohorts.
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INTRODUCTION
Colorectal cancer (CRC) remains among the cancer entities with the
highest incidence, especially in developed countries1. When CRC is
detected early, prognosis is usually good and the cancer can be
cured by surgery alone2,3. At later stages, prognosis is much worse
and (neo-)adjuvant treatment is required to increase cure rates4.
Most patients with locally advanced CRC and thus clinically high
risk (CHR, stages IIb and III) receive chemotherapy, whereas
patients with CRC up to stage IIa with clinically low risk (CLR)
usually do not. However, this binary staging that is currently
implemented in the clinic is not an accurate predictor of prognosis.
Some tumors are capable of spreading in early stages and thus
require adjuvant therapy. Other tumors have limited spreading
ability and patients might be able to forgo adjuvant chemotherapy
even at later stages4,5. This calls for more specific biomarkers to
avoid under- and overtreatment. Deep learning (DL) has already
been applied to Hematoxylin-Eosin-(H&E-)stained tissue sections in
several studies to identify and/or quantify previously unknown
characteristics for CRC risk stratification including survival predic-
tion6–12. However, so far, no CRC histology based prognostic
algorithm is integrated into clinical practice as yet.
The studies that used DL for risk estimation of CRC patients

from whole slide images (WSIs) (see summary in Supplementary
Table 1) so far mostly build on a similar approach: the WSIs are
tiled and a DL model is used to extract tile features, which are then
fed into a “survival network” that provides a prognosis/risk
estimation based on the merged tiles’ information. The datasets of
the existing studies overlap as well. The differences between the

studies mostly lie in variations of elements within this approach.
First, studies differ in the input tissue by either restricting the
region of interest to tumor tissue10,11, tumor and stroma tissue9 or
a set of different non-tumorous tissue types8. Second, the studies
used different DL feature extractors mostly based on convolu-
tional neural networks (CNNs), albeit with different pre-trainings.
The (pre-)training ranged from approaches that trained the
extractor in a supervised manner from scratch on the survival
task10,11 over approaches that used domain-specifically pre-
trained extractors8,9 to approaches that applied self-supervised
pre-training on large datasets6,7. Third, the approaches predict a
risk score either by using survival analysis-adjusted loss func-
tions7,9,12 or by binary classification, e.g., five-year survival
assuming a constant risk and not including censored data6,11.
Together with a variety of inclusion criteria, evaluation metrics and
endpoints, this renders the study landscape in this field quite
heterogeneous. At least as importantly, the studies do not
investigate extensively how well the proposed approaches
generalize to new, independent cohorts. Thus, it is still hard to
conclude which approach is the most relevant for an accurate and
robust prognosis prediction, which is a prerequisite for a future
successful clinical implementation.
We extend the existing studies by predicting a five-year survival

curve instead of a single risk score, as a survival curve might
contain more information of the individual disease course of a
patient than such a single risk score and might therefore be better
suited for refining the current CRC risk stratification into CHR and
CLR subgroups. Our pipeline was built in a modular way that
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builds on those constructed in the studies so far, allowing us to
exchange each module individually. This enabled us to also
investigate how variations regarding input tissue and feature
extractor influence the discrimination and calibration of the
approach on four cohorts. We also benchmarked our survival
curve-based approach against the binary approach that predicts a
risk score instead of a survival curve.

RESULTS
Patient characteristics
Four independent cohorts of stage I-IV CRC cases with clinical
follow-up data were used in the study. Our inclusion criteria
yielded a training set of 2205 patients from the Darmkrebs:
Chancen der Verhütung durch Screening (DACHS) cohort13–15 and
test sets of 545 patients from DACHS, 1340 patients from the
Molecular and Cellular Oncology (MCO) cohort16, 610 patients
from TCGA17 (open evaluations) and 371 patients from Graz18

(blinded evaluation). We refer to the Methods section and
Supplementary Fig. 1 for cohort details and inclusion criteria. As
we wanted to analyze CHR and CLR patients separately, to test
directly whether we can further refine the current clinical
classification, a few more patients were excluded because of

missing clinical parameters (Fig. 1). Clinical characteristics of the
patients are shown in Supplementary Table 2.
Follow-up was at least five years and censoring rates during the

first five years were low in the DACHS, MCO and Graz cohorts
(Table 1), whereas in the TCGA cohort, censoring rates were high
and median duration of follow-up was much shorter. Event rates
were highest in the TCGA CHR subcohort and in the TCGA and
Graz CLR subcohorts compared to the other CHR and CLR
subcohorts, respectively.

Establishing the modular image analysis pipeline
An image analysis pipeline basically has a modular architecture,
where the modules can be varied individually. How the different
components influence each other and thereby the performance of
the entire pipeline is difficult to predict. As we wanted to compare
an optimized pipeline where the risk stratification was based on
the prediction of individual patient survival curves with the
standard binary approach, we kept this component constant while
varying the input tissue types as well as the feature extractor,
which were components that the previous studies had also varied.
That way, we could investigate how these different variations
impact our pipeline’s discrimination and calibration ability across
all four cohorts.

Fig. 1 Training and test (sub)cohorts. Entire cohorts (All), clinical high (CHR) and low risk (CLR) subcohorts of all datasets. The term “data
missing” refers to information necessary to stratify patients into the CHR or CLR subcohorts. Note that “censored”/”survived” is short for
“censored within/survived the first five years after diagnosis”.
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Our pipeline contains a subtyper that allows us to select tiles
that were classified as (predominantly) a specific tissue type
(Fig. 2, step I). Individual tiles are reduced to tile features by a
feature extractor (Fig. 2, step II). Through attention-based
aggregation, all tile features are combined to slide features (Fig.
2, step III), which are then fed into a survival network to predict a
five-year survival curve (Fig. 2, step IV).
We used a piecewise constant hazard function19. The survival

network predicts the hazard of dying for each month. The pipeline
was optimized using the negative log likelihood as loss function.
To benchmark our survival-curve based approach against the
standard binary approach, our pipeline was also trained for binary
classification of five-year overall survival using a binary cross
entropy loss weighted with the inverse-probability-of-censoring
weighting method20.
We investigated different tissue type combinations as input,

namely tumor tissue only, stroma tissue only, a combination of
stroma and tumor tissue, a combination of non-tumor tissue types
(stroma, lymphocytes, mucus) that were previously reported to
carry prognostic value, and a combination of all mentioned tissue
types (tumor, stroma, lymphocytes, mucus).
The investigated feature extractors included a randomly

initialized and untrained ResNet18 model (Rand) to assess the
value of any kind of pre-training. As pre-trained feature extractors,
we included a standard ResNet18 pre-trained on ImageNet (IM1K),
a ResNet18 pre-trained on histologic breast cancer slides to
distinguish tumorous from normal tissue (Cam)21, the subtyper
that we already used to select the tissue types (Sub), a ResNet18
(Ciga)22 and a ResNet50 (Retccl)23 that were trained on multiple
histological datasets in a self-supervised fashion, two small vision

transformers that we trained in-house in a self-supervised way on
DACHS tiles of different tissue types (DINO-dachs) and on all TCGA
slides (DINO-tcga), as well as a hybrid model of a ResNet and a
vision transformer pre-trained on ImageNet (R26-ViT).

Discrimination and calibration of the survival curve versus the
binary approach
To compare the discrimination and calibration ability of the survival
curve approach against the binary approach thoroughly, we trained
40 models altogether for each approach (5 input tissue combina-
tions, 8 pre-trained feature extractors). We calculated the mean
(time-dependent) C-indices and (integrated) Brier scores separately
across the four CHR and CLR subcohorts for each model and
assessed the distribution differences (Supplementary Fig. 2).
Concerning the C-index, we observed no systematic performance
difference between both approaches (Supplementary Fig. 2a).
Calibration, however, was somewhat worse with the survival curve
approach than for the binary approach (Supplementary Fig. 2b). To
investigate the impact of the input tissue types, we further split the
experiments by input tissue and again illustrated the models’ mean
C-indices and (integrated) Brier scores (Supplementary Fig. 3).
Models performed better with tumor tissue input alone than with
non-tumor tissue(s) and on par with tumor/non-tumor combinations
(for numerical values of the performance of all individual models see
Supplementary Tables 3 and 4). Figure 3 shows the impact of the
investigated feature extractors on the four CHR and CLR subcohorts,
separately, using tumor tissue only as input – with the survival curve
approach in direct comparison to the binary approach. For both
approaches, the models with pre-trained feature extractors
performed better than the random model in nearly all cases,
suggesting that whatever patterns the pre-trained models identified,
these patterns could be used to some extent on all cohorts while the
random patterns were clearly much less useful on the external
subcohorts. However, there was an usually small, but notable
decrease of the models’ discrimination ability (C-index) across all
investigated feature extractors on the (external) MCO subcohorts
compared to the (internal) DACHS subcohorts. On the smaller
external subcohorts of TCGA and Graz, this decrease was even
larger. While this general trend was similar for both approaches, they
differed in their discrimination ability on single cohorts. Most of the
models performed better within the survival curve approach on the
MCO and TCGA, but worse on the Graz subcohorts.
Regardless of the approach and in addition to this general

decrease in performance, we observed that there were models
that still performed very well on two of the external subcohorts,
but very poorly on the third, e.g., DINO-dachs in Graz or Ciga in
TCGA. At present, one cannot exclude that this might also occur
for the models that so far showed good performances on all of our
four cohorts on a fifth cohort. Therefore, we decided to also
generate ensembles for both approaches by averaging the
predictions of the eight models with different feature extractors,

H&E slide
I)

Subtyper

Tissue type(s) of interest

II)
Feature
extractor

Tile features Slide features

IV)
Survival
network

III)
Tile-to-slide
aggregation

Survival
curve

Mortality score

Fig. 2 Image analysis pipeline. The pipeline results in an image-based mortality score using H&E slides with deep learning survival curve
prediction. In step I, after an H&E slide is segmented into image tiles, a subtyper assigns each tile to one of nine colorectal tissue type classes
and only tiles of tissue type(s) of interest are analyzed further. In step II the image tiles are reduced to simplified tile features by a pre-trained
feature extractor. In step III all tile features are aggregated to slide features by an attention mechanism. In step IV the slide features are used to
predict the patient’s survival curve. The mortality score then aggregates the survival curve in one single value.

Table 1. Survival data quality in the different datasets.

Dataset Median overall
follow-up time
[months]

Censoring rate
[%]a

Event rate [%]b

All CHR CLR All CHR CLR All CHR CLR

DACHS training 74 62 107 0.5 0.6 0.4 31 45 17

DACHS test 77 62 109 0 0 0 30 45 17

MCO test 60 60 60 3 3 3 36 51 21

TCGA test 21 19 22 73 65 80 70 81 48

Graz test 60 44 64 0 0 0 49 57 39

CHR clinical high risk, CLR clinical low risk.
aCensoring rate describes the percentage of patients that left the study
without event during the first five years.
bEvent rate describes the percentage of cases that experienced the event
(=death) within the first five years in relation to all cases that were not
censored within the first five years.
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respectively and to evaluate their potential to increase prediction
robustness. With the survival curve approach, the ensemble
yielded a performance broadly similar to the best individual
models on all CHR and CLR subcohorts: C-indices ranged from 0.69
(0.67–0.74) in DACHS to 0.55 (0.53–0.61) in Graz for CHR and from
0.64 (0.59–0.71) in DACHS to 0.51 (0.44–0.65) in TCGA for CLR (Fig.

3, Table 2). Results of the ensemble with the binary approach were
similar (Fig. 3, Supplementary Table 4).

Survival curve separation within the clinical risk groups
To investigate the ability of the survival curve approach to further
discriminate patient prognoses within the clinically defined CLR

Fig. 3 Comparison of the survival curve (curve) and binary approach (binary). a C-indices on the four CHR test sets. b IBS/BS of the four
CHR test sets. c C-indices on the four CLR test sets. d IBS/BS of the four CLR test sets for all investigated feature extractors and the ensembles.
Tumor tissue was used as input tissue in all cases. Note that in case of the single risk score prediction (binary), time independent C-indices and
the Brier score were calculated. Arrows indicate whether high or low values are better. The dashed line in each subfigure represents a random
performance. In case of the C-index, a value above 0.5 is better than random, in case of the IBS/BS a value below 0.25 is better than random.
95% confidence intervals are shown. BS Brier score, CHR clinical high risk, CI confidence interval, CLR clinical low risk, IBS integrated Brier
score.

Table 2. Comparison of clinical, image and combined models based on the survival curve approach.

UICC risk group Model DACHS MCO TCGA Graz

CHR Clinical model (Age groups, TNM stages) 0.75 (0.73–0.79) 0.72 (0.71–0.75) 0.70 (0.66–0.77) 0.65 (0.63–0.71)

Image model (Ensemble) 0.69 (0.67–0.74) 0.64 (0.62–0.67) 0.60 (0.56–0.69) 0.55 (0.53–0.61)

Combined model (Mortality score, age groups, TNM
stages)

0.77 (0.75–0.81) 0.74 (0.73–0.76) 0.70 (0.66–0.78) 0.65 (0.62–0.70)

CLR Clinical model (Age groups, T stage) 0.65 (0.60–0.73) 0.68 (0.65–0.72) 0.68 (0.63–0.79) 0.64 (0.60–0.73)

Image model (Ensemble) 0.64 (0.59–0.71) 0.59 (0.56–0.64) 0.51 (0.44–0.65) 0.52 (0.47–0.61)

Combined model (Mortality score, age groups, T stage) 0.68 (0.63–0.76) 0.68 (0.66–0.73) 0.64 (0.58–0.75) 0.68 (0.64–0.76)

CHR clinical high risk, CLR clinical low risk.
Mortality score is based on the ensemble model (with recalibration on external test sets). Clinical risk factors were the same as used for multivariable Cox
regression analysis in Supplementary Fig. 20. C-indices with 95% confidence intervals on internal and external test sets are shown. Best results are highlighted
in bold.

J Höhn et al.

4

npj Precision Oncology (2023)    98 Published in partnership with The Hormel Institute, University of Minnesota



and CHR subcohorts, we plotted the mean predicted survival
curves of patients that survived or died during the first five years
after diagnosis in the CHR and CLR subcohorts. We observed that
for the ensemble (Fig. 4a, b) as well as most individual models
(Supplementary Figs. 4–11), the curves did indeed separate in all
subcohorts. Generally, curve separation was better in CHR than in
CLR subcohorts, and in the larger subcohorts DACHS and MCO
than in TCGA and Graz. The curves for TCGA CHR were inverted for
most models. This may be due to a bias introduced by the
(necessary) exclusion of the censored cases (65% of the total) in
this analysis, since the C-index generated with the entire
subcohort was better than random (see Table 2 and Supplemen-
tary Table 3). In general, models performed notably better at
predicting the survival curves of surviving patients. For patients
that died, the IBS was above 0.25 in most cases, indicating
insufficient model calibration. The risk scores of the binary
approach showed a similar behavior when analyzed for the
patients that survived and died during the first five years
(Supplementary Fig. 12). Of note, the risk scores in the TCGA
subcohorts were inverted using the binary approach, too.

Risk group assignment using an image-based mortality score
To assign patients to risk groups within the CHR and CLR
subcohorts based on the individual survival predictions, we
calculated a mortality score based on the ensemble of the survival
curve approach (Fig. 2). We determined separate mortality score
thresholds for CHR and CLR on the DACHS training set to
distribute the patients into nested, refined risk groups within
these subcohorts. Note that we used five-fold cross-validation on
the training set for these evaluations. We refer to the Method
section and Supplementary Fig. 13 for more details regarding the
threshold determination.
For the ensemble (Fig. 4a, b) as well as for the individual models

(Supplementary Figs. 4–11), there was an overall tendency
towards more pessimistic survival curve predictions in the external
test sets for both the CHR and the CLR subcohorts. Calibration
curves confirmed a moderate need for recalibration in MCO and a
strong need for recalibration in TCGA and Graz (Supplementary
Fig. 14). We therefore recalibrated the ensemble on all external

test sets individually as described in the Methods, yielding
substantially improved calibration curves (Supplementary Fig. 15,
also see the mean predicted survival curves for the recalibrated
ensemble in Supplementary Fig. 16). Recalibration also substan-
tially improved the IBS in the Graz CLR subcohort, where
calibration was the worst, but was negligible in the other cases
(see Supplementary Table 5).
Nested risk stratification (Fig. 5a for CHR, b for CLR subcohorts)

was statistically significant within the DACHS and MCO CHR
subcohorts (P < 0.05 of logrank test, respectively). It was worse in
the smaller TCGA and Graz CHR subcohorts, which had higher
event rates and for TCGA also a more limited follow-up (Table 1)
(P= 0.69 and P= 0.49 of logrank tests). In the CLR subcohorts, risk
stratification was significant for DACHS and MCO (P < 0.05 of
logrank test, respectively), but not for TCGA (P= 0.80) and Graz
(P= 0.68). For comparison, see the nested risk groups without
recalibration in Supplementary Fig. 17.
For the binary approach we proceeded in a similar manner, and

with broadly similar results. We determined thresholds directly
from the ensemble’s risk score for CHR and CLR subcohorts,
respectively (Supplementary Fig. 18). Since the risk scores showed
no significant difference between the test sets, no recalibration
was done. Kaplan-Meier curves of the nested risk groups are
shown in Supplementary Fig. 19. The nested risk stratification of
the benchmark ensemble was statistically significant within nearly
all CHR subcohorts (DACHS, MCO and TCGA all P < 0.05, but Graz
P= 0.18). In the CLR subcohorts, risk stratification was significant
only in MCO (P < 0.05), but not in DACHS (P= 0.12), TCGA
(P= 0.16) and Graz (P= 0.87).

Comparison and combination with risk assignment based on
clinical data
For the following analyses, we used the ensemble model with the
respective recalibration on the external test sets.
In a first step, we performed multivariable Cox regression

analysis including the mortality score and known clinical risk
factors, namely age and T stage, complemented by N and M
stages for the CHR subcohort (see Methods and Supplementary
Table 2 for univariate analyses) to check whether the mortality

Fig. 4 Predicted survival curves of the ensemble of the survival curve approach across subcohorts. Mean predicted survival curves of the
ensemble model for patients that died (blue) and survived (green) the first five years for the (a), CHR and (b), CLR subcohorts. Note that all
curves and metrics were calculated without censored cases. Results can therefore differ from the metrics reported in Table 2 and
Supplementary Table 3. Mean predicted survival curves of the individual models included in the ensemble are shown in Supplementary Figs.
4–11. CHR clinical high risk, CLR clinical low risk, IBS integrated Brier score.
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score is a relevant prognostic factor within the clinical risk groups.
The mortality score was a significant prognostic factor in the
DACHS and MCO subcohorts (DACHS: CHR P < 0.05, CLR P < 0.05;
MCO: CHR P < 0.05, CLR P < 0.05), but not in the TCGA and Graz
subcohorts (TCGA: CHR P= 0.06, CLR P= 0.4; Graz: CHR P= 0.17,
CLR P= 0.53) (Supplementary Fig. 20).
We then proceeded to compare the performance of the image

analysis ensemble with that of a clinical prognostic model based
on clinical data known to correlate with prognosis. To do this, we
fitted a Cox proportional hazard model (“clinical model”) on CHR
and CLR subcohorts of the DACHS training set using the clinical
risk factors of the multivariable analyses (Supplementary Fig. 20).
In addition, we trained a separate Cox proportional hazard model
where we also integrated the mortality score of the image model,
to investigate whether a combination of the traditional clinical
parameters and the DL-based image analysis could yield a more
accurate prognostic biomarker. We refer to the latter as the
“combined” model. Details of the fitted models are provided in
Supplementary Table 6, ablation studies for other combinations in
Supplementary Table 7. With the clinical model alone, we
achieved C-indices ranging from 0.75 (0.73–0.79) in DACHS to
0.65 (0.63–0.71) in Graz for the CHR and from 0.68 (0.65–0.72) in
MCO to 0.64 (0.60–0.73) in Graz for the CLR subcohorts (see Table
2). If the mortality score was included, the combined model

showed numerically, albeit not statistically significant, higher
C-indices in four cases, constant C-indices in three and a worse
C-index in one case (Table 2).
Results of a similar multivariable Cox regression analysis and

combined model using the score of the binary approach instead
of the mortality score can be found in Supplementary Fig. 21 and
Table 8. The score was a significant prognostic factor only in the
DACHS subcohorts (CHR P < 0.05, CLR P < 0.05) and MCO CHR
subcohort (P < 0.05) (Supplementary Fig. 21). Also with the
combined model based on the binary approach, performance
could not be significantly improved compared to the clinical
model alone.

DISCUSSION
Especially for the CHR patients, the predicted survival curves
showed a clear difference within patients with good or worse
prognosis. With the mortality score that condenses the survival
curve prediction in a single value, a statistically significant risk
refinement could be achieved in the larger DACHS and MCO
subcohorts. However, the approach based on the survival curve
prediction did not result in a systematically better risk refinement
than the conventional “single risk score” approach. In particular,
we found that survival curve-based models show slightly more

Fig. 5 Kaplan-Meier curves of nested risk groups as defined by the survival curve-based ensemble. a CHR subcohorts; b CLR subcohorts.
Recalibration was performed on external test sets. Mortality score cutoffs were determined according to the procedure described in Methods
and Supplementary Fig. 13 ðMEnsembleCutCHR ¼ 14:9;MEnsembleCutCLR ¼ 10:5Þ. CHR clinical high risk, CLR clinical low risk.
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overall model calibration deficits for individual cohorts, necessitat-
ing more effort for recalibration.
A central motivation of predicting survival curves instead of a

single risk score is its higher complexity. A single risk score treats
the hazard of dying within the first five years as constant. For the
survival curve, our model predicts monthly hazards, which was the
smallest possible interval within all four cohorts, and thus has the
potential to learn a much more time dependent hazard function.
However, the exponential decrease of survival curves that could
be observed in all models indicates that for this particular use case
the models learned a more or less constant hazard within the first
five years. In such cases, the greater complexity of the proposed
new pipeline is of no direct benefit for the risk refinement.
However, our analyses indicate that with appropriate calibration, it
is a good method for CRC risk stratification and yields comparable
results to the binary approach. For other prognostic tasks where
the hazards might be more time-dependent or in case of longer
observations or higher event rates, we consider it possible that
survival curve prediction may provide an advantage.
Our data show that both the survival curve as well as the binary

approach still have a limited ability to generalize, largely
independently of the input tissue and feature extractors we
employed. Especially regarding the feature extractor, we think that
this is a valuable finding. The variety of extractors included a tissue
subtyper (Sub), which was similarly used in previous studies8,9 as
well as models trained on large amounts of histological data in a
self-supervised manner (Ciga, Retccl, DINO-tcga). The latter are
usually considered to have good generalization capabilities, even
though or especially because they are not fine-tuned. In our
setting, these extractors did not generalize significantly better
than for instance a ResNet18 pre-trained on ImageNet. Further-
more, we also observed that many models performed worse on
specific cohorts, even if they worked very well for others.
Altogether, performance was still strongly dependent on the
individual cohort, with a generally better performance on DACHS
and MCO largely independently of the input tissue, feature
extractor or survival network we employ, pointing to systematic
differences between cohorts. Regarding the Graz cohort, for
instance, one obvious difference pertaining to the image analysis
is that these CRC slides were scanned with another slide scanner
(3D histech) than all the other cohorts (Aperio).
The fact that we performed a very broad investigation of many

models on many cohorts is one of the major strengths of this
study, since it allowed us to observe differences and outliers in
model performance that might have been overlooked otherwise.
The ensembles we have included in our analysis, triggered by
these observations, show a comparatively robust performance
across cohorts and may therefore be a way to compensate for
outliers in individual model/cohort constellations. Moreover,
combination of such image analysis ensembles with clinical data,
which are known to be relatively well-generalizing biomarkers
per se, may lead to even better and more robust biomarkers. As
only some combined models showed numerically, but not
statistically significantly higher C-indices, the relevant prognostic
information content of the clinical data and the histological image
features may overlap. Therefore, the potential benefit of combin-
ing these data entities in a single biomarker remains to be
investigated in more detail. Other options to achieve a robust
performance on new datasets could be to increase the diversity of
the training data, or to perform re-training of the model with a
limited amount of data from the new cohort.
As mentioned before, CRC survival prediction based on

histological slides has been tried previously (see Supplementary
Table 1). Considering that medical images are hard to collect, the
studies are quite large, ranging from 1000 to 6000 histological
images. This is possible because several large CRC cohorts exist
that contain histological images as well as patients and sometimes
molecular data. In fact, in our current study, we also made use of

some of these cohorts. Although approaches employed in the CRC
survival studies conducted using DL-based image analysis with or
without clinical data so far are heterogenous, one can approx-
imate that the results we achieved with our survival curve-based
image model are broadly similar to those obtained in these earlier
studies, more or less independently from the diverse types and
pre-trainings of the feature extractors we used (see Supplemen-
tary Table 1). This may be due to the fact that survival is not only
based on tumor biology, but also on age, comorbidities, chance
events etc., i.e., factors that have a very limited impact or no
impact at all on tumor tissue morphology.
Due to computational power limitations, our slide-level image

analysis pipeline cannot be learned end-to-end. Only the last part
of the pipeline could be trained on fixed tile-level features,
precluding an extensive usage of common augmentations and
bearing a somewhat higher risk for overfitting. Solutions to that
problem could be smart feature-level augmentations. Further-
more, we did not perform a comparison with weakly supervised
tile-level pipelines or approaches that restrict the number of tiles
per sample down to a number that allows end-to-end training,
and thus a training of the feature extractor directly for the survival
task. This remains to be done in future studies.
In general, patient stratification was better in the larger cohorts

and/or cohorts with a higher number of survival events. As
expected, the number of cases in the CLR subcohorts was lower
than in the CHR cohorts across all investigated study cohorts.
Additionally, two of our external test sets were rather small, and at
least for the TCGA cohort, follow-up information was very limited.
Thus, the results we obtained in the CLR subcohorts and in the
TCGA and Graz cohorts in general may have to be considered
somewhat preliminary and should be confirmed in larger studies.
Moreover, we could not identify a universal threshold that is ideal
for all cohorts tested so far, particularly without recalibration, and
the predicted survival is not yet accurate in absolute terms. Finally,
for recalibration of the survival curve-based models, due to the
small size of our external test sets, we did not split the sets into a
calibration and test set, but used the whole external test set to
estimate the new baseline hazard. Thus, the recalibration effect we
showed is a best case scenario and should be re-investigated
using separate calibration sets derived from larger test cohorts.
Our results suggest that using DL-based image analysis on

histopathological slides and prediction of patient survival curves
can further stratify CRC patient prognosis within the UICC-based
risk groups that are currently used to a similar extent as when
employing a standard binary risk classification. However, as
opposed to a clinical classifier, none of the investigated DL image
analysis models or ensembles performed equally well on all
cohorts. Further attempts must be made to improve model
generalization.

METHODS
Ethics
Data and digitized slides were provided in accordance with the
approval of the ethics committees of the Medical Faculty of the
University of Heidelberg and the Medical Chambers of Baden-
Württemberg and Rhineland-Palatinate for DACHS and in accor-
dance with the approval of the Secure Research Environment for
Digital Health (SREDH) Consortium for MCO. TCGA is open source.
For Graz, Institutional Review Board approval for this retrospective
study using de-identified slides was obtained from the Medical
University of Graz (Protocol now. 30–184 ex 17/18). Written
informed consent was obtained from each participant in all study
cohorts used in this work. The study adheres to the transparent
reporting of multivariable prediction models for individual
prognosis or diagnosis (TRIPOD) statement24. The checklist is
shown in Supplementary Table 9.
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Study cohorts and patient flow
The DACHS patient cohort was recruited within a population-
based case-control study from southwestern Germany between
2003 and 2014. The MCO cohort is a collection of imaging,
specimen, clinical and genetic data from Australian individuals
who underwent curative resection for CRC from 1994 to 2010. The
Cancer Genome Atlas (TCGA) cohort (TCGA-READ and -COAD) is
an international multicentre cohort mainly from the United States
with cancers diagnosed between 1998 and 2013. The Graz cohort
consists of pathology slides from the Institute of Pathology and
the BioBank at the Medical University in Graz of CRC resection
cases between 1985 and 2016, while 80% of the resections were
diagnosed after 1997.
Cases were eligible if at least one representative pre-treatment

diagnostic slide and information on an event or censoring time
was available. No (other) image quality checks to exclude cases
were undertaken (see Supplementary Fig. 1).

Predicting survival curves with DL image analysis
We developed DL-based image analysis models to predict the
patient’s five-year survival curve directly from diagnostic histolo-
gical whole slide image(s) (WSIs) without manual annotation or
expert analysis (Fig. 2). The chapters “Tiling“ to “Recalibration of
the survival curve based image models“ describe the pipeline in
more detail.

Tiling
The slides of the DACHS, MCO and TCGA cohort were scanned
with Leica Aperio scanners. The slides of the Graz cohort were
scanned with a 3D Histech P1000 scanner. The resolution of the
scanned slides differed in between as well as within the cohorts
(DACHS ~ 0.5 μm/pixel, MCO ~ 0.25 μm/pixel, TCGA varying
between 0.23–0.25 μm/pixel, Graz ~0.12 μm/pixel). To ensure
consistent information on tiles from different slides, we decided in
favor of a fixed area of 113 μm x 113 μm. This resulted in tiles with
different numbers of pixels. The tiles were resized to the required
number of pixels (e.g., 224 × 224 pixels) before being provided to
the DL feature extractors. The script for the tiling is available under
https://github.com/DBO-DKFZ/wsi_preprocessing.

Subtyper
No manual annotations were performed and the whole slide was
tiled. To select tissue of interest, we implemented a colorectal
tissue type classifier (“subtyper”, Fig. 2, Step I) adapted from
Kather et al.8 that classifies all tiles into nine colorectal tissue
types (adipose tissue, background, colorectal adenocarcinoma
epithelium, debris, lymphocytes, mucus, smooth muscle, normal
colon mucosa and stroma). For the subtyper’s backbone we used
a ResNet18 initialized with weights provided by Nvidia Clara21.
They had pre-trained the model on histological images from the
CAMELYON16 challenge. We went on to train the backbone and
classifier on the non-normalized NCT-CRC-HE-100K set for the
nine-tissue-detection task25. The NCT-CRC-HE-100K set consists of
100,000 histological image tiles of human colorectal cancer and
healthy tissue extracted from 86 H&E stained slides from FFPE
samples from the NCT (National Center for Tumor Diseases)
Biobank and the UMM (University Medical Center Mannheim)
pathology archive and was split by us in a training (66,666 tiles), a
validation (16,667 tiles) and an internal test set (16,667 tiles) with
similar class distributions. During training we randomly applied
the following augmentations with a probability of p: colorjitter
(brightness= 0.25, contrast= 0.75, saturation= 0.25, hue= 0.5;
p= 0.9), random horizontal and vertical flips (both with p= 0.5),
random gray scaling (p= 0.1) and gaussian blurring (kernel_-
size= (5,5), sigma= (0.1,5); p= 0.3). The subtyper was further
fine-tuned on 8,592 tiles derived from 27 slides of the DACHS

cohort that were not used for the survival task (see inclusion
criteria in Supplementary Fig. 1). Similar augmentations as above
were used for fine-tuning including a random resize crop to
compensate for changes in resolution. To ensure a sufficient
quality of the subtyper, its performance was evaluated on an
internal test set, the “official” validation set CRC-VAL-HE-7K25, as
well as separate test sets for the DACHS, MCO and subsets of the
TCGA cohort. To account for the domain shift of the different
submitting sites included in the TCGA cohort, we evaluated the
subtyper’s performance on the TCGA set not on all submitting
sites together but chose representative submitting sites and
analyzed the performance on these sets separately. We used the
following submitting sites for evaluation: Harvard (TCGA-H),
Greater Poland Cancer Center (TCGA-GPCC) and Christiana
Healthcare (TCGA-CH) due to their differences in visual appear-
ance (e.g., different staining). The additional DACHS set for fine-
tuning the subtyper as well as the additional test sets for DACHS,
MCO and TCGA were created by us using manual annotation (see
Supplementary Table 10). Using this subtyper, we investigated
different tissue inputs reported as useful in earlier studies (tumor,
stroma, mucus and lymphocytes)8–11,26–28.

Feature extractors
Tiles that predominantly contain tissue type(s) of interest were
analyzed further by a neural network that generates simplified
representations or “features” of all tiles (Fig. 2, Step II). Different
feature extractors were investigated, including conventional
convolutional neural networks and modern vision transformers
(ViT) with supervised and self-supervised pre-training. Models
were pre-trained on task-agnostic (natural images, different organ
tissue) or domain-specific datasets (colorectal tissue). Details of
the investigated extractors are provided in the following. Models
trained in-house are marked by*. Some models used TCGA slides
(partly including CRC cases) for pre-training. In these cases our
TCGA cohort can not purely be counted as an external test set.
These models are marked by†.

Rand. A random initialized ResNet18 that served as a baseline
since it was not pre-trained for a specific task or with a specific
dataset to assess the benefit of any kind of training.

IM1K. A ResNet18 pre-trained in a supervised manner (1000
classes) on ImageNet-1K.

Cam. A ResNet18 pre-trained in a supervised manner (2 classes)
on histological images from the CAMELYON16 challenge by Nvidia
Clara to detect breast cancer21.

Sub*. The subtyper developed in this work. It is a ResNet18, pre-
trained in a supervised manner to classify nine colorectal tissue
types using histological images from different domains. It was first
trained on the NCT-CRC-HE-100k cohort25 and further fine-tuned
on 8592 tiles derived from 27 slides of the DACHS cohort that
were not used for the survival task (see inclusion criteria in
Supplementary Fig. 1).

DINO-dachs*. A ViT-small network trained with the DINO (self-
distillation with no labels)29 on 0.1 M image tiles of the NCT-CRC-
HE-100k cohort25 and ~1.2 M images of the DACHS training set
containing roughly the same amount of the eight different
tissue types (no background class), mimicking the size of
ImageNet-1K.

Ciga†. A ResNet18 pre-trained on 57 histopathological datasets
(including multi-organ, different types of staining and resolution
properties) with contrastive self-supervised learning method
SimCLR22.
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Retccl†. A ResNet50 pre-trained on two large histological
datasets (TCGA and PAIP) with clustering-guided contrastive
learning23.

DINO-tcga*†. A ViT-small network pre-trained with DINO on
10,454 diagnostic, histological slides of TCGA.

R26-ViT. A hybrid of a ResNet and ViT-small network as described
by Dosovitskiy et al.30 pre-trained in a supervised manner on
ImageNet-1K.

Tile-to-slide aggregation
It is unknown if and possibly which tile-level features on a slide
carry information that enables a risk stratification regarding overall
survival. As a potentially important characteristic might be present
on a single, a few or all tiles of a slide, we applied the attention
mechanism introduced by Ilse et al.31 (Fig. 2, Step III). It combines
all K tile-level features of a patient F ¼ ff 1; ¼ ; f Kg to slide-level
features

z ¼
XK

k¼1

akf k (1)

with

ak ¼ expfwT tanhðVf Tk ÞgPK
j¼1 expfwT tanhðVf Tj Þg

(2)

where w 2 RLx1 and V 2 RLxM are trainable parameters.

Survival network – survival curve
The slide-level features were fed into a small fully connected
network (“survival network”) (Fig. 2, Step IV) to predict the
patient’s five-year survival curve. The survival network parame-
trizes the hazards of a Cox proportional hazard model. We applied
the approach suggested by Kvamme et al. that assumes piecewise
constant continuous-time hazards19. Since the patient’s hazard of
dying may vary over time, we treated the hazard as constant for
the smallest possible time interval available within all four cohorts
(one month) and set the survival network’s output nodes to 60.

Survival network – binary prediction
The slide-level features were fed into a small fully connected
network with the same layer constellation as when predicting the
survival curve. Instead of 60 output neurons, this survival network
has only 1 output neuron.

Training scheme of image models
We decided in advance that our image models should see all
available tiles and be trained on slide-level, since we wanted to
avoid any biases due to a selection of tiles or a potential label
noise that might come along with weakly supervised training.
Histological slides can, however, give rise to thousands of tile
images, which cannot be computationally processed in our
pipeline at once. To enable a slide-level approach despite
computational limitations, the feature extractor was used in a
frozen fashion. The tile-to-slide aggregation and the survival
network were trained specifically on fixed features. No tile or
feature normalizations were used. Overfitting was a problem we
had to address. During training, we randomly altered the amount
of tiles per sample. We drew features of at least 1000 up to the
maximum amount of tiles per sample. If the sample had less than
1000 tiles, we took all tiles. During validation and testing, the
features of all tiles per sample were used. We further used dropout
with p= 0.5 between every layer of the survival network and a
weight decay of wd= 1 × 10−6. The batch size was always 1. The

learning rate warmed up for the first 20 epochs to a learning rate
of lr= 1 × 10−5 and annealed according to a cosine schedule
afterwards. We scheduled a total of 100 epochs, but by applying
early stopping, we only took the model with the lowest loss on the
validation set, respectively.
For the survival curve approach, we trained the image models

with a loss function suggested by Kvamme et al.19 implemented in
the pycox package. The loss function was defined as the mean
negative log likelihood over a batch of n patients as follows

loss ¼ � 1
n

Xn

i¼1

ðdi logðηkðtiÞÞ � ηkðtiÞρðtiÞ �
XkðtiÞ�1

j¼1

ηjÞ (3)

where di is the event indicator and ti is the time of event or
censoring of patient i, k(ti) the time interval ti falls into (e.g., first
month, second month), ηkðtiÞ is the network’s predicted constant
hazard for the time interval k(ti) and ρ(ti) is the fraction of the last
time interval before an event or censoring. Of note, if follow-up
was longer than five years, data were administratively censored
after five years in this approach.
For the binary approach, we used the binary cross entropy loss.

Patients that died within the first five years were labeled “1”, while
patients with a follow-up longer than five years and without a
death-event were labeled “0”. 11 patients in the training cohort
had a follow-up of less than five years. These patients/slides had to
be excluded during training. However, to account for these
censored cases, we weighted the loss with the inverse-probability-
of-censoring-weighting method20.

Validation of image models
For image model development and hyperparameter tuning of
both approaches, the DACHS training cohort (N= 2205) was split
randomly into five-folds for cross-validation (Nfold1-5= 441). For
each fold, we selected the model with the lowest loss. For the final
prediction, we averaged the predictions of the five models of the
cross-validation.

Recalibration of the survival curve based image models
With the survival network, we parameterized the hazards of a Cox
proportional hazard model. For recalibration we therefore relied
on recalibration methods recommended for Cox regression
models32. To recalibrate a trained model, we adjusted the

predicted hazard function ĥðtjXÞ ¼ ĥ0ðtÞeβ̂
T
X so that the predicted

hazard-rates fit to the observed hazard-rates within our external
test sets. We estimated the baseline-hazard function ĥ0;newðtÞ
based on our external test sets, respectively. To adjust the model
predictions, we afterwards adjusted the predicted hazard-rates
and obtained a new hazard function ĥrecalibratedðtjXÞ with

ĥrecalibratedðtjXÞ ¼ ĥ0;newðtÞ � eβ̂
T
X . To estimate the baseline hazard

of our image models, we fitted a Cox proportional hazard model
(CoxPHFitter) included in the lifelines package33 on the DACHS
training set. Similarly, we estimated the new baseline hazards of all
external test sets, respectively. We used those baseline hazard
functions to estimate ĥrecalibratedðtjXÞ.

Clinical risk groups and DL-based refinement of patient
stratification
To analyze the CHR and CLR subcohorts separately, patients were
subdivided according to clinical stage: patients with a UICC stage
of I to IIa were included in CLR, patients with a UICC stage of IIb to
IV in CHR. Based on the predicted survival curve of a patient, we
calculated the mortality score

M ¼
XT

t¼1

ðHðkðtÞjzÞÞ (4)
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with H being the cumulative hazards for each time interval k(t) of
the period of observation T and z being the aggregated slide
features34. The mortality score condenses the survival curve in one
single value. For the binary approach, we used the output score of
the image model directly, which can be seen as the risk of dying
within the first five years. By defining suitable thresholds for the
mortality and risk scores on the DACHS validation sets, patients
were assigned to “nested” risk groups within CHR and CLR.
We determined the optimal thresholds within the five-fold

cross-validation (Supplementary Fig. 13 for the survival curve
approach and Supplementary Fig. 18 for the binary approach). For
each validation set of the five-fold cross-validation, we tested all
possible mortality/risk scores as thresholds except for the ten
lowest and highest scores to ensure a sufficiently large sample size
for the logrank test. For each split, we calculated the Kaplan-Meier
curves and documented the P-value of the logrank test (Step 1).
We interpolated the mortality scores for values ranging from
minimum to maximum scores with a step size of 0.1 for the
overlapping mortality scores among the five validation sets (Step
2). Since the risk score only ranges between 0 and 1, which is
lower than the value range of the mortality score, we selected a
smaller step size of 0.01. The interpolated curves were averaged
(Step 3) and the resulting averaged curve was further smoothed
by a gaussian filter with a standard deviation of 1 (Step 4). As the
final mortality threshold, we took the mortality score that
achieved the lowest P-value on the smoothed curve. This
procedure was performed for the CHR and CLR cases within the
validation sets separately (see Supplementary Figs. 13a, 18a for
CHR and 13b/18b for CLR). For the CLR cases, none of the possible
mortality score/risk score thresholds achieved a split within the
significance level of P < 0.05 independently of the approach.

Multivariable Cox regression analysis, clinical model,
combined model
We investigated the benefit of the DL-based image analysis
compared to and in addition to already existing risk factors and
how the prognostic accuracy and robustness of our risk
stratification tool(s) could be further maximized. To do so, we
additionally trained a Cox proportional hazard model fitted on
clinical data alone and a second, similar model that also
encompassed the image-based mortality score.
For these analyses, we used the Cox proportional hazard model

(CoxPHFitter) included in the lifelines package33. We added a
penalizer term with β= 0.1 (l1_ratio= 0.0) to improve stability of
the estimates and control for high correlation between covariates.
We only included clinical characteristics that were statistically
significant in univariate analysis for overall survival in general
(Supplementary Table 2), namely age and T stage for the CLR
subcohort, complemented by N and M stages for the CHR
subcohort. Similarly to Supplementary Table 2, all clinical
characteristics were handled as categorical variables. Age was
therefore grouped into intervals (<60, 60–69, 79-79, >80). Patients
were only considered if there were no missing values in any of the
variables (complete case analysis). For the Graz cohort, we
imputed missing values for the M stage (provided as MX) as M0,
since the MX stage usually results from low risk cases where a full
staging is not deemed necessary by the treating physicians. For
the combined models, the mortality score or risk score of the
ensemble models of the respective approach were added as
continuous variables. In case of the survival curve approach, the
mortality scores after recalibration on the test sets were used
directly and were not normalized.
For multivariable Cox regression analyses, we fitted the models

separately on the CHR and CLR subcohort test sets of DACHS
(NCHR= 262, NCLR= 282), MCO (NCHR= 675, NCLR= 665), TCGA
(NCHR= 245, NCLR= 311) and Graz (NCHR= 200, NCLR= 125).

For the clinical and combined model, the Cox proportional
hazard model was fitted on the DACHS CHR and CLR training
samples (NCHR= 1075, NCLR= 1117). We predicted survival curves
(predict_survival_function) with the clinical and combined models
and evaluated their performance with the time-dependent
C-index on all test sets to enable consistent comparison with
the predictions of the image models of the survival curve
approach in Table 2/Supplementary Table 3.

Evaluation and statistics
We used all available cases to enable optimal training and model
building. All models were trained on the DACHS cohort. A hold-
out test set was prepared for internal validation through random
sampling. The MCO, TCGA and Graz cohorts served as external test
sets. Investigation was open in the DACHS, MCO and TCGA
cohorts and blinded in the Graz cohort. Blinding was achieved by
running the pipeline designed in the DKFZ lab without further
changes on the slides and clinical data of the Graz cohort by the
partners in Graz.
For the survival curve approach, we used the time dependent

C-index35 to describe the discrimination of the predicted survival
curves and the integrated Brier score (IBS) to evaluate their
calibration. We additionally analyzed calibration curves that
graphically compare observed and predicted event probabilities
to check the models’ validity on different cohorts. As models
cannot be used reliably on the new cohort that they are poorly
calibrated for, we implemented recalibration to counteract this
problem. Evaluation metrics for the binary approach were the
C-index36 and Brier score37.
All metrics are reported with 95% confidence intervals (95% CI),

computed with 1000 bootstrap replicates of the model’s predic-
tions on the test samples. To evaluate the quality of our risk
stratification, Kaplan-Meier curves for the refined risk groups were
calculated and compared using logrank testing. When P-values
were <0.05, the differences between the groups were considered
statistically significant.

Software
All code was written in Python (3.10.6). The image analysis
pipeline used PyTorch (1.13.0+cu117), Pytorch Lightning (1.7.7),
NumPy (1.23.3), Pandas (1.5.0) and Scipy (1.9.1). The negative log
likelihood loss and functions for the piecewise constant hazard
method and to transform the models’ output into a survival curve
as well as the time-dependent C-index were taken from pycox
(0.2.3). The integrated Brier score and (conventional) Brier score
were calculated using sksurv (0.18.0). For the C-index calculation
of the binary approach, the Kaplan Meier fitter, Cox proportional
hazard fitter and the logrank tests we used the respective
functions of lifelines (0.27.2). For visualizations we used matplotlib
(3.7.2). Image augmentations (training of the subtyper) were done
with torchvision (0.14.0+cu117). Accuracy of the subtyper was
calculated with torchmetrics (0.9.3). Pre-trained models were
taken from timm (0.6.11), if not stated otherwise.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
This study used archived pseudonymized pathology slides, clinicopathologic
variables and corresponding outcome data from the DACHS, MCO, TCGA and Graz
cohorts. The DACHS, MCO and Graz cohorts cannot be made publicly available due to
general data protection regulations and institutional guidelines. Interested research-
ers should contact M.H. in case of the DACHS patient cohort and K.Z. in case of the
Graz cohort. For access to the MCO cohort visit https://doi.org/10.4225/53/
5559205bea135. The TCGA cohort used in this study consists of the TCGA COAD
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and READ cohorts (both dbGaP accession: phs000178.v11.p8) and original data of
both cohorts are publicly available under https://portal.gdc.cancer.gov/ and http://
www.cbioportal.org/. Included case IDs of the TCGA cohort are provided in
Supplementary Data 1.

CODE AVAILABILITY
The tiling pipeline is available at: https://github.com/DBO-DKFZ/wsi_preprocessing.
Code for the image analysis pipeline is available at: https://github.com/DBO-DKFZ/
CRC_DL_Survival_Curves.
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