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Efficient diagnosis of IDH-mutant gliomas: 1p/19qNET
assesses 1p/19q codeletion status using weakly-supervised
learning
Gi Jeong Kim 1,2,5, Tonghyun Lee3,5, Sangjeong Ahn4, Youngjung Uh3,6✉ and Se Hoon Kim1,6✉

Accurate identification of molecular alterations in gliomas is crucial for their diagnosis and treatment. Although, fluorescence in situ
hybridization (FISH) allows for the observation of diverse and heterogeneous alterations, it is inherently time-consuming and
challenging due to the limitations of the molecular method. Here, we report the development of 1p/19qNET, an advanced deep-
learning network designed to predict fold change values of 1p and 19q chromosomes and classify isocitrate dehydrogenase (IDH)-
mutant gliomas from whole-slide images. We trained 1p/19qNET on next-generation sequencing data from a discovery set (DS) of
288 patients and utilized a weakly-supervised approach with slide-level labels to reduce bias and workload. We then performed
validation on an independent validation set (IVS) comprising 385 samples from The Cancer Genome Atlas, a comprehensive cancer
genomics resource. 1p/19qNET outperformed traditional FISH, achieving R2 values of 0.589 and 0.547 for the 1p and 19q arms,
respectively. As an IDH-mutant glioma classifier, 1p/19qNET attained AUCs of 0.930 and 0.837 in the DS and IVS, respectively. The
weakly-supervised nature of 1p/19qNET provides explainable heatmaps for the results. This study demonstrates the successful use
of deep learning for precise determination of 1p/19q codeletion status and classification of IDH-mutant gliomas as astrocytoma or
oligodendroglioma. 1p/19qNET offers comparable results to FISH and provides informative spatial information. This approach has
broader applications in tumor classification.
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INTRODUCTION
Glioma is the most common type of malignant neoplasm in the
central nervous system (CNS), accounting for almost 80% of all
CNS malignant tumors1,2. With the recent advances in molecular
biological research, a paradigm shift in the diagnosis of CNS
neoplasms has indeed occurred. The 2016 World Health
Organization (WHO) Classification of Tumors of the CNS empha-
sized the importance of an integrated assessment that incorpo-
rates both histological features and genetic alterations in the
diagnostic workup of patients with glioma3. Furthermore, the new
2021 WHO classification divides adult-type diffuse gliomas into
three different groups based on the mutations and copy number
alterations they harbor: (1) astrocytoma, isocitrate dehydrogenase
(IDH)-mutant, (2) oligodendroglioma, IDH-mutant and 1p/19q
codeleted, and (3) glioblastoma, IDH-wildtype4.
Having a strong correlation with oligodendroglial histology5,6,

1p/19q codeletion is critical to the differentiation of IDH-mutant
gliomas. In addition, 1p/19q codeletion is consistently demon-
strated to be a favorable prognostic factor in IDH-mutant gliomas
due to its predictive value for higher treatment responses to
adjuvant chemotherapy7–9. Although medical oncologists possess
an interest in the 1p/19q status and molecular techniques for its
detection are used widespreadly, identifying 1p/19q codeletion in
glioma can be challenging in clinical practice10.
Fluorescence in situ hybridization (FISH) is used to assess

chromosomal abnormalities present in various tumors, and is
commonly considered to be the gold standard in the detection of
1p/19q codeletion11–13. Despite continuing popularity in the

clinical field, FISH-based assessment of the 1p/19q status requires
arduous interpretation, and thus there is considerable variability in
its performance12,14. FISH also mandates the installation of special
equipment, reagents, and a separate dark room for fluorescence
experiments and microscopic observation15.
Recent progress in slide digitization and mathematical image

processing has overcome the limitations of traditional molecular
methods and improved the morphological analysis of pathological
tissues16–20. This has greatly enhanced the clinical and research
capabilities of pathology. Deep learning (DL) models have been
proposed to extract meaningful image features within whole-slide
images (WSIs), enabling clinicians to gain clinical and biological
insights21–23. However, a common challenge arises when working
with WSIs, as they tend to be exceptionally large and cannot be
directly processed by neural networks. Typically, WSIs are divided
into smaller patches, which are then fed into neural networks24–27.
Nevertheless, this approach poses challenges: the patches within a
WSI may have differing ground truth labels, and the sheer number
of patches makes manual annotation difficult.
In our study, we present a novel and effective DL framework

called 1p/19qNET. This framework is designed for predicting the
1p/19q status and diagnosing IDH-mutant gliomas within WSIs. To
overcome the aforementioned limitations, we have adopted a
weakly supervised learning approach, which leverages the fold
change (FC) values of WSIs to guide the training process.
Importantly, our method not only produces predictions but also
offers insights by visually representing the estimated FC values on
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a patch-by-patch basis, providing explanations for the overall
slide-wise FC values.

RESULTS
Characteristics of the Study Cohort
In our discovery set (DS), a total of 288 patients were utilized to
obtain complete digitalized histologic images and patient data.
Supplementary Table 1 provides an overview of the clinicopatho-
logical characteristics of the study cohort. Notably, the comparison
between astrocytoma and oligodendroglioma revealed statisti-
cally significant differences in age at surgery and CDKN2A/B
status, as anticipated.

FC prediction on the DS
To ensure a reliable evaluation of the models’ performance, we
employed a rigorous cross-validation approach on the DS. The
dataset was randomly split into three sets: training (60%),
validation (20%), and test (20%). We conducted 10-fold cross-
validation and reported the average performance metrics. The
term “FC value” represents the expression level of genes located
on the 1p or 19q chromosome, which is standardized to 1 in
normal tissue. It quantifies the degree of increase or decrease in
expression compared to the normal tissue. For astrocytoma, which
does not exhibit 1p/19q codeletion, the FC value would be close
to 1. However, in oligodendroglioma, where the presence of 1p/
19q codeletion is a diagnostic criterion, the FC value would be
decreased, ranging from 0.5 to 0.8, depending on tumor purity.
The 1p/19qNET system enabled the prediction of FC values as a
continuous variable, allowing for slide-level predictions on the DS
to be evaluated through linear regression. The plots shown in Fig.
1 compare the next-generation sequencing (NGS) results with the
predicted FC values obtained from a representative fold of 1p/
19qNET and the signal ratio obtained from FISH. Upon observa-
tion, it can be seen that the dispersion of the test sets obtained by
1p/19qNET has a better-centered regression line compared to that
of FISH. The R2 values of slide-level predictions of 1p/19qNET
across the 10 folds were found to be 0.589 for the 1p arm and
0.547 for the 19q arm, respectively. In comparison, the R2 values
obtained from FISH were lower, with 0.441 for the 1p arm and
0.476 for the 19q arm, respectively. This indicates that the FC
predictions made by 1p/19qNET are generally more consistent
across WSIs, and exhibit superior predictive power for 1p/19q
status compared to the traditional FISH method. Additionally, the
FC prediction values generated by 1p/19qNET exhibit notable
discrepancies in their distribution between oligodendroglioma
and astrocytoma. Specifically, the average FC prediction value on
1pNET for oligodendroglioma is 0.502 ± 0.085 and 0.932 ± 0.027
for astrocytoma (p < .001 by two-tailed t-test) and that on 19qNET
for oligodendroglioma is 0.524 ± 0.078 and 0.932 ± 0.029 for
astrocytoma (p < 0.001 by two-tailed t-test). The results are
summarized in Supplementary Table 2.

Tumor type prediction on the DS and independent validation
set
In the DS, both 1pNET and 19qNET exhibited remarkable
discriminatory capacity for glioma, leveraging FC prediction as a
basis. The average AUC values in the test sets, as depicted in Fig.
2A and Supplementary Table 2, further reinforced their diagnostic
prowess, measuring 0.921 and 0.927, respectively. The logistic
model was created to differentiate gliomas by combining the
results of copy number loss in 1pNET and 19qNET, which was
similar to the process of differentiating gliomas using FISH-based
detection in actual clinical environments. This model demon-
strated excellent performance from a statistical standpoint
(AUC= 0.930, Fig. 2B and Supplementary Fig. 1). In fact, its

performance was comparable to the accuracy (0.861 vs 0.843) and
F1 score (0.850 vs 0.831) of the results obtained by FISH (Fig. 2C).
The statistical findings are detailed in Table 1.
An additional statistical analysis was conducted to determine

whether 1p/19qNET is influenced by neoadjuvant therapy or
previous surgical history, or if it exhibits vulnerability to tumor
grade. The classification accuracy for cases that previously
underwent chemoradiation therapy was found to be 0.850, which
was not significantly different from the overall accuracy of 0.861.
When analyzing the data by classifying based on the tumor grade
(Grade 2: 0.834, Grade 3: 0.875, Grade 4: 0.886), no significant
differences were observed in the model’s performance.
Following pre-processing, 153 oligodendroglioma and 232

astrocytoma patients were available for analysis. We trained 1p/
19qNET using all the slides included in the DS and evaluated its
performance on the independent validation set (IVS) slides.
Impressively, the logistic model achieved good discrimination
between astrocytoma and oligodendroglioma, without the need
for clinical information or laborious annotation by human experts.
The logistic model obtained an AUC of 0.837 (95% confidence
interval: 0.796–0.878) and 1pNET and 19qNET also demonstrated
similar performance. Detailed statistical results are presented in
Table 1, while the corresponding ROC curves are displayed in Fig.
2D and Supplementary Fig. 2.

Interpretability of 1p/19qNET
To investigate the interpretability of 1p/19qNET, we generated
heatmaps for all patients’WSIs. In Fig. 3, we have shown that there
is significant variability in the FC prediction values within and
across the WSIs, suggesting that the histologic features associated
with FC, as learned by the 1p/19qNET, are heterogeneously
distributed in the hematoxylin and eosin (H&E) slides. Upon closer
examination, we confirmed the presence of features that help
predict 1p/19q codeletion in IDH-mutant glioma. Specifically, in
patches with low FC values in oligodendroglioma, we observed
round nuclei with mild to moderate nuclear atypia, perinuclear
clearing, and distinct cell borders. In contrast, those with high FC
values exhibited reactive gliosis with low cellularity. Interestingly,
in cases predicted to be astrocytoma, even patches with low FC
values did not reveal histologic features suggestive of oligoden-
droglioma; instead, they showed tumoral or non-tumoral areas
with some degree of hypercellularity. Conversely, patches with
high FC values had variable cellular morphology, revealing oval to
elongated nuclei and fibrillar glial processes, which could support
a diagnosis of astrocytoma. Figure 4 and Supplementary Fig. 3
provide additional details.

DISCUSSION
This study aims to contribute to the ongoing advancements in DL-
based diagnostics, in which molecular research on diseases and
the performance of artificial intelligence-driven technologies has
provided a strong impact28–30. The new 2021 WHO classification
highlights the importance of IDH mutation and 1p/19q codeletion
in the diagnosis of adult-type diffuse gliomas, which prompted us
to focus on these two genetic abnormalities3–5. Our hypothesis
was that 1p/19qNET could extract meaningful features from H&E
slides to detect 1p/19q codeletion, without requiring laborious
efforts to define the complicated, even impossible, boundaries of
gliomas. To test our hypothesis, we began with establishing a DS
comprising digitalized WSIs of glioma, corresponding FISH-based
results of the 1p/19q status, and FC values of 1p and 19q arms
confirmed by NGS. We then assessed whether 1p/19qNET could
properly predict 1p/19q status using only slide-level labels, rather
than patch-level annotations. 1p/19qNET, as anticipated, demon-
strated high R2 values (0.589 and 0.547) in the linear regression
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analysis, which were superior to those (0.441 and 0.476) obtained
using conventional FISH.
The obtained results go beyond linear regression, as they can

reach a diagnostic performance that is as highly reliable as that of
conventional FISH. It is widely acknowledged that distinguishing
between astrocytoma and oligodendroglioma is challenging due
to their mixed features, which makes the classification of low-
grade glioma extremely difficult31–33. Despite this difficulty, 1pNET
and 19qNET can discriminate oligodendroglioma from astrocy-
toma, exhibiting high AUCs of 0.921 and 0.927, respectively. These
two networks can be combined to create a merged prediction, as
if it were virtual FISH, and the logistic regression encompassing
1pNET and 19qNET achieved an AUC of 0.930 in the DS.
Interestingly, this is precisely the process that clinicians undertake
when carrying out FISH analyses. This even holds when examining
the diagnostic ability of 1p/19qNET on the IVS, where it obtained
an AUC of 0.837 in differentiating oligodendroglioma from
astrocytoma. In contrast to earlier investigations on differentiating

glioma using DL32,34,35, the 1p/19qNET method does not rely on
clinical and pathological data as an input throughout the entire
process. Additionally, the model’s robustness was demonstrated
on the IVS. Moreover, each case underwent validation through
NGS and corresponding copy number plots, instilling a sense of
trust in the outcomes. As far as our knowledge extends, this is the
first DL study on gliomas that validates genetic anomalies in all
cases through NGS.
FISH is a molecular technique for detecting and locating specific

deoxyribonucleic acid sequences on chromosomes36. It is
considered the gold standard method for detecting 1p/19q
codeletion in glioma and can indicate where the fluorescent
probe is bound11. Being widely used in clinical practice, FISH has
significant drawbacks that cannot be ignored. It necessitates a
high labor input and additional resources, such as a separate dark
room to conduct fluorescence experiments, special equipment,
solution, and reagents15. Moreover, the time-consuming nature of
interpretation and analysis, coupled with considerable variability

Fig. 1 Comparison of NGS results with predicted fold change values from 1p/19qNET and signal ratio from FISH. A, B The results for
1pNET and 19qNET generated using the dataset with the best performance, respectively. Complete results are presented in Supplementary
Table 2. C, D conventional FISH for 1p and 19q, respectively. Approaching a value of 1, R2 indicates a highly effective model. The overall
average R2 was 0.589 for 1pNET and 0.547 for 19qNET. These values demonstrate that 1p/19qNET has a higher predictive power compared to
FISH. The R2 values for 1p and 19q in FISH were 0.441 and 0.476, respectively. R2, coefficient of determination; NGS next-generation
sequencing, FISH fluorescence in situ hybridization.

GJ Kim et al.

3

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2023)    94 



in FISH results on 1p/19q status, further complicates its use in
clinical practice12,14,37. It is possibly introduced by an unavoidable
bias due to the random selection of tumor cells, which can reduce
diagnostic accuracy, especially in heterogeneous cases with a high
proportion of non-tumor cells38.
DL models, once trained, can provide equivalent or better

performance than traditional diagnostic methods while reducing
the time and effort required for diagnosis39. In fact, 1p/19qNET, for
example, can predict the FC values of the 1p and 19q arms and
provide a suggestive diagnosis within just a few minutes per WSI.
Furthermore, this model is an attractive option in the field of
digital pathology, where even experts may face difficulty
annotating slides, as it requires no special equipment or human
intervention after scanning H&E slides. Although fully supervised
methods are still widely used in DL-based digital pathology40,41,
the sparsity of patch-level annotations and the significant time
required to generate them can limit their practicality. Additionally,

the ambiguity of tissue boundaries can lead to discrepancies
among experts, ultimately undermining the robustness of the
model. To protect a model from these drawbacks and ensure
stable learning, one of the most reliable approaches currently
available is to use a weakly-supervised learning approach to
enable the model to directly identify meaningful features, as is the
case in this study. 1p/19qNET model predicts tumor-related
information and automatically generates visual evidence to
support its decisions without relying on expert annotations, which
helps to minimize the impact of personal biases on the model’s
predictions.
Visualization of DL methods is imperative for experts to

perceive their results and helps clinical practice, especially in the
field of pathology42. We succeeded in visualizing FC predictions of
1p/19qNET across the entire patches in all WSIs and presented an
innovative approach that enables subsequent analysis by
experienced pathologists. Techniques analogous to our

Fig. 2 Diagnostic performance of 1p/19qNET. A boxplot of the AUC for 1pNET and 19qNET on the train and test sets. Both 1pNET and
19qNET maintained excellent diagnostic performance on the test set. Boxes indicate interquartile range, lines are medians, and whiskers
extend to 1.5 the interquartile range. B ROC curves of 1p/19qNET on each fold of the discovery set. The logistic model combining 1pNET and
19qNET was validated using 10-fold cross-validation to assess its ability to accurately distinguish IDH-mutant gliomas. All 10 individual results
consistently demonstrated a performance worthy of recognition. C confusion matrix of 1p/19qNET. D ROC curves of 1p/19qNET on the
independent validation set with bootstrap-confirmed CI of the logistic model. AUC area under the curve, CI confidence interval, ROC receiver
operating characteristic, IDH isocitrate dehydrogenase.
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visualization used in this work can further develop researchers’
biological understanding of tumors by not only presenting
previously known histologic features, but also discovering new

ones related to molecular changes that only DL can identify. It is
worth noting, however, that while DL models that provide reliable
visualizations show great promise for future development in
clinical situations where molecular testing is often limited,
continuous research and verification in diverse settings are
necessary to further improve their accuracy and effectiveness.
Therefore, ongoing efforts to refine and validate these models are
crucial to ensure their reliability and usefulness in real-world
clinical scenarios.
Despite our encouraging achievements, several factors have

limited the contributions of our work. First, we were unable to
analyze FC values on the IVS. Although the performance that 1p/
19qNET exhibited was as high as expected, it remains unclear
whether its achievement was obtained by the way the authors
intended. Second, we did not exhaustively explore other
approaches that could potentially improve the accuracy of
prediction at the patient level by combining the results of 1pNET
and 19qNET. This implies that there is still considerable room for
improvement in this area beyond the logistic regression method.
By addressing this, we anticipate that 1p/19qNET can surpass the
diagnostic outcomes achieved even when incorporating p53 and

Table 1. Diagnostic predictive ability of 1p/19qNET on discovery set
and independent validation set.

Accuracy Precision Recall F1-Score AUC

Discovery set

1pNET 0.884 0.929 0.840 0.879 0.921

19qNET 0.891 0.940 0.841 0.885 0.927

Logistic model 0.861 0.944 0.776 0.850 0.930

Conventional FISH 0.843 0.978 0.722 0.831 —

Independent validation set

1pNET 0.777 0.725 0.706 0.715 0.833

19qNET 0.766 0.684 0.765 0.722 0.837

Logistic model 0.725 0.831 0.386 0.527 0.837

AUC area under the curve, FISH fluorescence in situ hybridization.

Fig. 3 Heatmaps and representative patches of 1pNET. A–C Oligodendroglioma. D–F astrocytoma. A, D heatmap and distribution of
representative patches. Scale bar, 5 mm. B, E 20 patches out of 100 representative patches with low FC value. Scale bar, 50 μm. C, F 20 patches
out of 100 representative patches with high FC value. Scale bar, 50 μm. FC fold change.

GJ Kim et al.

5

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2023)    94 



ATRX immunostaining findings. Finally, this study was based on a
relatively small dataset from a single tertiary institution and had a
retrospective study design. Therefore, the findings of this study
should be verified and extended in future prospective clinical
studies.
In summary, our study details the successful application of DL-

based estimation in accurately determining 1p/19q codeletion
and diagnosing IDH-mutant gliomas as either astrocytoma or
oligodendroglioma. Notably, our 1p/19qNET approach, which
relies solely on slide-level labels, delivers comparative perfor-
mance to conventional FISH-based methods and autonomously
presents informative locations. Encouragingly, our model exhibits
diagnostic robustness on an IVS, bolstering the flexibility and
reliability of this framework for clinical decision-making and
cancer research. DL-based estimation holds significant potential to
streamline diagnosis and tailor patient therapy, reducing both
time and effort for clinicians.

METHODS
Study population and digitization protocol
The DS in this study was obtained from surgical resections of
diffuse glioma patients who received treatment at Severance
Hospital between May 2017 and December 2022. Detailed clinical
data, such as age, sex, patient history, and tumor grade, were
retrieved from the patients’ medical records. This study was
approved by the Institutional Review Board of Severance Hospital,
Seoul, Korea, with the waiver for written informed consent (IRB no.
4-2022-1493). The IVS used in this study consisted of patients from
The Cancer Genome Atlas Merged Cohort of LGG and GBM (TCGA-
LGGGBM), which is a publicly available multi-institutional dataset.
For both cohorts, patients presenting with IDH-wildtype glioma or
with low-purity samples were omitted from the analysis.
Additionally, cases in the TCGA-LGGGBM dataset that did not
have a diagnostic permanent slide, but only frozen slides, were
also excluded from the analysis.
The study coordinator carefully selected one representative H&E

slide from each glioma case in the DS with the aim of utilizing it
for both NGS and digitization purposes. Subsequently, the DS was
digitized using a whole-slide scanner (Aperio GT 450, Leica
Biosystems Imaging, Inc., Vista, CA, USA). During the independent
validation phase, the pathologists G. J. K. and S. H. K. handpicked a

WSI image from each patient in the TCGA-LGGGBM dataset. Both
the images from the DS and the IVS were scanned with a 40x
objective, yielding a tissue length of 0.26μm per pixel side and
0.25μm per pixel side, respectively.

Data pre-processing
WSIs were divided into non-overlapping patches of 224 × 224
pixels at a magnification of 20x objective. Among them,
background patches and blood-containing patches were dis-
carded since they were irrelevant to the diagnosis. The back-
ground patches were identified by counting the number of edge
pixels, as the textureless backgrounds contained edge pixels less
than 23. Blood-containing patches were identified by using the
color threshold. Specifically, we converted each patch image from
the RGB color space to the HSV color space, and then set the lower
and upper bounds of the hue and saturation channels to detect
patches with hues and saturations of blood stains.
To reduce the overhead of loading a large number of patches to

GPU memory, we extracted the feature vectors in advance and
stored the features instead of feeding the patches to the feature
extractor on-the-fly. This approach was particularly useful, since
the aggregator receives FC values of multiple patches in a WSI
such that extracting features of multiple patches is memory-
intensive. Furthermore, we applied ImageNet normalization to our
DS when extracting features from the patches. However, due to
uncontrollable factors, such as staining processes and scanners,
the IVS exhibited color variations across slides scanned in different
hospitals. To compensate for these variations and ensure
consistency across the dataset, we also applied an additional
color normalization technique to the IVS to match its color
distribution to that of DS43.

1p/19qNET framework
Our framework aimed to predict the 1p/19q status and diagnose
glioma on WSIs through a neural network. The framework
consisted of three main steps: feature extraction, FC value
estimation, and tumor type diagnosis. In the feature extraction
step, WSIs were encoded as feature vectors. Next, the FC estimator
estimated the FC values of 1p and 19q from the extracted
features. Finally, the 1p/19qNET model diagnosed the tumor types

Fig. 4 Patch anthology of 1pNET. For each case, (A) Oligodendroglioma and (B) astrocytoma, the collection consisted of 200 representative
patches that were selected specifically for 1pNET. Left, distribution of representative patches. Scale bar, 5 mm.; middle, all representative
patches with low FC value. Scale bar, 100 μm.; right, all representative patches with high FC value. Scale bar, 100 μm. FC fold change.
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based on the estimated FC values. Figure 5 provides an overview
of our framework.
As WSIs are much larger than conventional inputs to neural

networks, we divided each WSI into non-overlapping patches and
fed individual patches to the feature extractor. We adopted the
RetCCL44, which has been pretrained on a diverse range of
histopathological images, including TCGA and PAIP datasets.
RetCCL effectively processed each patch and produced a feature
vector of 2048 dimensions in its penultimate layer. Its network
parameters were kept frozen.
Due to tumor heterogeneity, different histopathological fea-

tures indicative of 1p/19q codeletion can vary across different
regions of the tumor, even within a WSI. Hence, our FC estimator
first produced patch-level FC values for each individual patch and
predicted slide-level FC values from them. Similar to the
CHOWDER model24,45,46, we arranged the highest N and lowest
N values to feed them to a multi-layer perceptron (MLP) that
produces the slide-level FC value. Then, the individual patches got
the proper supervision on the patch-level FC values to correctly
predict the slide-level FC value. The intuition behind this was
similar to the way pathologists determine the tumor types by
considering both supportive and contradictory histopathological
features for the diagnosis. It also helped reduce the GPU memory
footage by limiting the number of input patches. We employed a
linear layer to estimate the patch-level FC values from feature
vectors and a three-layer MLP with sigmoid activation after each
layer to predict the slide-level FC values by aggregating the patch-
level FC values. The three layers in the MLP had 200, 100, and 1
channels, respectively. Our framework had two FC estimators to
predict the 1p and 19q FC values.
Finally, we combined the 1p and 19q FC values using a logistic

regression model from scikit-learn’s linear model. This logistic
regression model performed a linear combination of slide-level FC

values, followed by a sigmoid activation function. The output of
this model represented the probability of the WSI being
diagnosed as either astrocytoma or oligodendroglioma.
To train our model, we used the mean squared error between

the WSI-level FC estimates and the two ground truth scores
acquired from NGS for chromosomes 1 and 19 as the loss function
for the FC estimator. The final linear layer was trained to minimize
the binary cross-entropy loss to predict tumor types.

Training protocol and implementation details
Our model shares key hyperparameters with CHOWDER24,
including the optimizer, learning rate, weight decay, and dropout
probability. However, we made distinct choices for these
hyperparameters. Specifically, we opted for the Adam optimizer
with a learning rate of 0.0001 and a weight decay of 0.0005 during
the training process. Furthermore, we set the dropout probability
to 0.5 for the linear layers. It took 1.2 h to train each model using
an NVIDIA RTX A5000. The optimal value for the hyperparameter
N, which represents the number of highest or lowest-value
patches fed into the MLP for slide-level FC prediction, was found
to be 100, resulting in the best performance.

Explaining the diagnosis by visualization
Our model assigns a FC value to each patch on the WSI, reflecting
its 1p/19q status. Patches indicating 1p/19q loss are colored in
red, those indicating intact 1p/19q are colored in blue, and the
omitted patches containing background or blood are colored in
purple. The results of each patch are combined to provide a
heatmap for a WSI, and the location information of representative
patches with 100 highest or lowest values are also provided.

Fig. 5 Patch anthology of 1pNET. With our proposed neural network model, we aimed to estimate the fold change values of glioma in a
weakly-supervised manner by feeding the model with both a WSI and its corresponding slide-level label. We compared the model’s prediction
power to that of conventional FISH and visualized its prediction clues for individual cases to enhance interpretability. To validate the
robustness of our neural network model, we performed an independent validation on a public dataset. WSI whole-slide image, FC fold
change, ROC receiver operating characteristic, FISH fluorescence in situ hybridization, TCGA The Cancer Genome Atlas, AUC area under
the curve.
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FISH
Out of 288 patients, 236 who received resection between May
2017 and December 2021 underwent FISH-based detection to
identify 1p/19q codeletion. Dual-color locus-specific identifier (LSI)
probes targeting 1p36/1q25 and 19q13/19p13 (Vysis/Abbott
Molecular Inc., IL, USA) were used to assess 1p/19q codeletion.
The LSI 1p36 probe encompasses sequences starting near the
SHGC‑57243 locus, passing through the TP73 and MEGF6 genes,
and concluding just beyond the MEGF6 locus. Meanwhile, the LSI
1q25 probe includes sequences beginning past the ABL2 gene,
traversing the ABL2 and ANGPTL1 genes, and terminating near
the SHGC-1322 locus. Shifting to the LSI 19p13 probe, it involves
sequences originating just centromeric to the MAN2B1 locus,
proceeding through the MAN2B1, ZNF443, and ZNF44 genes, and
coming to an end just past the ZNF44 locus. Finally, the LSI 19q13
probe comprises sequences that commence beyond the CRX
locus, continue through the CRX, GLTSCR2, and GLTSCR1 genes,
and conclude proximally to the GLTSCR1 locus. All probe pairs
were co-denatured with the tissue sections and hybridized
overnight at 37 °C in separate slides. After hybridization, the
slides were washed on 2XSSC/0.1%NP-40 for 2 min at 73 °C,
counterstained with 4′,6′-diamidino-2-phenylindole dihydrochlor-
ide, and then cover-slipped. The proportion of nuclei containing
only one signal of 1p or 19q was calculated by evaluating more
than 60 nuclei possessing two centromeric signals. Deletion was
defined as a signal ratio of more than 50% for the region of
interest compared to the control probe47.

Mutational and copy number analysis using NGS
All cases included in the study underwent NGS to detect IDH1/2
mutation and confirm chromosome 1p/19q status. All cases
included in the study underwent NGS to detect IDH1/2 mutation
and confirm chromosome 1p/19q status. For NGS analysis, we used
the Illumina TruSight Oncology 500 panel (Illumina, Milan, Italy)
according to the manufacturer’s instructions. The gene panels
covered 523 genes for both mutational analysis and copy number
analysis, as listed in Supplementary Table 3. To perform mutational
analysis, FASTQ files were uploaded on Illumina’s BaseSpace
software for variant interpretation. Only variants in coding regions
and promoter regions or splice variants were retained. In addition,
only variants that were present in less than 1% of the population
according to ExAC and 1000 Genomes databases or in more than
5% of reads with a minimum read depth of 250 were retained.
IDH1/2 mutation status was reviewed, and only pathogenic
variants were selected. For copy number analysis, we collected
log2 FC values of the target genes across the chromosomes 1p and
19q arms, and calculated the mean values for each chromosome.
The locations of the target genes are shown in Supplementary
Figure 4. Based on our experience, we classified tumors with both
mean values less than 0.8 as oligodendroglioma and those with at
least one mean value greater than 0.8 as astrocytoma. To facilitate
genome interpretation when the log2 FC values of the genes and
their mean values were at the borderline, we referred to the copy
number plots of the entire genome. Representative plots are
shown in Supplementary Figure 5.

Statistical methods
Clinicopathological characteristics were compared using appro-
priate statistical tests, including chi-square or Fisher’s exact test for
categorical variables and t-test for continuous variables. The
performance of the models was evaluated by various metrics. AUC
values were calculated for 1pNET and 19qNET, as well as for the
logistic regression model used to combine the results from both
models. The best cut-off values for 1p/19qNET and FISH were used
to construct confusion matrices; and accuracy, precision, recall,
and F1 scores were calculated from these matrices. The extent to

which the independent variables accounted for the variation in
the dependent variable was measured using R2, which takes
values between 0 and 1 (0 < R² < 1), with a value approaching 1
indicating a highly effective model in explaining the variation in
the dependent variable based on independent variables.
To obtain more accurate estimates of the AUCs, we performed

1000 bootstraps for each test data split. This involved repeatedly
resampling the data to create new datasets. The results of each
bootstrap were then used to calculate the 95% confidence
interval, which provided a reliable assessment of the models’
performance. We considered differences to be statistically
significant if the two-sided p-value was <0.050. The data were
analyzed using Python 3.11.2 from 2 January 2023 to 8 July 2023.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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