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Targeted single-cell proteomic analysis identifies new liquid
biopsy biomarkers associated with multiple myeloma
Sonia M. Setayesh1, Libere J. Ndacayisaba1, Kate E. Rappard1, Valerie Hennes1, Luz Yurany Moreno Rueda2, Guilin Tang3, Pei Lin3,
Robert Z. Orlowski2, David E. Symer2, Elisabet E. Manasanch2, Stephanie N. Shishido1✉ and Peter Kuhn 1,4,5,6,7,8✉

Multiple myeloma (MM) is accompanied by alterations to the normal plasma cell (PC) proteome, leading to changes to the tumor
microenvironment and disease progression. There is a great need for understanding the consequences that lead to MM
progression and for the discovery of new biomarkers that can aid clinical diagnostics and serve as targets for therapeutics. This
study demonstrates the applicability of utilizing the single-cell high-definition liquid biopsy assay (HDSCA) and imaging mass
cytometry to characterize the proteomic profile of myeloma. In our study, we analyzed ~87,000 cells from seven patient samples
(bone marrow and peripheral blood) across the myeloma disease spectrum and utilized our multiplexed panel to characterize the
expression of clinical markers for PC classification, additional potential therapeutic targets, and the tumor microenvironment cells.
Our analysis showed BCMA, ICAM3 (CD50), CD221, and CS1 (SLAMF7) as the most abundantly expressed markers on PCs across all
myeloma stages, with BCMA, ICAM3, and CD221 having significantly higher expression levels on disease versus precursor PCs.
Additionally, we identify significantly elevated levels of expression for CD74, MUM1, CD229, CD44, IGLL5, Cyclin D1, UBA52, and
CD317 on PCs from overt disease conditions compared to those from precursor states.
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INTRODUCTION
Multiple myeloma (MM) is the second leading hematologic
malignancy accounting for 34,920 new cases and 12,410 deaths
annually in the United States alone1. Myeloma initiates in the bone
marrow (BM) as a result of the clonal expansion of resident plasma
cells (PCs) and is preceded by two precursor states, monoclonal
gammopathy of undetermined significance (MGUS) and smolder-
ing MM (SMM). These lead to high tumor burden and organ
damage and include MM, relapsed/refractory MM (RRMM), and
either primary or secondary plasma cell leukemia (PCL)2–5. During
the past three decades, the global incidence rate for MM has
increased by 126%, with mortality increasing by 94%6. Therefore,
there is an unmet need to understand the pathway to malignant
transformation in myeloma and discover novel biomarkers that
can aid clinical diagnostics and serve as targets for therapeutics.
Clonal proliferation of PCs in the BM, the root cause of MM, is

accompanied by alterations to the genetic and proteomic profile
of PCs, marking a shift from normal to abnormal phenotypes7–10.
Primary genetic events in myelomagenesis include the dysregula-
tion of cyclin D and chromosomal hyperdiploidy11, with secondary
events such as multiple chromosomal losses and chromosome 1q
amplification occurring as the disease progresses12–15. Beyond
genomics, abnormal PCs express an altered proteomic profile
compared to that of normal PCs7,16,17. However, there is currently
no single protein marker that can diagnose MM, requiring the
clinical workup to rely on multiparameter flow cytometry with
varying biomarker combinations for immunophenotyping18–20.
Moreover, the changes to the proteomic landscape of PCs during

MM development, progression, treatment response, and disease
relapse have not been fully explored. Given the importance of
proteins to serve as targetable markers for diagnosis and
treatment, there remains an unmet need for the application of
technologies that can provide a more comprehensive proteomic
profile of PCs in myeloma settings.
Currently, conventional 4-10 color flow cytometry methods are

being used to stratify PCs and monitor disease in the BM of MM
patients, mainly during diagnosis, disease monitoring or post-
therapy20. There are several methods for MM flow cytometry, of
which EuroFlow is the most notable21, utilizing an eight-color
assay on two divided tubes from the sample to ensure a sensitivity
of 10-5. Studies utilizing flow cytometry for monitoring minimal
residual disease (MRD) in MM have shown higher applicability
compared to their counterpart genomics-based methods (allele-
specific oligonucleotide quantitative PCR (ASOqPCR)/next genera-
tion sequencing (NGS)) in patients, demonstrating the relevance
of proteomic-based approaches in the clinical assessments of
MM22,23. However, despite the advances in the implementation of
these techniques, flow cytometry-based methods pose major
limitations in standardization due to varying biomarker panels and
manual gating strategies22. Additionally, while flow cytometry has
the potential for multiplexing markers, the extent of this capability
is limited.
Beyond diagnostics, treatment options for MM have expanded

rapidly during the past decade, with progress being made in the
use of proteasome inhibitors and immunomodulatory drugs24,25.
However, despite these advances, myeloma remains mostly a
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chronic disease with most patients experiencing serial relapse1,24.
Recent discoveries in targeted immunotherapy have shown
promise in improving clinical outcomes for some patients, but
their utility is limited due to adverse side effects from off-target
toxicity, increased therapy resistance, and tumor escape26–37.
Increased immunosuppression of the tumor microenvironment
can also negatively impact tumor progression and targeted
therapy response38–43. Furthermore, a prominent mechanism that
allows for MM cells to escape immunotherapy is through tight
interactions of PCs with the bone marrow microenvironment
cells39–42. To provide enhanced therapy options for myeloma, we
therefore need technologies that can identify additional targe-
table biomarkers on heterogenous myeloma cells and profile the
tumor microenvironment landscape.
In this study, we demonstrate the applicability of utilizing the

high-definition single-cell assay (HDSCA) and imaging mass
cytometry (IMC) to identify PCs and further characterize their
proteomic expression profiles in a liquid biopsy (Fig. 1). We
characterized bone marrow cells in 7 patient samples across the
myeloma disease spectrum (2 MGUS, 1 SMM, 2 newly diagnosed
MM (NDMM), 1 RRMM, and 1 PCL) and utilized our multiplexed
panel to characterize the expression of clinical markers for PC
classification, potential therapeutic targets, and the tumor
microenvironment cells. Our results from targeted profiling of
~87,000 cells show BCMA, ICAM3, CD221, and CS1 (SLAMF7) as the
most abundantly expressed markers on PCs across all myeloma
stages, with BCMA, ICAM3, and CD221 having significantly higher
expression levels on overt disease conditions, while also being

expressed in precursor states. Additionally, we identify signifi-
cantly elevated levels of expression for CD74, MUM1, CD229,
CD44, IGLL5, Cyclin D1, UBA52, and CD317, specifically on PCs
from overt disease conditions compared to those from precursor
states. Beyond PCs, we were able to further profile the landscape
composition of patients’ tumor microenvironment cells.

RESULTS
Patient demographics and clinical baseline
In total, this study includes analyses of 7 patients’ samples (6 bone
marrow aspirates (BMAs) and 1 peripheral blood (PB)) and 1 normal
donor’s PB sample. Patient participants enrolled during 04/2019-
03/2020 and were between the ages of 38–72 years at the time of
enrollment. Patients’ demographics are provided in Table 1. The
sample set included a total of eight slides containing an average of
(mean ± standard deviation = 2,339,353.7 ± 209,860.6) nucleated
cells for the BMA and an average of (2,443,256 ± 213,971.9)
nucleated cells for the PB slides.

Identification and morphometric analysis of plasma and non-
plasma cells
We identified and categorized the candidate cells using an
automated rare cell detection workflow followed by manual
classification based on three-color immunofluorescence staining,
corresponding to DAPI, CD138, and CD45 (Fig. 2a). Additionally,
we considered cellular morphology, consisting of cell size and

Fig. 1 HDSCA-IMC workflow. a BMA and PB samples are received, undergo processing by red blood cell lysis, are plated onto custom glass
slides at approximately 3 million cells per slide, and are then stained with our 3-color immunofluorescence assay. b Stained slides are scanned
using high-throughput fluorescence microscopy at 100X magnification, downstream image processing is done via OCULAR, and a final report
of cells is generated for HDSCA. c Slide is stained with a panel of metal-labeled antibodies, laser ablated using the Hyperion IMC system, and
multiplexed images are generated. Created with BioRender.com.
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eccentricity, when classifying cells of interest. PCs were identified
as DAPI+|CD138+|CD45− and DAPI+|CD138+|CD45+ events and
were included in the liquid biopsy profile for all samples.
Additional rare events of interest were detected as morphologi-
cally distinct DAPI+|CD138−|CD45+ and DAPI+|CD138−|CD45−
cells. Enumeration of the events revealed higher total rare cell
count in the overt-disease settings of NDMM1, RRMM, PCL, and
NDMM2 (mean ± standard deviation = 1,393.25 ± 634.1)

compared to precursor states SMM and MGUS1 (mean ± standard
deviation = 709.0 ± 370.0) (Fig. 2b).
Our counts identified lower levels of DAPI+|CD138+|CD45−

cells in precursor conditions (mean ± standard deviation =
573 ± 346.0), compared to disease settings (mean ± standard
deviation =1324 ± 555.4). However, MGUS2 showed elevated
levels of DAPI+|CD138+ cells (1022), compared to SMM (517)
and MGUS1 (180), providing a profile more similar to patients

Table 1. Patient clinical characteristics.

Clinical characteristics Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7

Biopsy site Bone marrow Bone marrow Bone marrow Bone marrow Peripheral blood Bone marrow Bone marrow

Age 63 54 50 72 45 70 38

Gender Female Male Male Female Male Female Female

Diagnosis NDMM NDMM RRMM SMM PCL MGUS MGUS

Serum monoclonal spike (g/dL) 0.4 2.9 0.3 3.9 3.2 0.5 0.4

Serum immunofixation Positive Positive Positive Positive Positive Positive Positive

Aberrant plasma cell percentage
(*Flow cytometry)

95.2 98.8 99.9 78.9 99.8 0 0

Fig. 2 HDSCA3.0 gallery and enumeration of cells. a IF representative images of channel classification. Scale bar represents 10 μm. b (Left)
Enumeration of cell counts per slide (bone marrow for MGUS, SMM, NDMM, and RRMM and peripheral blood for PCL and NBD). (Right)
Distribution of total rare cell counts. Scale bar represents 10 μm.
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diagnosed with overt disease. For the DAPI+|CD138+|CD45+
group, the precursor conditions had similar levels of (mean ±
standard deviation = 64.67 ± 42.1) cells to the disease settings
(mean ± standard deviation = 53.50 ± 71.9) (Fig. 2b).
For the CD138− groups, precursor settings had an incidence of

rare DAPI+|CD138−|CD45+ cells (mean ± standard deviation =
15.67 ± 13.8), whereas overt-disease conditions had none. An
overall higher number of cells was also seen in precursor
conditions for the DAPI+|CD138−|CD45− group (mean ± stan-
dard deviation = 55.67 ± 42.5) compared to overt-disease settings
(mean ± standard deviation = 15.75 ± 17.7) (Fig. 2b).
The normal control report identified 2 DAPI+|CD138+|CD45−

cells and 1 rare DAPI+|CD138−|CD45+ cell, making it the sample
with the least number of rare events. Since some of our disease
groups studied only had 1 patient sample, we did not perform
statistical tests between the groups.

Multiplexed proteomic profiling of PCs
Selected candidate PCs (DAPI+|CD138+|CD45+ and DAPI+
|CD138+|CD45− cells) were included in each region of interest
(ROI) alongside ~300 surrounding white blood cells (WBCs) and
were subjected to downstream proteomics. Background WBCs
(CD45+CD138-CD38- cells) from slides were used as controls, and
the expression levels of markers were normalized on a scale of
0–1. PCs were defined as CD138+CD38+ cells to match with the
current clinical definition and flow cytometry gating strategy. We
then assessed the normalized expression levels of available clinical
biomarkers CD81, CD117, CD56, CD27, and CD28 (Fig. 3).
CD56 was most abundantly expressed on all PCs throughout

the disease spectrum, with the highest level of expression in
RRMM and PCL samples. CD45 was highest in MGUS settings, with
MGUS1 having the most CD45 enriched cells compared to all
patients. MGUS2 had lower CD45 levels compared to MGUS1, in
line with the clinical observation of its classification as being CD45
Low/Negative (Fig. 3). Our observations of the clinical marker
signals show concordance with the clinical classification, although
the precise degree of concordance could not be determined as
the exact expression levels from clinical flow cytometry were not
available (Supplementary Table 2). Additionally, for the IMC and
the clinical flow cytometry, two distinct samples collected at the
same time were used for assessment, and the antibody clones
may differ between the assays.
To further characterize the proteomic profile of PCs, we

investigated the expression of additional biomarkers with the
potential to act as MM targets (Fig. 4). Our results demonstrate
that BCMA, ICAM3, CD221, and CS1 (SLAMF7) have elevated levels
throughout the disease spectrum (Fig. 4a).
To assess the relationships between the selected additional

markers, we performed Pearson’s correlation on the expression
data on PCs from all samples, followed by hierarchical clustering
(Fig. 4b). The results provide 3 distinct cluster sets, with the
highest level of overall correlations between CD317/UBA52
(Pearson’s coefficient = 0.78), IGLL5/Blimp1 (Pearson’s coefficient
= 0.68), and CD317/MUM1 (Pearson’s coefficient = 0.673). No
significant correlation was found between the markers, high-
lighting the overall heterogeneity of the PCs.
In order to evaluate the potential of the selected markers to

serve as MM targets, we set out to compare their expression
between normal and abnormal PCs. We pooled PCs from
precursor states where no abnormal PCs were detected (<1%)
(MGUS1 and MGUS2) and compared their profiles for the selected
markers with PCs from patients with NDMM/RRMM/PCL where
>95% aberrant PCs were detected by the clinical flow cytometry
(Table 1). We performed the Kruskal–Wallis H test (one-way
ANOVA), and all p-values equal to or below *0.05 were considered
statistically significant. Our results indicate that from the most
prevalent markers on PCs across the spectrum of disease, BCMA,

ICAM3, and CD221 are significantly expressed at higher levels on
PCs from NDMM/RRMM/PCL, compared to those from precursor
states (p= 0.05, p < 0.001, p < 0.001, respectively) (Fig. 4c).
We also observed significantly higher levels of expression for

CD74 (p= 0.014), MUM1 (p < 0.001), CD229 (p < 0.001), CD44
(p < 0.001), IGLL5 (p < 0.001), Cyclin D1 (p < 0.001), UBA52
(p < 0.001), and CD317 (p < 0.001) on PCs from overt disease
conditions compared to those from precursor states (Fig. 4c).
Blimp1 and pS6 were also observed to have higher levels of
expression on PCs from overt disease versus precursor conditions,
however the differences did not reach statistical significance
(p= 0.671 and p= 0.590, respectively) (Fig. 4c).

Characterizing the bone marrow microenvironment
The BMA samples from patients diagnosed with MGUS, SMM,
NDMM, and RRMM were further analyzed to profile the tumor
microenvironment landscape. Representative cells from each BMA
sample were profiled based on their marker expression and cell
types were determined using multiplexed quantitative proteomic
signals (Supplementary Table 3; Fig. 5).
The bone marrow microenvironment analysis showed an overall

significantly lower percentage of T cells detected in the BMA of
overt disease conditions (NDMM1= 7.24%/NDMM2= 10.60%/
RRMM= 7.78%; Overt disease = 8.57 ± 1.45), compared to
precursor states (MGUS1= 16.87%/MGUS2= 14.62%/SMM= 17.0%;
Precursor = 16.16 ± 1.09, p= 0.003; Fig. 5).

DISCUSSION
Here, we demonstrate the applicability of utilizing the single-cell
high-definition liquid biopsy assay (HDSCA) and imaging mass
cytometry (IMC) to identify PCs and further characterize their
proteomic expression profiles. By utilizing a panel of antibodies
that correspond to current clinical markers used for myeloma cell
immunophenotyping, additional biomarkers for targeted therapy,
and immune markers, we are able to characterize the proteomic
profile of disease for clinical classification, evaluate biomarkers for
targeted therapy, and provide an overview of the immune
landscape all in one assay.
Our analysis showed upregulated expression of BCMA, ICAM3,

CD221, and CS1 (SLAMF7) in patients across all disease states.
BCMA, a member of the TNF17 receptor family, has been found to
be expressed on late-stage B-cell lymphocytes (memory B cells
mainly), normal as well as abnormal plasma cells44–46. Targeted
BCMA therapies have revolutionized the myeloma treatment
landscape with unparalleled efficacy leading to improved clinical
outcomes for late relapse patients32–34,37. However, there are
currently no approved diagnostic tools that specifically measure
cellular BCMA levels, limiting our ability to evaluate its expression
throughout the course of the disease and routinely monitor the
effects of anti-BCMA therapies. Utilizing targeted panels that
measure BCMA could improve anti-BCMA therapy response
monitoring in such patients. ICAM3, a type I transmembrane
glycoprotein, has been previously identified to be upregulated on
the surfaceome of MM cell lines and may play a role in immune
evasion of natural killer cell-initiated lysis17,47. Our results
identified ICAM3 as an upregulated biomarker in patients across
MM stages, with significantly higher expression in overt disease
compared to precursor states supporting its potential significance.
Insulin-like growth factor-1 receptor (CD221) has been previously
shown to be upregulated on human myeloma cells, with Bataille
et al. demonstrating CD221 expression level as a negative
prognostic marker for MM patients48. CS1 (SLAMF7) has demon-
strated uniformly high expression on MM cells, regardless of
genomic heterogeneity and disease state49,50. Importantly, Elotu-
zumab, a humanized anti-CS1 (SLMAF7), is approved for the
treatment of relapsed myeloma with new target products in
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development51. Our analysis confirms both CD221 and CS1
(SLAMF7) to be highly expressed in myeloma cells, in agreement
with previous studies.
Furthermore, we were also able to identify additional biomar-

kers that were more specifically expressed in overt disease
conditions compared to precursor states. Markers such as CD74,
MUM1, CD229, CD44, IGLL5, Cyclin D1, UBA52, and CD317 have
the potential to act as emerging biomarkers for targeted
therapies, pending future studies that can demonstrate their
utility on a larger scale.
The core limitation of our study was the low number of patients

we were able to include and not being able to provide a
longitudinal study of each patient. Additionally, for the PCL

patient, we were not able to receive a BMA sample, as the clinical
workup was limited to a blood draw. In the future, we hope to
recruit a higher number of patients and obtain matched PB and
BMA samples across the MM spectrum to better characterize the
disease. Validation in a larger cohort of MM patients can further
help to understand the potential utility of our identified proteins
as early diagnostic and prognostic markers.
Our goal was to demonstrate the utility of the HDSCA and IMC

to provide a comprehensive profile of MM disease. MM is primarily
diagnosed in the advanced stages, and currently, the medical
interventions for treatment are limited. Early diagnosis and
identification of additional therapeutic targets of MM are crucial
as they provide chances for better disease management and can

Fig. 3 IMC proteomic immunophenotyping of PCs. A t-SNE scatter plot of PCs from samples, visualized using only clinical markers (CD45,
CD56, CD27, CD81, CD117, CD28), based on 0–1 normalized values. On the left, t-sne is colored by patient ID and on the right, colored by
expression levels of biomarkers. B Heatmap illustration of clinical markers on patient samples, based on 0–1 normalized values.
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improve patient care and survival. We believe that a multiplexed
proteomic panel could assist in future MM disease management,
providing alternative therapeutic targets that have the potential to
improve the survival expectancy of patients. Identifying such
protein-based biosignature of MM from the liquid biopsy has the
potential to serve as an early predictor of disease development
and progression.

METHODS
Patient enrollment
A total of 7 patients and one normal blood donor (ND) are
included in this study. All patients, except the ND, were recruited
at The University of Texas MD Anderson Cancer Center (Houston,
TX) (IRB: UP-19-0033) between 2019 and 2020 (Table 1). For
diagnosis purposes, all participating patients received a bone
marrow biopsy and serological testing. A corresponding sample
from each patient underwent standard-of-care flow cytometry
analysis by MD Anderson as part of the MM diagnostic workup. At
the time of sample collection, 2 patients were diagnosed with
MGUS, 1 with SMM, 2 with NDMM, 1 with RRMM, and 1 with PCL
(Table 1). The NBD sample was acquired from the Scripps Clinic
Normal Blood Donor Service from an individual with no known
pathology. Bone marrow aspirates (BMA) were collected from
MGUS, SMM, NDMM, and RRMM patients, while peripheral blood
(PB) was collected for PCL and ND. Recruitment took place
according to institutional review board-approved protocols at MD
Anderson Cancer Center, and all study participants provided
written informed consent.

Sample collection and processing
All PB and BMA samples (8 mL) were collected in Streck tubes
(Cell-free DNA Blood Collection Tube, Streck, La Vista, NE, USA) at

MD Anderson and shipped to the Convergent Science Institute in
Cancer at University of Southern California within a 48-h time
period, as previously described52,53. Immediately upon receipt, all
samples underwent red blood cell lysis in isotonic ammonium
chloride solution, and the remaining nucleated cell population
was plated in a monolayer on custom-made cell adhesive glass
slides (Marienfeld, Lauda, Germany). The WBC count of the sample
was used to approximate plating 3 million cells per slide. The
prepped slides were subsequently incubated in 7% BSA, dried,
and stored at −80 °C52–54.

Immunostaining and image acquisition
Slides were thawed prior to immunofluorescent staining. All steps
were performed at room temperature using an IntelliPATH FLX™
autostainer (Biocare Medical LLC, Irvine, CA, USA). Slides received
2% neutral buffered paraformaldehyde solution (VWR, San Dimas,
CA) for 20 min for cell fixation and were subsequently incubated
with 10% goat serum (Millipore, Billerica, MA) for 20 min to block
non-specific binding sites. The slides were then stained with a
primary antibody cocktail containing mouse anti-human CD138
(B-A38, MCA2459GA, Bio-Rad, Hercules, CA) and mouse anti-
human CD45 Alexa Fluor® 647 monoclonal antibody (F10-89-4,
MCA87A647, AbD Serotec, Raleigh, NC), for 1 h. Antibodies had
previously been validated as a part of the assay development
study for MM55. The slides were washed with TBS after primary
staining. Thereafter, slides were incubated with goat anti-mouse
Alexa Fluor® 555 (A21127, Invitrogen, Carlsbad, CA) and counter-
stained with 4, 4-diamidino-2-phenylindole (DAPI; D1306, Thermo
Fisher, Waltham, MA) for 40min. Finally, all the slides were
mounted with a glycerol-based media, cover-slipped and sealed
for subsequent imaging52,54,55.
The immunofluorescent-stained slides were then imaged using

automated high-throughput fluorescence scanning microscopy at

Fig. 4 Multiplexed proteomic profiling of PCs. a Heatmap representation of CD138+CD38+ PC expression levels for the 14 selected
biomarkers (refer to Table 2). Expression levels are depicted using values normalized to a 0–1 scale, which standardizes the different
biomarkers for comparison by transforming their expression levels to a common scale. b Correlation matrix of CD138+CD38+ PCs from all
samples for the selected 14 proteomic markers. Pearson’s correlation was used, and hierarchical cluster analysis was conducted. c Bar plot
comparing the selected proteomic markers between precursor PCs (from MGUS samples) and disease PCs (from NDMM/RRMM/PCL samples).
The Kruskal–Wallis H test (one-way ANOVA) was performed, and p-values below *0.05 were considered statistically significant.
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100X magnification, which was used to obtain 2304 frame images
per fluorescence channel per side, as previously described54.
Background noise levels on all slides, the gain and exposure times
for all channels, DAPI (DNA), Alexa647 (CD45), and AlexaFluor®555
(CD138) were standardized for background normalization by the
scanner software. After images were captured, 2304 frames per
slide, cells were segmented and had their features extracted via
customized EBImage56 and R software (R version 4.1.2, R core
team, 2021)57.

Cell classification and region of interest identification
We utilized a customized algorithm known as OCULAR (Outlier
Clustering Unsupervised Learning Automated Report) to identify
and categorize rare cells in our study. This innovative image-
processing pipeline combines dimensionality reduction, segmen-
tation, and unsupervised clustering methodologies, using princi-
pal component analysis and unsupervised learning 55,57,58.
Initially, OCULAR employs the ‘EBImage’ R package to segregate

DAPI-positive cells and DAPI-negative events. It then extracts
features for each cell, generating a comprehensive array of 761
cellular and nuclear parameters. Utilizing principal component
analysis (PCA) on these parameters and conducting hierarchical
clustering based on the top 350 components, OCULAR can
identify both common and rare cells from all DAPI+ events. This
process is deterministic, ensuring the repeatability and robustness
of the results.
OCULAR further enhances its categorization by performing a

K-nearest neighbor analysis on the cellular morphological features,
which include marker signal intensity and cellular and nuclear
shape and size 55,57,58. It subsequently categorizes cells into three
main groups: (1) Plasma cells, identified using CD138 as the
marker (DAPI+|CD138+|CD45− and DAPI+|CD138+|CD45+), (2)
DAPI+ only cells (DAPI+|CD138−|CD45−), and (3) non-Plasma
Cell hematopoietic cells (DAPI+|CD138−|CD45+). In addition to
these, OCULAR identifies ‘morphologically distinct’ cells that
possess unique size, shape, and eccentricity compared to
surrounding White Blood Cells 55,57,58.
For further characterization, an average of 34 regions of interest

(ROI) on the slide were selected in the BMA and PB samples to
undergo downstream targeted proteomics analysis (Supplementary

Table 1). ROIs were selected as regions on the slide that had at least
1 DAPI+|CD138+ cell.

Targeted proteomics using imaging mass cytometry
For the downstream multiplexed proteomics, we utilized the
Hyperion imaging mass cytometry (IMC) system, as previously
described59,60. Metal-labeled antibodies were validated in the
HDSCA workflow to ensure the specificity, selectivity, and
reproducibility of antibodies through testing on biomarker-
specific cell lines spiked into normal blood donor samples and
spread on slides59.
The slides were stained with an MM-specific panel that utilized

35 metal-labeled antibodies and 2 DNA intercalators to character-
ize normal and abnormal PCs and BM microenvironment cells and
to further characterize MM (Table 2). All antibodies were prepared
at a standard dilution of 1:100. For BCMA, two antibody clones
were tagged to the same metal (Nd150). Prior to staining with the
metal-labeled antibody cocktail for IMC analysis, the slides were
stored at 4 °C for 15-78 days (mean 50.4 ± 25.1). Metal-labeled
antibodies were retrieved as either direct conjugates from
Fluidigm (now Standard BioTools; San Francisco, CA) or underwent
in-house conjugation, as per Maxpar’s antibody labeling protocol
instructions (Table 2). The cocktail of metal-labeled antibodies was
prepared in 1% BSA and 0.1% Tween in PBS59. The slides were
removed from the 4 °C refrigerator, had their coverslips taken off,
and were dipped in fresh PBS twice to wash off the glycerol-based
mounting media prior to staining. Slides were then blocked with a
buffer containing 1% BSA and IgG mouse Fc fragments (31205,
Thermo Scientific, Waltham, MA) for 1 h and then incubated with
the antibody cocktail for 1.5 hr on an orbital shaker at room
temperature. Afterward, the slides were washed with fresh PBS
and subsequently incubated with DNA intercalators (Ir191/Ir193,
201192A, Fluidigm, San Francisco, CA) for 30 min. Finally, the slides
were washed with PBS and ddH2O, dried, and stored at room
temperature until ablation (approximately for 1–4 days).
Laser ablation was conducted on previously identified ROIs

across the specimen slides. The protein expression images had a
resolution of 1 μm2 across the region of interest (400 × 400 μm),
allowing for limited characterization of sub-cellular localization.
Ion mass data were collected and used for reconstruction of the

Fig. 5 Bone marrow tumor microenvironment landscape across MM stages. Representative cells from the BM samples are shown and
profiled based on enriched biomarker expression. A Global profile of all samples combined, with clusters colored by assigned cell type.
B Highlights cells pertaining to each patient sample, with colors assigned to each patient sample, as indicated in the image.
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1 μm2 ROI spatial resolution, 36-dimensional images of the ROI.
The number of ROIs run per slide is listed in the supplementary
information (Supplementary Table 1).
Cell boundary segmentations and pixel values were determined

by a customized pipeline that utilizes CellProfiler61, ilastik pixel
classifier62, and histoCAT63. CellProfiler (version 3.18) was used to
remove strong outlier pixel signals, “hot pixels”, scale the images at
2x, and prepare image crops for ilastik pixel classifier training.
Classification of nuclei, membrane, and background segmentations
was done using ilastik (version 1.3.3) and exported as probabilities
masks. After visual confirmation of masks, the classifier was applied
to the entire dataset using batch processing. After the generation
of segmentation masks, files were generated for histoCAT with
masks for all ROIs. Single-cell measurements were extracted from all
channels using the scikit-image package64 in Python 3 program-
ming language (Python Software Foundation, Scotts Valley, CA).

We calculated the signal output as the mean ion counts detected
over the cell area, with the background signal—determined from
the negative mask space—being subtracted from the cell values.
We included all cells that demonstrated DNA signals in the final
analysis. We then assessed the distribution of the signal for each
marker in relation to negative control cell subsets, using back-
ground WBCs (defined as CD45+CD138−CD38− cells) from slides
as controls. To facilitate comparison across different biomarkers, we
normalized the proteomic expression levels for each biomarker to a
scale ranging from 0 to 1.

Data analysis and visualization
Data analysis and visualization were conducted using R (Version
4.1.1., Boston, MA), the Python programming language (Version
3.0, Python Software Foundation, Scotts Valley, CA), and the

Table 2. IMC multiplexed proteomic analysis panel of metal-labeled antibodies.

Biomarker Host+clone Metal tag Vendor Lot# CAT#

CD20 Rabbit_IgG_SP32 Nd142 Abcam GR3246631-1 ab236434

CD38 Rabbit_IgG_EPR2269-219 Sm152 Abcam GR3279334-2 ab255693

CD81 Rabbit_IgG_EPR21916 Er167 Abcam GR3219804-1 ab233692

CD4 Rabbit_IgG_EPR6855 Yb176 Abcam GR3215375-18 ab181724

lambda light chain Rabbit_IgG_EPR5367-62 Eu151 Abcam GR308254-4 ab185131

CD31 Rabbit_IgG_EPR3094 Er168 Abcam GR3229164-2 ab207090

CD28 Rabbit_IgG_EPR22076 Eu153 Abcam GR3252786-6 ab243557

MUM1 Rabbit_IgG_EP5699 Gd155 Abcam GR3255392-1 ab240071

BCMA Rabbit_IgG_EPR22457-260 Nd150 Abcam GR3272148-2 ab254205

BCMA Rabbit_IgG_EPRBOB-R1-F1-24 Nd150 Abcam GR3323392-1 ab254206

c-kit/CD117 Rabbit_IgG_YR145 Nd145 Abcam GR3263196-1 ab216450

SLAMF7/CS1 Rabbit_IgG_EPR22948-114 Sm147 Abcam GR3285922-2 ab256529

kappa light chain Rabbit_IgG_EPR5539-105-4 Tm169 Abcam GR3299698-1 ab248738

Syndecan/CD138 Rabbit_IgG_EPR6454 Nd148 Abcam GR3243140-3 ab216458

CD27 Rabbit_IgG_EPR8569 Nd144 Abcam GR3349592-1 ab256583

PRDM1/Blimp1 Rabbit_IgG_EPR16655 Nd146 Abcam GR3283733-2 ab240344

CD63 Rabbit_IgG_EPR22458-280 Sm154 Abcam GR3270800-2 ab254011

ICAM3 Rabbit_IgG_EPR3994-123 Gd158 Abcam GR3321106-1 ab247851

BAFF/CD257 Rabbit_IgG_EPR22238 Gd160 Abcam GR3258542-1 ab245833

CD74 Rabbit_IgG_EPR4064 Dy161 Abcam GR3296796-1 ab247655

IGF1 receptor/CD221 Rabbit_IgG_EPR19322 Dy163 Abcam GR3351890-1 ab232380

BST2/Tetherin/CD317 Rabbit_IgG_EPR20202-169 Dy164 Abcam GR3252792-1 ab243563

Cyclin D1 Rabbit_IgG_SP4 Er166 Abcam GR3344254-1 ab239794

UBA52 Rabbit_IgG_EPR4546 Lu175 Abcam GR3312845-1 ab247799

CD56 Mouse_IgG2b k_NCAM16.2 Sm149 Fluidigm 3171506 3149021B

pS6 Mouse_IgG1_N7-548 Yb172 Fluidigm 2001806 3172008A

CD3 Rabbit_IgG_Polyclonal Er170 Fluidigm 1631906/1011903 3170019D

CD44 Rat_IgG2bk_IM7 Yb171 Fluidigm 3421608/1201828 3171003B

CD61 Mouse_IgG1_VI-PL2 Bi209 Fluidigm 981514 3209001B

CD45-RO Mouse_IgG2a_UCHL1 Yb173 Fluidigm 2141813 3173016D

CD45 Mouse_IgG1k_HI30 Y89 Fluidigm 1631909 3089003B

CD8a Rabbit_IgG_D8A8Y Dy162 Fluidigm 1631902 3162035D

HLA-DR Mouse_IgG2ak_L243 Yb174 Fluidigm 1581613 3174001B

IGLL5 Rabbit_IgG_polyclonal Nd143 Thermo Fisher VH3053278 PA5-49022

CD229 Rabbit_IgG_polyclonal Tb159 Thermo Fisher VH3053451A PA5-21135

DNA1 Cell-ID™ Intercalator Ir191 Fluidigm 201192A NA

DNA2 Cell-ID™ Intercalator Ir193 Fluidigm 201192A NA

NA not available.
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Orange 3.0 data-mining toolbox in Python65. Groups were
compared using the Kruskal–Wallis test (a one-way ANOVA on
ranks) to detect non-parametric rank-based dependence between
multiple groups. This test was used to determine whether the
distributions have a median shift greater than the null hypothesis.
p-values below 0.05 were considered statistically significant. No
correction was performed, as the comparisons were planned
comparisons. Finally, Pearson’s correlation was used to evaluate
the relationship between parameters.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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