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Deep spatial-omics analysis of Head & Neck carcinomas
provides alternative therapeutic targets and rationale for
treatment failure
Andrew Causer1,8, Xiao Tan 2,8, Xuehan Lu2, Philip Moseley2, Siok M. Teoh1, Natalie Molotkov2, Margaret McGrath3, Taehyun Kim4,
Peter T. Simpson 5, Christopher Perry6,7, Ian H. Frazer2, Benedict Panizza6,7, Rahul Ladwa3,6, Quan Nguyen1✉ and
Jazmina L. Gonzalez-Cruz2✉

Immune checkpoint inhibitor (ICI) therapy has had limited success (<30%) in treating metastatic recurrent Head and Neck
Oropharyngeal Squamous Cell Carcinomas (OPSCCs). We postulate that spatial determinants in the tumor play a critical role in
cancer therapy outcomes. Here, we describe the case of a male patient diagnosed with p16+ OPSCC and extensive lung metastatic
disease who failed Nivolumab and Pembrolizumab/Lenvatinib therapies. Using advanced integrative spatial proteogenomic
analysis on the patient’s recurrent OPSCC tumors we demonstrate that: (i) unbiased tissue clustering based on spatial
transcriptomics (ST) successfully detected tumor cells and enabled the investigation of phenotypic traits such as proliferation or
drug-resistance genes in the tumor’s leading-edge and core; (ii) spatial proteomic imagining used in conjunction with ST (SpiCi,
Spatial Proteomics inferred Cell identification) can resolve the profiling of tumor infiltrating immune cells, (iii) ST data allows for the
discovery and ranking of clinically relevant alternative medicines based on their interaction with their matching ligand-receptor.
Importantly, when the spatial profiles of ICI pre- and post-failure OPSCC tumors were compared, they exhibited highly similar PD-1/
PD-L1low and VEGFAhigh expression, suggesting that these new tumors were not the product of ICI resistance but rather of
Lenvatinib dose reduction due to complications. Our work establishes a path for incorporating spatial-omics in clinical settings to
facilitate treatment personalization.
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INTRODUCTION
Head and Neck Oropharyngeal Squamous cell carcinomas
(OPSCCs) include cancers of the base of the tongue, soft palate,
lateral and posterior pharyngeal wall, uvula, and tonsil1.
Currently, OPSCC is one of the cancers with the fastest-rising
incidences in high-income countries (225% prevalence increase
in 20 years, USA)2, in both male and female populations3. This
rise has occurred despite the reductions in alcohol and tobacco
abuse over the past 20 years. In contrast, Human Papillomavirus
(HPV) infections have emerged as the primary risk factor
underlying the upward trend in OPSCC incidence1. In fact,
HPV infection is responsible for 71%, 52%, and 63% of all
OPSCCs in the United States, United Kingdom, and Australia,
respectively4–6.
HPV+ OPSCCs are associated with a better outcome due to their

higher susceptibility to chemoradiotherapy. Despite this favorable
prognosis, 10–25% of HPV+ OPSCC patients will develop disease
recurrence, mainly within the first 2 years after initial diagnosis7.
In 2016, the immune checkpoint inhibitors for programmed

death receptor 1 (PD-1), Pembrolizumab and Nivolumab, received
accelerated US Food and Drug Administration approval as a
second-line treatment for recurrent/metastatic Head and Neck
Squamous Cell Carcinomas (HNSCCs)8,9. Although HPV+ OPSCC
patients have a better response rate to anti-PD-1 than HPV-

patients (25% vs 14%)9, overall, only a small percentage of HNSCCs

(<20%) benefit from this approach, highlighting the important role
of inter- and intra-tumor heterogeneity in treatment response and
the need for patient-specific approaches.
Recent development in spatial-based high-throughput technol-

ogies, such as spatial transcriptomics (ST) and spatial proteomics
(SP), has made it possible to assess cell subpopulations while
maintaining the spatial architecture of the tissue. Thus providing
an unprecedented level of knowledge about complex biological
systems that involve multiple cell types including tumor develop-
ment and response to treatment10. We reason that this new
spatial information can assist in resolving tumor heterogeneity
and can aid in getting the correct medication to the right patients,
which is especially crucial following second-line Immune check-
point inhibitor (ICI) failure.
In this case study, we focus on a 60-year-old male patient

diagnosed with HPV+ positive SCC primary tumor of the right
tonsil and left upper lobe lung metastasis (Fig. 1a–c). After
cisplatin chemotherapy and radiation targeting the primary tumor
and bilateral neck nodes, plus stereotactic radiation to the left
lung, the patient demonstrated multiple new bilateral pulmonary
metastases (Fig. 1c). He then commenced Nivolumab treatment,
which resulted in the resolution of two lung nodules and a
significant reduction in a third (Fig. 1b, c, yellow line), but minor
growth of a left lower lobe nodule (Fig. 1b, c, pink line).
Unfortunately, after 13 months, the patient displayed progressive
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lung disease (Fig. 1b, c, pink line) and local recurrence with a new
lesion of the left soft palate, which was biopsied for ST (MAR21)
(Fig. 1b, c, red line). The patient was then enrolled in the LEAP-009
study where he received Pembrolizumab and Lenvatinib with an
early partial response, including autoamputation of the

oropharyngeal recurrence, which caused non-healing ulceration
of the oropharynx. The patient resumed treatment with Pem-
brolizumab and dose-reduced Lenvatinib, but suspicious mucosal
changes over the tonsillar fossa and soft palate were detected and
biopsied for ST (SEP21) (Fig. 1b, blue lines). Shortly after, disease
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progression involving the oropharynx was confirmed, and the
patient left the trial (Methods, “Case presentation (extended)”).
Here, using this case report exemplifying the need for tools to

better select and tailor therapy, we demonstrate the clinical value
of spatial proteogenomic data to rapidly and comprehensively
resolve patient’s disease heterogeneity, identify tumor cells and
generate quantitative data that inform about alternative drug-
gable targets with the highest likelihood of delivering a
personalized therapeutic response (Supplementary Figure 1).

RESULTS
Spatial transcriptomic mapping of tumor and healthy tissue
comprehensively distinguishes cell distribution and
composition at a level not achievable by traditional methods
While methods like MRI and PET-CT scanning can capture general
changes in the size and location of the tumor, deeper analysis of
the cancer cells, expression of drug targets, and tumor micro-
environment are required for a more accurate view of disease
status. Due to its ability to produce whole-transcriptome resolution
(>22,000 transcripts per tissue section), while maintaining spatial
information and tissue morphology (a histopathological image
accompanied by pathological annotation), spatial transcriptomic
10x Visium was chosen to analyze MAR21 OPSCC tumor and a
healthy soft palate control sample (Supplementary Figure 2A).
Unbiased clustering based on gene expression profile similarity
identified 11 distinct clusters that closely recapitulated the tissue
(Fig. 1d). Each spot cluster was manually curated using the JENSEN
tissue-gene association database (Fig. 1e, Supplementary Figure
3A), with results closely matching those independently supplied by
the pathologist (Fig. 1f), whereby clusters 4 (CL4) and 5 (CL5)
overlayed the tumor sites (Fig. 1d, f). In addition to the main cancer
clusters, other cell/tissue types were annotated, providing a
comprehensive view of the entire tissue section, including
epithelium (CL3), muscle (CL7), blood vessels (CL10), and pharynx
(CL2) (Fig. 1e). Of note, carcinoma clusters were annotated with the
cervical adjective due to the HPV+ OPSCC gene signature
commonalities with cervical cancer and the overrepresentation of
the former disease in the JENSEN database11. Thus, cancer clusters
(annotated as “Cervical” carcinomas) orientated in a nest-like
structure (keratin pearls corresponding to differentiated OPSCC),
with CL4 being the edge and CL5 the core of the tumor. In contrast
to CL5, which was exclusively found within the tumor biopsy
(Fig. 1e, Supplementary Figure 3B), 30% of CL4 was located within
the healthy tissue (Fig. 1d, Supplementary Figure 3). In-depth
analysis of CL4, allowed us to re-annotate spots in CL4 into three
categories, whereby the spots present in both the healthy tissue
and the tumor were confirmed as epithelium, whereas spots that
were annotated as carcinoma were only present in the tumor
(Fig. 1g). These results highlight the heterogeneous nature of the
tumor biopsy and the capability of ST to distinguish between tumor
regions and healthy epithelial tissue based on transcriptional
profiles. ST identified two different tumor clusters based on their
transcriptional features and enriched in specific biological

processes including DNA metabolism (tumor margin CL4) and
transcription (tumor core and necrotic areas CL5) (Fig. 1e). Such an
in-depth source of information is not achievable by standard
pathological annotation and is crucial to accurately assessing the
nature of the disease and the potential effects of drugs on various
cell types across the tissue.

Transcriptome-wide analysis of spatial gene expression
identifies two distinct tumor microenvironments
Over 5000 out of >22,000 genes were significantly overexpressed
in the CL4 and CL5, with signatures enriched for gene ontology
terms associated with mRNA processing and transport, DNA
regulation and repair, and cell cycle regulation (Fig. 2a). Sustained
proliferation is a hallmark of cancer, and the number of cells in
mitosis is used for diagnosis and to grade these malignancies12.
Therefore, we investigated the spot’s proliferative status based on
the expression of cell-cycle-related genes (Fig. 2b). Previously
defined clusters showed different proportions of spots in each G1,
S, and G2M phase. “Skin-related” (sharing epithelial origin) clusters
such as CL2, 6 and 9 showed comparatively low proliferative
profiles (Fig. 2c). Remarkably, of all 11 clusters, the CL4 was the
only one that contained 100% spots in the proliferation phase (S
with 45.3% and G2/M at 54.7%), indicating active cell division and
expansion of this cancer cluster. As the cluster mapping and
histopathological features suggested that CL4 and CL5 form two
layers, with a less-proliferative core (CL5) and a rapidly dividing
peripheral (CL4), we then sought to analyze the genes that were
differentially defining tumor CL4 and CL5 (Fig. 2d). CL4’s
differentially expressed genes (DEGs) confirmed the proliferative
nature of the cluster with upregulation of HIST1H family genes,
which participate in nucleosome assembly and chromatin
organization, and GABRP, which promotes cell proliferation in oral
SSC models (Supplementary Figure 4). Conversely, CL5’s DEGs
were enriched with genes involved in innate immune response,
inflammatory processes cell migration and angiogenesis, such as
CXCL8, which attracts neutrophils, basophils, and T-cells or S100A7,
involved in the activation of the innate immune response to
viruses (Supplementary Figure 4). The spatial distribution of cell-
cycle-related genes allowed us to distinguish 2 distinctive tumor
phenotypes (high-CL4 and low-CL5 proliferation) with potential
clinical implications especially when using replicative stress or
DNA-damaging agents, as differences in replication can correlate
with different responses to treatment13,14.

Integration of spatial proteomics data enabled the mapping
of 14 immune subtypes to spatial transcriptomics spots
As infiltration and localization of immune cells in the tumor
microenvironment (TME) are biomarkers of disease progression and
treatment outcome, we sought to estimate the cell composition of
each cluster in the tumor biopsy at single-cell resolution. Although
Visium data produces high-resolution transcriptional data, each
spot is a mixture of on average 1–9 cells. Typically, spot
deconvolution is needed to identify the cellular composition of

Fig. 1 Case history and preliminary ST analysis of metastatic recurrent HPV+ OPSCCs. a Timeline indicating disease progression and
treatment history. b Relative size and development of OPSCCs and lung metastases over time. Red line indicates the MAR21 soft palate OPSCC
sample biopsied for Visium ST and PhenoCycler SP analysis. Dark blue line represents recurrent SEP21 OPSCC analyzed using Visium ST. c CT
scans of lung metastases and OPSCCs over time. Circled regions highlight tumor tissue. d Spatial representation of unsupervised ST-
generated clustering results. Colored spots represent different populations of spots that share similar transcriptional profiles. e Normalized
expression values of the top 10 distinguishing markers for each cluster were displayed in a heatmap. JENSEN TISSUEs annotations and relative
enriched Gene Ontology (GO) terms associated with differentially expressed genes (DEGs) for each cluster are also represented. Bar graph
(left) represents the proportion of each cluster found within MAR21 tumor (red) and healthy (blue) samples. f Pathologist annotations of
MAR21 and paired healthy sample, defining general tissue structures including stroma (blue), skeletal muscle (green), and invasive carcinoma
(yellow). g Sub-clustering of cluster 4 identified distinct carcinoma sub-clusters, which were localized only within the tumor sample (green and
dark green). Blue spots represent the third sub-cluster (cluster 4.Epi) which was annotated as epithelial tissue based on DEGs (using JENSEN
TISSUEs database).
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each spot. Although computational models have been designed to
optimize deconvolution performance, they are limited by the
quality of the reference dataset, where incomplete or incorrectly
annotated cell types will impact the deconvolution accuracy15,16.
First, we utilized a comprehensive publicly available single-cell

OPSCC reference dataset17, to deconvolve our Visium data using

five well-established RNA-based methods (STdeconvolve, CARD,
Seurat label transfer, RCTD and Tangram)15,16,18–20. Comparatively,
we found that each deconvolution method displayed very diverse
cellular compositions (Supplementary Figure 5A). Especially,
Tangram, over-estimated cell proportions (Supplementary Figure
5B), while the remaining four methods were relatively insensitive
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for detecting tumor infiltration cells. Therefore, to gain more
sensitivity in the resolution of the proportions of immune cells, we
devised a new method to integrate PhenoCycler spatial proteomics
(SP) images with ST data that is independent of external reference
datasets. By mapping consecutive tissue sections, we were able to
detect the signal of multiple antibodies to map cell types of the
same tissue and count the cells mapped to Visium spots (Fig. 2e,
Supplementary Figure 6). Overall, our approach identified 14
different immune cell types from both the lymphoid (T cells, B
cells) and myeloid (macrophages and antigen-presenting cells)
lineages (Fig. 2f, Supplementary Figure 6). In our comparison of
SPiCi (SP-inferred Cell identification) with the ground truth
pathological annotation (Supplementary Figure 7), we found that
our method exhibited high accuracy rates (0.943) (Supplementary
Figure 7A). This indicates that SPiCi correctly resolved the tumor
and immune composition of the Visium spots (Supplementary
Figure 7B). Therefore, SPiCi offered an excellent solution to infer cell
proportions when representative RNA data to use as a reference is
not available (i.e., single-cell sequencing data from the same
tissue). This integration of complementary data types is powerful
as we can simultaneously use the highly confident cell-typing
analyses based on SP and add transcriptomics-based information
on cell states, pathway activities and signaling regulations as
discussed in the next sections.

High-resolution cellular composition of the tumor defined by
SPiCi suggests tumor functional organization
SPiCi cell identification confirmed our cell-cycle prediction at the
protein level by detecting high expression of Ki67 (S-G2/M phase
surrogate) in the tumor nests (intra-tissue PanCKhigh) (Supple-
mentary Figure 8). Once more, CL4 recorded the highest
proportion of Ki67+ PanCK+ cells (29% of CL4) (Fig. 2f) forming
the walls of the tumor as previously seen in the Visium ST data
(Fig. 2c). Conversely, CL5, composed of the inner core of the
tumor, displayed lower proportions of dividing tumor cells
(18.4%) and higher levels of immune cells (21%) compared to
CL4 (9.5% immune cells). This inner tumor core also contained
high levels of macrophage/monocytes and CD4+ and CD8+

T-cells. Collectively, our spatial proteo-transcriptomics data
confirmed the presence of two distinct tumor regions represent-
ing the proliferating leading edge and immune infiltrated inner
core of the patient’s OPSCC, which phenotype and cell-type
complexity could not be resolved by histopathological assess-
ment (Fig. 1f, Supplementary Figure 6).

The spatially defined tumor microenvironments informed the
assessment of predictive biomarkers and druggable targets
Traditional methods such as bulk RNA sequencing suffer from
dilution of cancer-specific signals within the pool of non-
malignant tissue. We hypothesized that our ST data could
overcome this by focusing on the most important part of the
tumor, namely the cancer tissue depicted by only 2 clusters out of
the 11 that composed the biopsy. This spatially-focused analysis
strategy maximizes resolution while minimizing signal dilution as
seen in bulk data analysis. By doing so, we identified 158 sig-
nificantly upregulated (p < 0.001) tumor genes, which displayed at
least a 2-fold increase compared to all other clusters (Supple-
mentary Figure 9). Most top genes were categorized as poor
prognosis biomarkers (38%), oncogenes (13%), and drug resis-
tance genes (9%), in contrast to only a 11% and 5% considered
tumor suppressor and positive prognosis biomarkers, respectively
(Fig. 2g, Supplementary Table 3). Notably, the function of 6% of
the >2-fold increased tumor genes remain unknown and may
potentially be new markers. These results correlate with the
observed recurrent and aggressive behavior of the patient’s tumor
and highlight the potential of focused transcriptional profiles to
predict disease progression.
The patient’s treatment history pinpoints two specific proteins

targeted by immunotherapy and chemotherapy: PD-1 (Nivolumab,
Pembrolizumab) and VEGFR (Lenvatinib). Interestingly, we found
that both PD-1 and its ligand PD-L1 encoding genes (Fig. 2h) and
proteins (Supplementary Figure 10) displayed low expression
across the whole tissue. Indeed, these two targets were not
expressed in the two cancer regions, potentially explaining why
ICIs failed. Conversely, amongst the 158-overexpressed tumor
genes, there were 8 targets with inhibitors either commercially
available or in clinical trials, including EGFR/cetuximab-prochlor-
perazine (Fig. 2i)21 and 9 experimental targets supported by
preclinical data (Fig. 2j, Supplementary Table 4)22. Consequently,
the use of ST has the potential to prevent the use of treatments
that are unlikely to be effective, while simultaneously identifying
novel therapeutic targets.

Tumor clusters and targets were shared by pre- and post-
treatment tumors and revealed potential causes of treatment
failure/response
In recurrent settings, it is imperative to investigate whether
information obtained from a tumor can predict the phenotype of
tumors to come. Thus, we spatially sequenced the SEP21 OPSCC
tumor (failed combinational therapy) (Supplementary Figure 2C-B)
and compared it to the previously sequenced MAR21 tumor (failed
monotherapy) (Fig. 3a, Supplementary Figures 11, 12). Annotations

Fig. 2 Transcriptional and functional profiles of the tumor microenvironment interface. a Common GO terms enriched in all tumor-
annotated spots based on DEGs relative to all other clusters. b Cell cycle states of each spot within MAR21 OPSCC and healthy paired samples.
Teal, red, and yellow represent spots in G1, G2/M, and S phase, respectively. c Displays the proportions of spots in each cell cycle phase for
each Visium defined cluster. Teal, red, and yellow bars represent G1, G2/M, and S phase, respectively. Distinct tumor regions (cluster 4 and 5)
are out-lighted in cluster-matched shades of green (dark green: cluster 4; light green: cluster 5). d Gene ontology terms specifically enriched in
each tumor cluster. Significant GO terms were generated based on DEGs between distinct cancer clusters, newly defined Visium clusters 4
(dark green) and 5 (light green). Negative log transformed adjusted p-values were calculated using the Benjamini-Hochberg Procedure.
e Single-cell resolution of cell types within the MAR21 sample based on integrated PhenoCycler data. Cell phenotype was based on co-
expression of marker antibodies. f Stacked bar graphs highlight the percentage of different PhenoCycler cell subtypes observed within each
Visium cluster. Colors are paired to indicate similar cell types (e.g., pink and purple are T cell subtypes, blue shades are B-cell subtypes).
g Functional classification of DEGs (Wilcoxon test p-value < 0.001) of the combined tumor clusters relative to all other clusters and at least
2-fold overexpressed (CL4 and CL5). Relative expression of poor prognosis markers (red), oncogenes (orange), and drug resistance genes
(green) across each cluster. The top 9 genes of each category were displayed. Cluster ‘4.Epi’ represents the sub-cluster 4 annotated as
epithelial tissue, and ‘tumor group’ represents the carcinoma annotated spots from cluster 4 and 5 combined. Colors gradient represents
average normalized expression values across all spots in each cluster, which were z-transformed by genes (rows of the heatmap). h Spatial
expression of PD-1/PD-L1 encoding genes across each spot. i Spatial expression of genes targeted by current clinical therapies for various
cancer types. j Spatial expression of experimental targets informed by preclinical studies. In all feature plots, the relative gene expression per
spot is indicated by the colored scale bars. Both clinical and preclinical druggable targets were identified based on genes significantly
overexpressed (Wilcoxon test p-value < 0.001 and >2-fold change) within the grouped tumor clusters.
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based on transcriptional profiles were consistent with pathologists’
evaluation, showing that ST was capable of successfully identifying
tumor cells (Fig. 3b). Furthermore, transcriptomic annotation aided
the pathology team in resolving a conflictive area where low
stroma abundance made it difficult to assess invasive cancer

(tumor), highlighting the power of using unbiased molecular
profiles to characterize tissue regions (Supplementary Figures 2B,
C, 13). To compare cancer cells in both biopsies, we performed the
same cell-cycle analysis (Fig. 3c) and unbiased clustering (Fig. 3d)
as for MAR21 (Fig. 1d). The consistent results mapped the same
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carcinoma hubs in both biopsies (CL4 and CL7, Fig. 3a, d,
Supplementary Figure 14). The new CL7 corresponded to CL5-
MAR21 (Fig. 1d) plus the inner core of SEP21 and it was annotated
as “cervical” carcinoma (Fig. 3d). Importantly, most of the identified
MAR21 druggable and experimental targets were also over-
expressed in the SEP21 tumor clusters (Fig. 3e–g, Supplementary
Table 3). These druggable targets were identified independently in
separate tissues and at different time points, suggesting the
reproducibility of detecting potential targets, which colocalize to
cancer regions and maintain a high expression level throughout
time and space.
The initial lack of response to anti-PD-1 treatment and

subsequent resurgence of a new locoregional tumor suggests
evasion by a drug resistance mechanism. The deep analysis of
spatial proteo-transcriptomics of the MAR21 tumor showed no
expression of PD-1 in the tumor hubs, but rather scattered
expression of this target across the tissue section in non-cancer
cells, potentially being the cause for the lack of response. In
contrast, the combinatorial therapies targeting PD-1 and VEGFR
showed initial responses with tumor self-amputation, followed by
tumor resurgence when VEGFR was reduced to aid with the
patient’s coagulation/healing. Analysis of the SEP21 sample
showed low PD-1/PDL-1 and high VEGFA levels at the tumor
locations. Overall, our findings strongly suggest that the
therapeutic response seen in the MAR21 OPSCC was not driven
by Pembrolizumab but Lenvatinib, as its reduction correlated with
the growth of recurrent VEGFAhigh tumors previously suppressed
by the chemotherapy.

Novel strategy to prioritize targets based on ligand-receptor
interactions
Treatment personalization is considered the future of many
medical disciplines including oncology. As many targeted anti-
cancer drugs act by blocking ligand/receptor interactions (L-R), we
explored whether tailored treatment against the patient’s tumor-
upregulated genes could be ranked based on the colocalization
and activity of L-R pairings in the tumor microenvironment
(Fig. 3i). Based on the expression levels of co-localized L-Rs in each
sample (healthy, MAR21 and SEP21), we implemented the stlearn
methods23 (Supplementary Figure 15) to rank L-R pairs known to
be potential genetic targets (Fig. 3i, Supplementary Table S3–4).
This classification allowed us to select the top-5 most active
druggable L-Rs in the tumor vs the healthy tissue (Fig. 3i). Of these,
VEGFA/NRP1 and TF/TFRC were highly active in both the original
and recurrent OPSCCs (Fig. 3i, Supplementary Figure 16). Spatial
analysis confirmed the co-expression of these L-R pairs primarily
within the malignant regions of both tumor samples, which would

specifically focalize the treatment to the malignant tumor clusters
(Fig. 3j). The selected targets were patient-specific, as the analysis
of another individual’s HPV+ OPSCC, showed that although some
interactions, such as VEGFA/NRP1 and VEGFA/GPC1 were present,
the most active L-Rs in the tumor were VEGFA/NRP2 and EGFR-
related pathways (Fig. 3i, Supplementary Figure 17). The analysis
of the additional patient sample showed that this patient had a
high expression of PD-1 and PD-L1 in the cancer core region
(Supplementary Figure 17C), a contrasting pattern compared to
the case reported here, suggesting that this patient might be
responsive to PD-1/PD-L1 drug (Supplemental Information, Case
presentation of additional patient). Thus, spatial gene expression
profiling can detect specific expression patterns of drug targets in
each patient sample. Lastly, we confirmed that both VEGFA/NRP1
and TF/TFRC interactions are likely to be biologically functional as
DEGs from L-R-positive vs the L-R-negative spots were significantly
enriched in canonical pathways associated with the downstream
activation of these L-R pairs (Ingenuity Pathway Analysis,
Fig. 3k)24,25. Overall, we identified that L-R co-expression and
downstream pathway analysis can be used to prioritize clinical
targets allowing clinicians to combine multiple strategies that will
interfere with known tumor-activated pathways in a personalized
manner.

DISCUSSION
The value of the global personalized medicine market is expected
to reach USD 922.72 billion by 2030, a 6th of which will account
for Oncology Precision Medicine alone26. However, tumor hetero-
geneity and constant disease evolution indicate that patients will
only benefit long-term from tailored medicine if they are based on
analytical pipelines that are as holistic and dynamic as the disease
itself. Studies using spatial-omics techniques to understand cancer
disease development and progression are becoming increasingly
more common in oncology research27. Here we sought to explore
the use of spatial multi-omics in a clinical context, to determine its
appropriateness as a potential medical tool for recapitulating
patient disease progression and aiding in the drug selection and
combination processes.
Based on spatially defined, differentially expressed genes, here

we resolve intra-tumor heterogeneity and confidently annotate
diverse tissue types including malignant and healthy, stroma and
infiltrating immune cell populations. Two clusters (CL4 and 5),
which overlay the cancerous and necrotic regions defined by
pathologist annotations, are highlighted by multiple lines of
unbiased analyses as carcinoma tumor communities showing
differential signatures: CL4, highly proliferative leading-edge vs

Fig. 3 Transcriptional comparison between MAR21 and recurrent SEP21 and ligand-receptor interaction analysis for therapeutic target
selection. a Spatial representation of unsupervised clusters identified between integrated tumor samples. MAR21 highlighted in red shades
and recurrent tumor SEP21 highlighted in blue shades. b Annotated cell cycle phase of each spot based on relative expression of specific cell
phase genes. c Pathologist annotations of SEP21, defining general tissue structures including epithelium (brown), dysplastic tissue (light
green), and tumor (yellow). d Chord diagram displays genetic correlation between new clusters corresponding to integration of the MAR21
and SEP21. Comparisons were based on gene expression levels of the top 3 upregulated genes expressed by each original MAR21 cluster
(only one muscle gene was found in the new cluster) within each new cluster. Connecting ribbons define the correlation between original and
new clusters which significantly over-express each gene. e Spatial expression of genes across each spot targeted by current clinical therapies.
f Spatial expression of genes targeted by select experimental drug therapies. g Spatial expression of genes targeted by select experimental
drug therapies only seen in SEP21 samples. h Spatial representation of gene expression for Nivolumab and Pembrolizumab targeted PD-1/PD-
L1 pathway. In all feature plots, the relative gene expression per spot is indicated by the colored scale bars. i Ranking of top 35 ligand/receptor
(L-R) pairs targeted by clinical and experimental therapies expressed by the healthy (red), MAR21 (light blue) recurrent SEP21 (dark blue), and
additional patient (orange) samples. Rank was based on the number of significant spots expressing each L-R pair across each sample. Colors
indicate the location of each specific LR pair. Orange spots represent the top 3 L-R pairs specific to the additional sample. j Spatial localization
of ligand and receptor expression across tumor tissues (top: MAR21, bottom: SEP21). Red spots indicate co-expression of both ligand and
receptor within the same spot. k Significantly active IPA pathways associated with expression of the top two ranked L-R pairs (TF/TFRC and
VEGFA/NRP1). Bars indicate negative-log right-tailed Fisher’s Exact Test p-values of each pathway based on the proportion of genes within
each canonical pathway that were also significantly up- or down-regulated within spots co-expressing both L-R pairs. l Infographic
representing the proposed protocol to incorporate spatial multi-omics within a clinical setting. Image generated with Biorender.
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CL5, core enriched in immune infiltrates interacting with tumor
cells and necrotic parts (Fig. 1). Detection of two cancer clusters,
with distinct molecular, but not morphological phenotypes, is an
important result of our data-driven approach. Although, Ki67
protein detection confirms the proliferative nature of CL4, the
expression of cell-cycle-phase associated genes predicts a higher
degree of cells in S-G2/M phases (Fig. 2c). This suggests that the ST
method is more sensitive at detecting dividing cells by assessing
hundreds of cell-cycle-related genes in contrast to a sole marker as
immunohistochemistry methods usually use12. Therefore, this
method could aid the assessment of the tissue mitotic activity in
an unbiased manner, pinpointing regions with heterogeneous
metabolic profiles that could impact prognosis and response to
treatment targeting replicative stress. Importantly, the cytotoxicity
of certain chemotherapies such as Cisplatin and Paclitaxel,
depends on the tumor proliferative state and cell cycle phase13,14.
For instance, repeated dosages of Paclitaxel were more efficient
when given in cell culture to cells preparing for G2/M phase14. ST
data of core biopsies taken at different time-points during
treatment could be an excellent tool to test whether timing
optimization of sequential chemotherapeutics improves their
cytotoxic capacity in a clinical setting or whether low proliferative
tumor regions are responsible for chemotherapy failure.
To note, all analyses performed were conducted prior to

receiving tissue annotations, emphasizing the true unbiased
nature and discovery strengths of our approach and findings.
For the second tumor (SEP21), the transcriptomic signature also
informs pathologists of tissue areas with suspicious features,
which facilitates the resolution of conflict zones resulting in a
more assertive annotation of the dysplastic regions. Here we
prove that unbiased annotation based on ST data recapitulates
clinical annotations and can assist pathologists especially when
the quality/size of the sample is not optimal for visual macroscopic
characterization. Although, more data needs to be collected and
included in reference databases to enhance the accuracy of the
annotations (i.e., HPV+-cervical cancer vs HPV+-OPSCC), overall,
the ability to precisely define these cancer regions and assess
specific markers differentially expressed by them has a great
potential for drug selection.
The composition, location, and interactions of immune infiltrates

within the tumor play crucial roles in determining treatment
outcomes28–30. Such interactions ideally require single-cell resolu-
tion data and detailed identification of immune cell types.
However, the current Visium ST technology suffers from relatively
low cell resolution as ST ‘spots’ encompass average gene
expression across several cells (1–9 cells). To address this issue,
we develop a novel spatial multi-omics cell identification approach
(SPiCi) by integrating Visium ST and PhenoCycler SP images which
identifies tumor cells and lymphocytes with high accuracy
(Supplementary Figure 7). Importantly, our method has the
additional advantage of considering both protein and transcrip-
tional data when studying tumor and TME interactions, which
increases the robustness of cell identification, especially of immune
cell populations, by overcoming the problem of the non-linear
relationship between RNA expression and protein levels31–34. In our
study, highly proliferative epithelial cells are annotated as
proliferating tumor (Fig. 2e, f). However, because SPiCi is based
on multiplexing PhenoCycler technology, its accuracy can be
improved by increasing the number of markers scanned, which is
now greater than 100-plex. Using our protein/RNA-based method
and a panel of 11 markers we identify 14 different immune
subtypes, including activated CD4+ and CD8+ T-cells, macro-
phages and B cells present within the inner tumor. Our method
enables the association of the cell type to its corresponding
transcriptional profile. This information can correlate cell subsets
with disease progression and response to treatment as previously
seen for HNSCC, where certain CD4+ and CD8+ T-cell phenotypes
correlated with longer progression-free survival35,36.

The spatial component of our analysis allows us to focus on the
critical tumor sections (CL4-5), where we observe that most
upregulated genes are either oncogenes, poor prognosis biomar-
kers or drug resistance genes, confirming the active and
aggressive nature of our patient’s disease37. In the clinic, this
information could help stratify patients and tailor surveillance
plans based on expected disease behavior. The high-throughput
nature of our approach allows answering questions such as, which
suitable targets the tumor hubs are expressing. In spite PD-1/PD-
L1 expression being very low, we identify 8 overexpressed
druggable targets (i.e., EGFR, TF, VEGF) and 9 preclinical targets
in CL4-5. Although, future work will focus on proving the
robustness between the presence/distribution of a target and
therapy response, being able to interrogate the patient’s tissue for
the presence or absence of multiple targets will save time,
resources and psychological burden to patients and their families.
Surprisingly, targets are mostly shared by the recurrent tumors
within the same tumor areas, indicating that in this case the
information gained from the first patient’s OPSCC biopsy is still
applicable to the subsequent malignancy. However, considering
the time and health constraints of recurrent non-responsive
cancer patients, a list of targets might not guarantee patient’s
long-term clinical response, thus a way to rank the target
candidates is equally vital. Here we reason that the likelihood of
a drug having an impact on tumor growth and progression would
be linked with its capacity to interfere with vital and active
pathways in the malignancy. Subsequently, here we design a
novel strategy to rank each drug’s potential success, based on the
co-expression of each target ligand-receptor pair (L-R), assuming
that co-expression would lead to interaction, and hence pathway
activation. After our analysis, our patient’s list of 17 clinical/
preclinical targets was refined to 3 top druggable pathways active
in the patient’s tumor clusters: TFRC, NRP1, and EGFR. Of note,
NRP1 is a SARS-CoV2 receptor, for which dozens of new drugs
have recently been developed38,39, and hence may justify further
clinical applicability in cancer.
Overall, our work demonstrates the power of Spatial proteoge-

nomic data to resolve tumor heterogeneity and enables the
possibility for oncologists to personalize cancer management.
Following validation in larger cohorts, this case study supports
applying spatial proteogenomic in clinical settings. We envision
that spatial RNA/protein analysis can be adopted in clinical
settings, as whole genome sequencing is now a routine test
requested by clinicians. Importantly, the cost of these technolo-
gies and high technical requirements can already be drastically
reduced by implementing artificial intelligence (AI) models
capable of predicting in situ gene expression inferred from fast/
low-cost H&E images using curated disease Spatial-omics training
datasets40–42. Thus, after an initial investment dedicated to
creating standardized disease-specific AI training material, the
spatial data of each patient’s tumor biopsy can be obtained
(experimentally or AI-inferred) and contrasted against spatial
databases of the disease to help with different steps along each
patient’s journey (Fig. 3l, Supplementary Figure 1): (i) aid in the
annotation of the tumor, (ii) stratify patients based on disease risk
progression to personalize surveillance plans, and (iii) to generate
a list based on a patient’s disease features which inform
oncologists of targets with quantifiable likelihood to have an
impact on the disease. This information can be used to implement
combinatorial therapeutic programs to prevent drug resistance
minimizing off-target effects.

METHODS
Case presentation (extended)
A 60-year-old male ex-smoker with a 10 pack-year history
presented with de novo oligometastatic disease, having been
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diagnosed with a p16 positive SCC primary tumor of the right
tonsil and biopsy-proven left upper lobe lung metastasis (Fig.
1a–c). He received concurrent chemoradiotherapy comprising
weekly cisplatin and 70 Gy in 35 fractions of radiation targeting
the primary tumor and bilateral level II and III neck nodes (Fig. 1a).
In addition, he received stereotactic radiation to the left lung
nodule of 50 Gy in 5 fractions, completed in June 2019.
The patient underwent disease re-assessment three months

later, with PET/CT demonstrating multiple new bilateral pulmon-
ary metastases and no locoregional disease (Fig. 1b, c). He
commenced treatment of 480 mg nivolumab every 4 weeks and a
CT scan after three cycles revealed resolution of two nodules and
a significant reduction in a third (Fig. 1b, c, yellow line), but minor
growth of a left lower lobe nodule (Fig. 1b, c, pink line). This single
nodule was then treated with stereotactic radiation of 48 Gy in
four fractions and nivolumab was continued. Regular imaging
confirmed stable intrathoracic disease for a further 13 months but
a PET/CT scan in February 2021 demonstrated local recurrence of
disease with a 22 mm lesion of the left soft palate (biopsy MAR21)
and progression of metastatic lesions in the lungs bilaterally.
The patient was then enrolled in a clinical trial (LEAP-009) and

randomized to the treatment of pembrolizumab 200 mg every
3 weeks and 20mg Lenvatinib orally daily. After demonstrating an
early partial response radiologically, including autoamputation of
the oropharyngeal recurrence with absence of measurable disease
and a reduction in lung metastases, a treatment delay was
required due to oropharyngeal pain and severe non-healing
ulceration of the oropharynx. This subsequently settled and the
patient recommenced pembrolizumab and dose reduced Lenva-
tinib (14 mg orally daily) in July 2021. The measurable disease
remained stable radiologically until January 2022, although
mucosal changes over the tonsillar fossa and soft palate were
suspicious clinically from September (biopsy SEP21). Pembrolizu-
mab and Lenvatinib were ceased, and the patient came off trial in
early February 2022 when MRI scan confirmed definite disease
progression involving the oropharynx.

Case presentation of additional patient
A 63-year-old male non-smoker presented with de novo
keratinizing p16 positive SCC primary tumor of the left tonsil
invading into the skeletal muscle with no nodal disease. He
underwent transoral robotic-assisted resection (TORS) of tonsil
and selective neck dissection of cervical lymph nodes in
November 2020. No adjuvant radiotherapy was given. A two-
year MRI follow-up indicates no tumor masses or recurrent
disease.

Pathologist annotations
High resolution H&E images of samples from two patients were
provided to a pathologist for pathological and tissue annotation.
Loupe Browser was used by the pathologist to outline and label
various morphological features observed within the H&E tissue,
which were then converted to a ‘Visium spot’ format. Annotations
were blindly performed (the pathologist was not made aware of
analysis results) succeeding all other analyses completed in
this study.

Spatial transcriptomics (ST)
Five μm sections were taken and multiplexed onto Visium Spatial
Gene Expression Slides (10x Genomics). Following slide incubation
(60 °C for 2 h) on a Thermocycle (Bio-Rad C1000 Thermal Cycler),
H&E staining, imaging and sequencing library preparation was
performed in accordance with the Visium Spatial Gene Expression
User Guide (CG000407, CG000408, CG000409 – 10x Genomics).
Trimmed FASTQ reads were mapped to the human reference
genome (version GRCh38-3.0.0) using SpaceRanger (v1.3.0) and

demultiplexed using 10X Loupe Browser (v6.1.0). Sequenced raw
read and expression data were processed and overlaid with the
H&E image (Seurat; v4.0.5). Samples were analyzed following a
general pipeline that consisted of (1) data filtering and quality
control, (2) normalization, (3) batch correction and integration, (4)
unsupervised clustering, (5) differential expression analysis, and (6)
other downstream analyses.

ST data quality control
Raw read and expression count distributions were exploratorily
analyzed to remove any poor-quality samples due to processing
error (tissue dissociation, tissue folding, technical issues). An
additional tumor section of sample MAR21 was removed due to
poor-quality counts and tissue folding evident in the H&E image
(Supplementary Figure 2). Each sample was analyzed for outlying
spots containing low gene expression counts to mitigate technical
error. Spots were filtered using a fixed threshold of <200 features
per spot based on previous literature describing the required
amount of genetic information necessary for a viable genome43.

ST data normalization
Filtered data was normalized using SCTransform from Seurat to
ensure differential gene expression patterns were due to
biological variation rather than technical bias. This method
implements a regularized negative binomial regression model
based on unique molecular identifier (UMI) counts, to normalize
expression data for each gene independent of total sequencing
depth per cell44.

ST batch correction and data integration
UMAP plots of normalized expression data were generated for
each sample based on the first 30 principal components (PCs),
which were selected using Elbow plots of variance. Batch
correction and data integration between healthy and tumor
MAR21 samples, and between MAR21 and SEP21 tumor samples,
respectively, were performed using the Seurat canonical correla-
tion analysis (CCA) data integration function (IntegrateData)
(Supplementary Figure 11). Based on 3000 variable features
calculated for each diverse dataset (using FindVariableFeatures), a
list of ‘anchors’ encoding cellular relationships was generated
through CCA and MNN analysis18. Following principal component
analysis (PCA) informed dimensionality reduction, UMAP plots
were generated for each integrated dataset (healthy/tumor and
tumor/tumor) using the first 50 and 30 PCs, respectively. Other
parameters for all functions were using default settings.

ST unsupervised clustering
Unsupervised graph-based clustering was performed on each
integrated dataset separately using the Seurat FindClusters
function. This approach implements a shared nearest neighbors
(SNN) modularity based on a resolution value set to 0.8 and 0.6, for
healthy/tumor and tumor/tumor datasets, respectively. Cluster
spot assignments were visualized on UMAP plots and spatially
using the inbuilt Seurat method (SpatialDimPlot). Relative propor-
tions of spots assigned to each cluster per tissue sample were also
calculated and plotted using custom scripts.
Sub-clustering was performed on cluster 4 of the MAR21

integrated dataset to distinguish between spots within the
healthy and tumorous tissue. This was achieved using Seurat
FindSubCluster function which was set to implement Louvian
clustering at a resolution of 0.5.

ST differential gene expression analysis
Prior to analysis, cluster labels were mapped back to the original
raw expression data, where spots were again filtered and
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normalized by SCTransform as described above. Differential gene
expression analysis between clusters was performed on each
dataset using the likelihood-ratio test implemented by Seurat
FindAllMarkers45. Significance thresholds were set at p < 0.001 and
average log2 fold change >0.5. Scaled expression values of the top
10 DEGs from each cluster (top six for clusters 1 and 10) were
repressed in a heatmap using ComplexHeatmap46.

ST cluster annotation
Clusters were annotated using Enrichr11, which makes use of fuzzy
enrichment analysis to compare significant positive DEGs per
cluster (i.e., most upregulated DEGs and likely markers for that
cluster) to JENSEN TISSUEs ontology reference database (V2.0)47.
Each cluster in both datasets was analyzed and assigned a tissue
type based on the top-10 significant (adjusted p-value > 0.001)
biologically relative hits (i.e., non-related tissue annotations were
not considered).

ST gene ontology enrichment analysis
DEG lists specific for each cluster were tested for GO term
enrichment using clusterProfiler48. The enrichGO function and
‘org.Hs.eg.db’ human genome database was used to identify
biological process terms significantly related to the DEGs
(p-value > 0.01) of our datasets. The top significant term was
assigned for each cluster and compared to the relative cluster
annotation label. In addition, annotated tumor clusters within
the healthy-tumor dataset were merged and a new list of DEGs
and enriched GO terms was generated using the methods
described above. All identified terms were grouped into
common ontology tags and graphically represented using
Revigo49.

ST cell cycle analysis
Seurat CellCycleScoring function and the ‘cc.genes.updated.2019’
cell cycle gene references dataset50 were used to assigned cell
state labels for each spot. This method determines cell phase state
based on relative expression of G2/M and S phase maker genes.
These genes are anticorrelated, meaning spots expressing neither
gene set were annotated as G1 phase.

ST ligand-receptor cell–cell interaction analysis for drug
target prioritization
L-R analysis was performed using stlearn23. Briefly, the p-values are
derived from independent testing of one L-R pair at a time and
using the same set of genes for calculating the background signal
(i.e., all detected genes). The test identifies spots (across all spots
in the tissue section) with a significant co-expression of the L-R
pair (considering neighboring spot information) that is higher
than the background co-expression of any random combination
of gene-gene pairs. As such, in the formulation of the background
signal, this test does not only include all L-R pairs but all random
gene-gene pairs in the dataset are included. The p-value is derived
from the permutation count of events that the L-R has a higher
score than the random scores of millions of random combinations.
Because the background does not get affected by the subsetting
of druggable L-R pairs, the raw p-value for each L-R pair does not
change. The adjusted p-values after multiple testing correction
change proportionally with the number of L-R pairs tested,
resulting in fewer spots that are significant when testing for all
L-Rs. Importantly, the rank for the L-R in terms of the number of
significant spots or p-values/adjusted p-values remains
unchanged. Below we explained further the rationale for our
approach.
The analysis was done using the connectomDB2020 L-R

database51,52 (Supplementary Figure 16). Normalized gene expres-
sion values of only the druggable tumor overexpressed DEGs were

used to calculate L-R pair expression between neighboring spots
in integrated MAR21 and SEP21 tissues (Fig. 3i). Pairs were
considered valid when both genes were DE by the tumor with
respect to the non-tumor clusters. The top five significant results
were reported as several significant spots found within each
sample. DEGs between spots expressing and not-expressing each
selected L-R pair were generated using previously described
methods. Pathway analysis was performed using QIAGEN Inge-
nuity Pathway Analysis (IPA) to determine active canonical
pathways based on proportions of pathway-specific genes also
upregulated53. To generate Supplementary Figure 15, L-R pairs of
all expressed genes from integrated MAR21 and SEP21 tissues
were calculated.

Spatial proteomics
A serial tissue section (4-μm thick) from the MAR21 FFPE block was
taken and analyzed using PhenoCycler. Coverslip preparation,
antibody conjugation, tissue staining, PhenoCycler rendering, and
imaging were completed in accordance with PhenoCycler
manufacturer instructions (Akoya Biosciences User Manual, Revi-
sion-C)54. Antibodies used for tissue staining and their respective
targets are anti-CD20-BX007, anti-PANCK-BX019, anti-CD8α-BX026,
anti-Ki67-BX047, anti-CD45RO-BX017, anti-CD3ε-BX045, anti-
CD107a-BX006, anti-HLA-DR-BX033, anti-CD4-BX003, anti-CD68-
BX015 and anti-CD45-BX021. Probe addition and washing/
denaturing steps were performed using the PhenoCycler CIM
software version 1.30.0.12. Images were collected with the 20x
objective (0.8 NA) Zeiss Axio Observer and processed using the
Zen Blue v3.2 software.

Pre-processing of PhenoCycler data
The raw PhenoCycler data was processed via QuPath software
(version 0.3.2)55. Cells were segmented by using the QuPath
function cell detection on PhenoCycler DAPI channel with default
parameters (minAreaMicrons=2.0, MaxAreaMicrons=500.0, water-
shedPostProcess=True, smoothBoundaries=True, and thresh-
old=2.0). The protein expression intensity was then measured
for each segmented cells and exported for further QC. The raw
protein expression intensity matrices were filtered by quantile.
Cells with total counts lower than 0.05 quantile or higher than 0.95
quantile were discarded to remove the outliers. Filtered matrices
were then transformed into logarithmic scale for downstream
analysis.

PhenoCycler cell type annotation
PhenoCycler cells were annotated based on the expression of
the protein markers. In total, 17 cell types were identified based
on the combination of 11 key immune and cancer markers,
including tumor (PANCK), tumor infiltrating cells (CD45),
Dividing tumor (KI67, PANCK), Dividing macrophage (KI67,
CD68), Dividing CD8 T cells (KI67, CD45, CD3ε, CD8), Dividing
CD4 T cells (KI67, CD45, CD3ε, CD4), Antigen-presenting cells
(CD45, HLA-DR), T-cell (CD45, CD3ε), B-cell (CD45, CD20),
Activated B cells (CD45, CD20, HLA-DR), CD8 T cells (CD45,
CD3ε, CD8), CD4 T cells (CD45, CD3ε, CD4), Activated CD8 T cells
(CD45, CD3ε, CD8, CD107a), Activated CD4 T cells (CD45, CD3ε,
CD4, CD107a), Memory CD8 T cells (CD45, CD3ε, CD8, CD45RO),
Memory CD4 T cells (CD45, CD3ε, CD4, CD45RO) and Macro-
phage/monocyte (CD45, CD68). For a given cell j, the cell type Cj
can be defined by the protein marker subset which gives the
largest geometric mean value as:

Cj ¼ argmax
C

Yn

i¼1

xCi (1)

where xCi is the expression value of protein marker i that belongs
to cell type C.
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Image-based integrative analysis of PhenoCycler and Visium
data
The Python package SimpleITK was used to perform image
registration56. PhenoCycler images were first downscaled to an
appropriate resolution to match the resolution of the correspond-
ing Visium histological image. The DAPI channel in the
PhenoCycler image was cropped and rotated to have the same
capture area and orientation as the Visium histological image and
was used as the moving image (query image). Visium histological
images were converted to grayscale images to transform the pixel
data dimension consistent with the PhenoCycler DAPI channel
image and were used as the fixed image (target/reference image).
After centralizing the two images, the rigid affine transformation
was applied for shearing, shifting, and scaling the moving image
to align with the fixed image in lower resolution as the initial step.
Finally, the non-rigid B-spline transformation was applied on affine
initialization to refine the local alignment. The mutual information
was used as the evaluation matrix to optimize the parameter for
both affine and b-spline transformation.

SPiCi—Spatial Proteomics informed ST spot Cell identification
method (for PhenoCycler and Visium data)
After registering the PhenoCycler DAPI image to Visium histolo-
gical image, the optimized transformation matrix was then used to
map the cells from the original PhenoCycler spatial coordinates
(x, y) to newly mapped spatial coordinates (x’, y’) that belong to the
original Visium spatial coordinate reference. With this shared
coordinate system, cells in PhenoCycler data can be grouped by
the Visium spatial radius (d= 55 μm, a diameter equivalent to a
Visium spot size) using the transferred spatial coordinates (x’, y’)
and the coordinate of the Visium spot (x, y). The mapping is based
on the assumption that cell type composition at the two
corresponding spots in two adjacent tissue section remain mostly
similar, even when the cells are not identical. In the integrated
dataset, each Visium spot contains thousands of gene expression
profiles and all the protein measured in the PhusionCycler data. As
the result, the PhusionCycler-defined cells are mapped to Visium
spots and the mapped cells were then used to approximate the
cell type composition of Visium spots. The proportion P for each
cell type C in a particular Visium spot s can be defined as:

PCs ¼ NC

Ns
(2)

where the Ns denotes the total number of cells that fall into Visium
spot s and the total number of cells annotated as cell type C is
denoted as NC.

Detection of tumor and lymphocyte spots by deconvolution
approaches and SPiCi
Visium cell spot deconvolution was performed using five
established methods selected to represent all three categories,
including (1) referenced-based methods as in Seurat Label
Transfer18 and RCTD19; (2) spatially informed referenced-based
methods as CARD15, tangram20; and (3) reference-free method
STdeconvolve16. Publicly available scRNA-seq count data from the
National Center of Biotechnology Information’s Gene Expression
Omnibus (GSE181919) was utilized for the reference-based
deconvolution methods17. This scRNA-seq dataset was generated
from 37 HNSCC specimens (mixture of HPV+ and HPV−), with
well-annotated cell types. The reference scRNA-seq and the query
ST datasets were both normalized using SCTransform from
Seurat18 and then used as inputs for the four reference-based
methods using their own default parameter setting. Reference-
free method STdeconvolve16 only utilized normalized ST data as
input to calculate cell-type proportions across each spot.

All deconvolution methods and SPiCi were applied to the
MAR21 sample to identify within Visium spots the tumors and
Lymphocytes (the primary focus of this study). The dominant cell
type with the highest classification probability resulting from each
deconvolution method was designated as the inferred cell type.
The results of inferred cell types were subsequently compared
with the ground truth pathological annotation. Evaluation of
performance was performed utilizing accuracy metrics and
confusion matrices. The spatial distributions were visualized and
cross-compared using the STlearn software.

Ethics statements
This study was approved by the Metro South Human Research
Ethics Committee (approval #HREC/2019/QMS/49990) and The
University of Queensland (approval #2019001021) and conducted
in accordance with the Declaration of Helsinki. Participants
provided written consent after receiving a Participant Information
and Consent Form. Written informed consent was obtained from
the individuals for the publication of any potentially identifiable
images or data included in this article.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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