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Deciphering transcriptomic determinants of the divergent link
between PD-L1 and immunotherapy efficacy
Anlin Li1,2, Linfeng Luo1,2, Wei Du1,2, Zhixin Yu1,3, Lina He1,2, Sha Fu4,5, Yuanyuan Wang1,2, Yixin Zhou1,3, Chunlong Yang6,
Yunpeng Yang1,2, Wenfeng Fang1,2, Li Zhang1,2✉ and Shaodong Hong 1,2,6✉

Programmed cell death ligand 1 (PD-L1) expression remains the most widely used biomarker for predicting response to immune
checkpoint inhibitors (ICI), but its predictiveness varies considerably. Identification of factors accounting for the varying PD-L1
performance is urgently needed. Here, using data from three independent trials comprising 1239 patients, we have identified
subsets of cancer with distinct PD-L1 predictiveness based on tumor transcriptome. In the Predictiveness-High (PH) group, PD-L1+
tumors show better overall survival, progression-free survival, and objective response rate with ICI than PD-L1- tumors across three
trials. However, the Predictiveness-Low (PL) group demonstrates an opposite trend towards better outcomes for PD-L1- tumors. PD-
L1+ tumors from the PH group demonstrate the superiority of ICI over chemotherapy, whereas PD-L1+ tumors from the PL group
show comparable efficacy between two treatments or exhibit an opposite trend favoring chemotherapy. This observation of
context-dependent predictiveness remains strong regardless of immune subtype (Immune-Enriched or Non-Immune), PD-L1
regulation mechanism (adaptative or constitutive), tumor mutation burden, or neoantigen load. This work illuminates avenues for
optimizing the use of PD-L1 expression in clinical decision-making and trial design, although this exploratory concept should be
further confirmed in large trials.
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INTRODUCTION
Programmed cell death ligand 1 (PD-L1) expression remains the
most widely validated, used and accepted biomarker to guide the
selection of patients to receive immune checkpoint inhibitors
(ICI)1. Nevertheless, accumulating data from clinical trials showed a
divergent correlate of PD-L1 expression and outcomes across
cancer types1. Even in non-small-cell lung cancer (NSCLC) where
considerable efforts have been made to develop PD-L1 expression
as a companion biomarker, most patients with PD-L1+ tumors are
non-responders, while some patients with PD-L1- tumors do have
durable response to ICI2.
To better implement PD-L1 expression as a robust clinical

biomarker, previous studies have primarily focused on improving
the sensitivity and reproducibility of PD-L1 testing by evaluating
the technical and clinicopathological correlation with PD-L1
positivity3–5 or developing different means of assessing PD-L1
expression6–8. In addition, numerous groups have suggested using
PD-L1 expression jointly with tumor mutation burden and CD8+ T
cells to predict ICI response9–11. Nevertheless, they did not figure
out the weakness inherent in PD-L1 expression as a predictive
biomarker. While the misinterpretation of PD-L1 expression could
result in patients not receiving optimal clinical care, little attempt
has been made, to the best of our knowledge3–11, to explore the
determinants of PD-L1 predictiveness.
A high degree of transcriptional heterogeneity has been

characterized within PD-L1+ tumors between cancer types12, and
PD-L1 can be regulated in response to a variety of inflammatory
cytokines and oncogenic signaling pathways13, suggesting the
immunobiological role of PD-L1 may be susceptible to transcriptional

changes in tumor microenvironment (TME). Therefore, we hypothe-
size that the heterogeneous immune-related transcriptome within
and across cancer types might explain the variations in PD-L1
performance observed in clinical trials or real-world data. In addition
to immunohistochemistry (IHC)-based PD-L1 expression, this hypoth-
esis may be also applicable to RNA-seq-based PD-L1 gene (CD274)
expression7,14.
Here we put forward two subsets of patients with distinct

tumoral PD-L1 predictive capacity in three independent trials: (1)
Patients presented optimal predictive value of PD-L1 expression;
(2) Patients not only show no PD-L1 predictiveness, but PD-L1+
ones may even demonstrate worse ICI efficacy than PD-L1- ones.
Our study provides initial evidence indicating that the predictive
capacity of tumoral PD-L1 expression is context-dependent, which
can be considerably confounded by tumor transcriptome.

RESULTS
Study design and patients
The study design and summary of data were depicted in Fig. 1 and
corresponding sections in the Methods. We analyzed a broad
range of data from (1) trial-level data of randomized controlled
trials (RCTs) across cancer types; (2) molecular data of correspond-
ing cancer types from TCGA Pan-Cancer cohort and GDC
PanImmune Data Portal15; and (3) individual-patient level clinical
and RNA-seq data of 1239 patients treated with ICI or
chemotherapy from three independent clinical trials, including
699 patients from OAK (NCT02008227)2, 192 patients from
POPLAR (NCT01903993)2, and 348 patients from IMvigor210
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(NCT02108652 and NCT02951767)16,17. The OAK and POPLAR data
were formally requested from Genentech at the European
Genome-phenome Archive18, while the IMvigor210 data were
retrieved from the original publication19.
To unravel the potential source of PD-L1 predictiveness

heterogeneity, we sought to identify immune-related variables
capable of explaining the cross-cancer and within-cancer vari-
abilities in predictive value of tumoral PD-L1 expression. We then
utilized a transcriptomics-based model to reveal patient subsets
with distinct PD-L1 predictive ability in three trials (Fig. 1 and
Methods).

Identification of immuno-modulators of PD-L1 predictiveness
In the cross-cancer identification phase, 28 RCTs2,20–44 across 13
cancer types were included. Of the total 14225 patients included,
7591 (53%) received anti-PD-1/PD-L1 therapy and 6634 (47%)
received standard-of-care. All of these RCTs assessed single agent
in the subsequent-line setting. This eligibility (see Methods) was
chosen for two main reasons: (1) to minimize heterogeneity in
treatment strategy and patient characteristics; (2) the available
immunotherapy trial for individual-patient validation primarily
included patients who had received a single agent in subsequent-
line settings. More details about baseline characteristics were
listed in Fig. 1 and Supplementary table 1.
For a given cancer type, we estimated the ability of PD-L1

expression to stratify survival benefit for ICI versus standard-of-
care based on the difference in reduced risk of death/progression
between PD-L1+ and PD-L1- subgroups. Hazard ratio (HR)

indicates the risk of an event in the treatment group versus that
in the control group, and 1- HR can quantify the extent of reduced
risk of an event. Hence, the PD-L1 predictiveness for each cancer
type could calculated by the HR difference (HRD)= (1 – pooled
HRPD-L1+) - (1 – pooled HRPD-L1-)= HRPD-L1- - HRPD-L1+.
The HRD for overall survival (OS) varied considerably by cancer

type (Supplementary Fig. 1 and Supplementary table 2). The OS
benefit of PD-1/PD-L1 blockade versus standard-of-care treatment
is significantly greater in PD-L1+ than PD-L1- tumors for five
cancer types, including colorectal cancer (HRD= 1.01, P interaction
[Pi]= 0.03), breast cancer (HRD= 0.42, Pi= 0.03), gastric cancer
(HRD= 0.37, Pi= 0.01), melanoma (HRD= 0.31, Pi= 0.05), and
esophageal cancer (HRD= 0.23, Pi < 0.01). PD-L1 expression
showed insignificant predictiveness in ovarian cancer (HRD=
0.23, Pi= 0.25), head and neck cancer (HRD= 0.09, Pi= 0.62),
NSCLC (HRD= 0.08, Pi= 0.21), and bladder cancer (HRD= 0.04,
Pi= 0.76). The predictive capacity of PD-L1 lost and showed an
opposite trend in kidney clear cell carcinoma, small-cell lung
cancer, mesothelioma, and glioblastoma (HRD= -0.02, -0.05, -0.35,
and -0.38, respectively). Repeating this analysis using progression-
free survival (PFS) showed similar ranking (Supplementary Fig. 2
and Supplementary table 3), and we observed a significantly
positive correlation between OS and PFS HRD (P= 0.02, Spearman
correlation, Supplementary Fig. 3).
To evaluate the association between each candidate variable

and cross-cancer PD-L1 predictiveness variation, we calculated the
median values of selected variables in TCGA and evaluated their
correlations with the HRD derived from RCTs across cancer types.
Many studies have justified using this cross-cancer correlative
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Fig. 1 Graphical representation of the study design. RCTs randomized controlled trials, ICI immune checkpoint inhibitor, Cox-PH Cox
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analysis to find predictors of ICI response or immune-related
adverse events11,45,46. We excluded bladder cancer, ovarian
cancer, and head and neck cancer from this analysis due to a
substantial heterogeneity between trials (Supplementary Figs. 1, 2
and Supplementary table 4). We first assessed four previously
established immunotherapy biomarkers (Interferon [IFN]-γ signa-
ture, CD8 score, tumor mutation burden [TMB], and tumor
neoantigen burden [TNB])47 (Supplementary table 5) and found
none of them significantly correlated with HRD for OS or PFS
across cancer types (Supplementary Fig. 4), suggesting that the
variation in PD-L1 predictiveness between different cancer types is
probably not attributed to the level of other predictive
biomarkers. Our results are in line with several studies indicating
the independence between these biomarkers in predicting
immunotherapy efficacy3,9,10,48.
Subsequently, we broadened our exploration to 1058 key

immune-related genes involved in core TME immune signatures
(Supplementary table 6), which was derived from a seminal pan-
cancer immune landscape resource15. Correlation analysis
between the median values of these genes in TCGA and HRD
across cancer types resulted in 177 and 108 genes that
significantly correlated with OS and PFS HRD across cancer types,
respectively, with P values less than 0.05; among these, 31 genes
were found to be significantly correlated with both OS and PFS
HRD (Supplementary Fig. 5 and Supplementary table 7).
In the following within-cancer-level analysis, the 31 genes were

subjected to the Cox proportional hazard (Cox-PH) model in
atezolizumab-treated patients from OAK. OAK was used as an
exploration cohort because it is a phase III study that can provide
more confidence. POPLAR and IMvigor210 were later used as
validation cohorts. The z-value was calculated to estimate the
interaction effects between genes and PD-L1 predictiveness (see
Methods). This method has been proven to effectively estimating
interaction of any two variables on prognosis49,50. Intriguingly,
the majority of top hits derived from the gene sets CSR_Acti-
vated_15701700 and CHANG_CORE_SERUM_RESPONSE_UP51,52,
implying that a transcriptional program in fibroblast serum
response may affect PD-L1 predictiveness (Supplementary table
8). We identified CDKN1C gene as the strongest modulator, with a
z-value of 2.50 (P= 0.01) and 2.28 (P= 0.02) for OS and PFS,
respectively. To demonstrate the presence of context-dependent
PD-L1 predictive capacity, we developed a PD-L1 predictiveness
score (PD-L1 PS) based on a linear regression between CDKN1C
and OS PD-L1 predictiveness across cancer types (PD-L1
PS=−0.76 × CDKN1C+ 2.81; Supplementary Fig. 6) and bifur-
cated patients into Predictiveness-High (PH) and Predictiveness-
Low (PL) based on the median value of PD-L1 PS.

Context-dependent capacity for PD-L1 expression to predict
ICI efficacy
Baseline characteristics according to tumoral PD-L1 expression
was comparable between PH and PL groups in OAK, POPLAR, and
IMvigor210 trials (Supplementary tables 9–11). As expected, using
the median value of PD-L1 gene expression for grouping in each
trial, there were higher proportions of patients with PD-L1 ≥ 1% by
IHC in patients with high (PD-L1-High) versus low (PD-L1-Low) PD-
L1 gene expression.
Among patients receiving ICI from OAK trial, the PH group

demonstrated significantly longer OS (HR 0.59, 95% confidence
interval [CI] 0.36–0.98, P= 0.04, Log-rank test) and PFS (HR 0.51,
95% CI 0.33–0.79, P= 0.002, Log-rank test) in PD-L1 ≥ 1% tumors
than in PD-L1 < 1% tumors (Fig. 2a). In stark contrast, the PL group
showed a trend toward shorter OS (HR 1.35, 95% CI 0.81–2.25,
P= 0.2, Log-rank test) and PFS (HR 1.23, 95% CI 0.79–1.92, P= 0.4,
Log-rank test) (Fig. 2a) in PD-L1 ≥ 1% versus PD-L1 < 1% tumors.
Additionally, PD-L1 ≥ 1% tumors from PH group had significantly
higher objective response rate (ORR) than PD-L1 < 1% tumors

(33% vs 0%, P= 9.6 × 10-5, Fisher’s exact test), whereas PD-L1 ≥ 1%
tumors from PL group did not show increased ORR (14% vs 14%,
P= 1, Fisher’s exact test) (Fig. 2b). Similar results were seen when
analyzing PD-L1 gene expression (Fig. 2c, d). We observed a
consistent trend when dividing patients into three PD-L1
subgroups, using cutoffs of 1% and 50% for IHC and cutoffs of
25% and 75% percentiles for RNA-seq data (Supplementary Fig. 7).
For instance, ORR were 0%, 23.1%, and 45.5% for PH patients with
PD-L1 expression of <1%, 1–50%, and ≥50%, respectively.
However, PL patients with PD-L1 expression of 50% or higher
still showed worse ORR compared to those with PD-L1 < 1%
tumors (7.7% vs 13.6%).
Similar analyses were done in POPLAR trial. PD-L1 ≥ 1% tumors

from PH group were associated with improved OS (HR 0.38, 95%
CI 0.18–0.82, P= 0.01, Log-rank test), PFS (HR 0.60, 95% CI
0.31–1.17, P= 0.1, Log-rank test), and ORR (33% vs 9%, P= 0.1,
Fisher’s exact test) compared to PD-L1 < 1% tumors. However, an
opposite trend was seen in PL group for OS (HR 2.22, 95% CI
0.97–5.12, P= 0.05, Log-rank test), PFS (HR 1.11, 95% CI 0.50–2.45,
P= 0.8, Log-rank test), and ORR (0% vs 10%, P= 1, Fisher’s exact
test) (Fig. 3a, b). The disparity of PD-L1 predictive value between
the two groups was also striking when analyzing PD-L1 gene
expression (Fig. 3c, d). In PL group, PD-L1-High tumors had
significantly worse OS (HR 2.24, 95% CI 1.20–4.20, P= 0.01, Log-
rank test) and PFS (HR 2.32, 95% CI 1.25–4.31, P= 0.006, Log-rank
test), and showed a trend towards lower ORR (0% vs 15%,
P= 0.28, Fisher’s exact test), as compared with PD-L1-Low tumors.
Similar findings were derived when analyzing three PD-L1
expression levels (Supplementary Fig. 8). The ORR were 8.7%,
18.2% and 57.1% in PH group, and those in PL group were 9.7%,
0%, and 0% for patients with PD-L1 expression of <1%, 1–50%,
and ≥50%, respectively. Similar to OAK, the Cox-PH interaction
test between CDKN1C and PD-L1 expression was significant
(OS: z-value= 3.09, P= 0.002; PFS: z-value= 3.27, P= 0.001;
Supplementary table 12).
To prove that this phenomenon is not restricted to NSCLC, we

further applied the PD-L1 PS in 348 patients with bladder cancer
from IMvigor210 trial. In PH group, PD-L1 ≥ 1% tumors improved
OS (HR 0.69, 95% CI 0.43–1.10, P= 0.1, Log-rank test) and ORR
(27% vs 18%, P= 0.22, Fisher’s exact test) as compared with PD-
L1 < 1% tumors, whereas the trends were reversed for OS (HR 1.59,
95% CI 1.04–2.44, P= 0.03, Log-rank test) and ORR (23% vs 27%,
P= 0.81, Fisher’s exact test) in PL group (Fig. 4a). We observed
more noticeable results when using 5% as the cutoff for PD-L1
positivity (Fig. 4b). The HR of OS (HR 0.58, 95% CI 0.34–1.00,
P= 0.05, Log-rank test) and ORR (33% vs 17%, P= 0.09, Fisher’s
exact test) favored PD-L1+ tumors in PH group, while the HR of
OS (HR 1.86, 95% CI 1.15–3.02, P= 0.01, Log-rank test) and ORR
(11% vs 28%, P= 0.16, Fisher’s exact test) favored PD-L1- tumors
in PL group. These results were markedly different from the
original publication of IMvigor21019, which showed no difference
in ORR between PD-L1 subgroups based on a cutoff of 1% or 5%.
Similar results were seen when analyzing PD-L1 gene expression
by two or three levels (Fig. 4c and Supplementary Fig. 9). While
there was a clear monotonic relationship between an increasing
PD-L1 gene expression and ORR in PH group (10.4%, 19.4%, and
32.4% for low, intermediate, and high expression), the trend was
reversed in PL group (27.6%, 26.3%, and 24.3% for low,
intermediate, and high expression). Similar to OAK and POPLAR,
the Cox-PH interaction test between CDKN1C and PD-L1 expres-
sion was significant (OS: z-value= 2.57, P= 0.01; Supplementary
table 12).

Context-dependent capacity for PD-L1 expression to predict
benefit of ICI over chemotherapy
We interrogated whether the capacity of tumoral PD-L1
expression in predicting efficacy of ICI versus chemotherapy
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was also influenced by our proposed PD-L1 predictiveness.
Among PH patients from OAK trial, PD-L1 ≥ 1% tumors
exhibited significantly improved OS (HR 0.53, 95% CI
0.33–0.84, P= 0.006, Log-rank test), PFS (HR 0.49, 95% CI
0.32–0.75, P= 0.0009, Log-rank test), and ORR (34% vs 8%,
P= 0.002, Fisher’s exact test) with atezolizumab versus
docetaxel, whereas PD-L1 < 1% tumors showed insignificant

findings for these outcomes (Fig. 5a, b and Supplementary Fig.
10). However, PD-L1 ≥ 1% tumors from the PL group showed
comparable efficacy between two treatments or presented an
opposite trend towards benefit with docetaxel (Fig. 5a, b
and Supplementary Fig. 11). We obtained similar results when
using PD-L1 gene expression (Fig. 5c, d and Supplementary
Figs. 12, 13).
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Repeating these analyses in POPLAR trial also yielded contrast-
ing findings between the PH and PL groups (Supplementary Figs.
14–18). Although PD-L1 gene expression has been associated with
enhanced survival benefit of atezolizumab versus docetaxel in the
previous publication of POPLAR trial14, we found a completely
reverse trend for PL patients. The HR of OS (HR 1.63, 95% CI
0.82–3.23, P= 0.2, Log-rank test) and PFS (HR 2.30, 95% CI
1.16–4.56, P= 0.01, Log-rank test) favored docetaxel in PD-L1-High
tumors, while the HR of OS (HR 0.67, 95% CI 0.38–1.19, P= 0.2,
Log-rank test) and PFS (HR 0.76, 95% CI 0.44–1.31, P= 0.3, Log-
rank test) favored atezolizumab in PD-L1-Low tumors (Supple-
mentary Fig. 18).

Context-dependent PD-L1 predictiveness maintains
regardless of immune subtype
The upregulation of PD-L1 in TME is mainly driven by IFN-γ,
representing a negative feedback event to inhibit the adaptive
immune response13,53. On the other hand, many oncogenic
pathways can lead to constitutive PD-L1 expression, which may
not provide predictive value for ICI due to the absence of a pre-
existing anti-tumor immunity13,53.
We thus asked whether the observed distinct predictiveness of

PD-L1 between PH and PL groups stem from differences in PD-L1
upregulation mechanism. Analyses were performed in the three
trials, separately. Unexpectedly, both PH and PL groups
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demonstrated comparably increasing levels of three inflammatory
biomarkers, including IFN-γ signature, T-cell inflamed gene
expression profile (GEP), and CD8 score, in PD-L1-High versus
PD-L1-Low tumors (Supplementary Fig. 19). These data indicate
that a T-cell inflamed TME dominates PD-L1 upregulation
regardless of PD-L1 predictiveness. This notion was further
supported by the observation that PD-1-high CD8+ T cells
showed a significant correlation with PD-L1 across the PH and
PL groups in each trial (Supplementary Fig. 20). More convincingly,
we examined the enrichment levels of several canonical

pathways13,53 involved in adaptive or constitutive PD-L1 upregula-
tion, and found that the strength of correlation between PD-L1
and adaptive immune evasion pathways was markedly greater
than that between PD-L1 and constitutive pathways in each trial,
irrespective of PD-L1 predictiveness (Supplementary Fig. 21).
We subsequently predicted relative TME cell proportions in

each trial using Kassandra, which showed better single-cell-level
accuracy and stability than previous tools54. Unsupervised
clustering of cells identified two immune subtypes in both PH
and PL groups, with Immune-Enriched Subtype harboring
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abundant lymphocytes in contrast to predominantly tumor cells
and relative paucity of immune cells in Non-Immune Subtype
(Supplementary Figs. 22, 23). There were higher proportions of
Immune-Enriched Subtype tumors in PD-L1-High versus PD-L1-
Low tumors, irrespective of PD-L1 predictiveness (Supplementary
table 13). Importantly, both Immune-Enriched and Non-Immune
subtypes retained an expected disparity in PD-L1 predictiveness
between PH and PL tumors (Supplementary Fig. 24), indicating
that TME components beyond lymphocyte infiltration can
influence the PD-L1 predictiveness.
In addition to the PD-1/PD-L1 axis, expressions of other immune

checkpoints such as CTLA4, TIM3, and LAG3, may contribute to
PD-L1-independent adaptive resistance and relate to reinvigora-
tion potential of dysfunctional T cells55. We found that expression
of PD-L1 in PH patients and that in PL patients exhibited a similar
correlation pattern with other immune checkpoints in each trial
(Supplementary Fig. 25). Thus, checkpoint-driven T-cell exhaustion
was also unlikely to be responsible for driving distinct PD-L1
predictiveness.
Similar to PD-L1 expression, we also observed diminished

abilities for IFN-γ signature, GEP, or CD8 score to predict ICI benefit
in PL group in each trial (Supplementary Fig. 26), probably
because of their tight relationships with PD-L1 expression.
Similarly, while Immune-Enriched Subtype tumors were associated

with significantly longer OS when compared to Non-Immune
Subtype tumors in PH group, the magnitude of increased benefits
was smaller or reversed in PL group (Supplementary Fig. 27).
Collectively, in this section, we demonstrated that tumoral PD-

L1 predictiveness is at least partially independent of factors
including PD-L1 regulation mechanism (adaptive or constitutive),
immune subtype (Immune-Enrich or Non-Immune), and expres-
sion of immune checkpoints other than PD-L1. In addition, not
only the predictive value of PD-L1 expression, but also that of
other inflammatory biomarkers can be influenced by our
proposed PD-L1 predictiveness.

Context-dependent PD-L1 predictiveness maintains
regardless of tumor antigenicity
TMB and TNB are indicative of tumor immunogenicity and they
predict ICI response independently of PD-L1 expression9,10. We
sought to evaluate the robustness of our proposed PD-L1
predictiveness in different conditions of TMB or TNB. The OAK
and IMvigor210 trials provided data for TMB, while only the
IMvigor210 trial provided data for TNB. We used a threshold value
of 16 mut/Mb to classify patients into high TMB or low TMB group,
and the median level for the TNB groupings. In each trial, the
phenomenon of context-dependent PD-L1 predictiveness
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remained strong in each subgroup by TMB (Supplementary
Fig. 28) or TNB (Supplementary Fig. 29). Unlike the aforemen-
tioned inflammatory biomarkers, the predictive values of TMB and
TNB were not affected by PD-L1 predictiveness (Supplementary
Figs. 30, 31). Therefore, TMB and TNB that capture distinct feature
of tumor antigenicity may be used to predict ICI response for PL
patients.

Stomal cells might underlie the context-dependent PD-L1
predictiveness
Prompted by findings in our previous section showing that PD-L1
predictiveness may be obscured by the pathophysiological status
of fibroblast (Supplementary table 8), we thus directly compared
cell components between PH and PL groups in each trial. As
expected, there were higher levels of stromal cells, including
fibroblasts and endothelium, in PL tumors than in PH tumors
(Fig. 6a and Supplementary Fig. 32). We further found that PL
tumors were enriched for stroma-related activities, such as
extracellular matrix organization, collagen metabolic process,

fibroblast migration, and endothelial cell-matrix adhesion
(Fig. 6b and Supplementary Fig. 33). To test the generalizability
of the association between PD-L1 predictiveness with T-cell
infiltration, we expanded our analysis to all TCGA cancer types.
The results showed a significantly negative correlation of PD-L1 PS
with fibroblast, endothelial cell, and stromal score in approxi-
mately half of cancer types (Supplementary Fig. 34).
Next, we examined the expression of the CDKN1C gene (PD-L1

PS gene) at the single-cell level across several cancer types in 10
single-cell RNA-seq datasets from Ru et al. 56. We found that
cancer-associated fibroblasts (CAFs) are the main TME cells
expressing CDKN1C (Fig. 6c). Using the largest single-cell atlas of
CAFs57, we further observed higher expression of CDKN1C in
adipo-genic CAFs (CAF-adi) and CAFs that exhibit endothelial-
mesenchymal transition (CAF-EndMT) than in other subsets of
CAFs (Fig. 6d). CAF-EndMT exhibited transcriptional pattern of
both fibroblasts and endothelial cells57, which was consistent with
previous enrichment analyses of TME cells and pathways.
Although providing a definitive mechanism will require further
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Fig. 6 Exploration of potential mechanisms underpinning the distinct PD-L1 predictiveness. a The fraction of Kassandra-based cells in
Predictiveness-High group versus Predictiveness-Low group in OAK trial. The results of a similar analysis in POPLAR and IMvigor210 trials were
shown in Supplementary Fig. 32. The cutoff of PD-L1 predictiveness score was the median value of total intention-to-treat patients in each
trial. The “Stromal cells” were calculated as a sum of “Endothelium” and “Fibroblasts” values. The “Other” indicated all cells not deconvolved by
Kassandra, mainly including malignant cells and benign epithelial cells. The horizontal line in the boxes represents the median value. The
bottom and top of the boxes are the lower and upper quartiles. The whiskers encompass 1.5 times the interquartile range. P value indicates
Wilcoxon rank-sum test. The range of P values is labeled with asterisks. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. b Association of PD-L1
predictiveness score with pathways related to stromal activity in OAK trial. Data were represented as the z-score of population enrichment
across each trial. The results of a similar analysis in POPLAR and IMvigor210 trials were shown in Supplementary Fig. 33. c CDKN1C expression
in single-cell level based on a meta-cohort of 10 single-cell RNA-seq datasets. The horizontal line in the boxes represents the median value.
The bottom and top of the boxes are the lower and upper quartiles. The whiskers encompass 1.5 times the interquartile range. d CDKN1C
expression in fibroblast subpopulation at single-cell level based on the largest single-cell fibroblast database to date (https://gist-fgl.github.io/
sc-caf-atlas/#) [14]. ECM extracellular matrix, CAF cancer-associated fibroblast, cDC conventional dendritic cells, pDC Plasmacytoid dendritic
cells, NSCLC non-small-cell lung cancer, SKCM melanoma, COAD colon cancer, HNSC head and neck cancer, BRCA breast cancer, LIHC liver
cancer.
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studies in controlled experimental systems, these data collectively
pointed towards the potentially biological role of stromal cells in
determining PD-L1 predictiveness.

DISCUSSION
Despite accumulating evidence showing the controversial predic-
tiveness, PD-L1 expression is currently the most widely used and
accepted biomarker to select patients to receive anti-PD-1/PD-L1
therapies, and four IHC assays have been approved by Food and
Drug Administration as companion diagnostics1. Improved under-
standing of factors underlying the variability in PD-L1 predictive-
ness is essential for precision immunotherapy. This study provides
initial evidence indicating that the predictive capacity of PD-L1
expression measured by IHC or RNA-seq is context-dependent. PH
group exhibited an evident improvement of ICI efficacy for PD-
L1+ versus PD-L1- tumors, but the predictive value of PD-L1
expression vanished or outcomes even trended towards benefit
for PD-L1- tumors in PL group. Clinical decision based on PD-L1
expression might be ineffective or even harmful for PL patients
who account for approximately half of patients in the three trials
we analyzed, cautioning against indiscriminately using PD-L1
expression to guide ICI treatment.
The present analysis found that only five out of 13 assessed

cancer types showed a sufficiently strong association between PD-
L1 status and OS benefits from anti-PD-1/PD-L1 therapies versus
standard-of-care. Four cancer types showed an opposite trend
towards better efficacy in PD-L1- tumors. These data indicates that
clinical trials may fail if investigators blindly use PD-L1 positivity to
limit patient enrollment or define the target population for
assessing primary endpoint, especially in cancer types with a
substantial number of PL patients. Notably, we found a lack of PD-
L1 predictiveness for NSCLC, where an increasing OS with anti-PD-
1/PD-L1 was seen in both PD-L1+ and PD-L1- patients. This
aligned with the final results of OAK and POPLAR trials which
showed a survival benefit of atezolizumab over docetaxel
regardless of PD-L1 expression2. The 4-year OS rates were
comparable between PD-L1+ and PD-L1- tumors in OAK (17%
vs 14%) and POPLAR (15% vs 15%)2. Thus, PD-L1 expression can
neither achieve consistent predictive value across cancer types
nor precisely determine whether or not a patient could derive
long-term survival benefits within a cancer type.
Following the predominant focus on technical challenges of PD-

L1 testing1, additional effort would be required to explore which
groups of patients could benefit from treatment decision based
on PD-L1 stratification and which populations need additional
biomarkers to guide precise selection. In this regard, our work
highlights the importance of individualizing application of PD-L1
expression in different TME contexts of PD-L1 predictiveness. Our
findings caution that many patients’ treatment decisions might be
misguided by PD-L1 expression due to low PD-L1 predictiveness.
Using 1% as PD-L1 positivity cutoff, the risk of death was 35%
higher in PD-L1+ than in PD-L1- tumors among PL patients in OAK
trial, and that was 122% in POPLAR trial. In PL patients from
IMvigor210 trial, PD-L1+ tumors were associated with an
increased risk of death by 59% and 86% compared with PD-L1-
tumors when using cutoffs of 1% and 5%, respectively.
Intriguingly, the PL group also demonstrated low predictive

values for other well-established inflammatory biomarkers,
including IFN-γ signature, GEP, and CD8 score. These findings
aligned with current evidence that revealed a double-edged role
of IFN-γ signaling in association with response to ICI58–60. Contrary
to the common concept that IFN-γ is necessary for anti-tumor
immune response and is linked to the efficacy of ICI, enhancing
IFN-γ signaling can lead to resistance58 or hyper-progression59 to
ICI in certain contexts. Our work and these studies jointly
emphasize the importance of delineating the biological

heterogeneity of currently standard biomarkers, such as PD-L1
expression.
The PD-L1 predictiveness identified here is unaffected by

immune subtype, PD-L1 regulation mechanism, and tumor
antigenicity. Rather, our preliminary mechanistic exploration
suggests that the variation of PD-L1 predictive ability may be
attributable partly to distinct stromal quantity and quality. We
observed a higher level of stromal cells (fibroblasts and endothe-
lium) and stroma-related pathways in PL than in PH tumors.
Moreover, the analysis of single-cell data confirmed high expression
of CDKN1C in CAFs, especially in CAF-adi and CAF-EndMT subsets.
CAFs predominate tumor stroma and consist of highly hetero-
geneous subpopulations that can exert immunosuppressive (ICI-
resistant phenotype) or immunostimulatory (ICI-responsive pheno-
type) effect dependent on the certain TME context61,62. Given the
plasticity of CAFs, we propose two hypotheses to explain the
divergent PD-L1 predictiveness. Firstly, CDKN1C+ CAFs within the
PD-L1+ TME may transition into a suppressive state through
interactions with PD-L1+ tumor or immune cells, as well as other
cells commonly found in an inflamed TME, such as plasma cells and
dendritic cells. As a result, these CAFs can curtail the immune
response and counteract the positive predictive capacity of PD-L1.
Alternatively, CDKN1C+ CAFs may undergo phenotypic changes to
become immunosuppressive in response to altered signaling (e.g.,
cytokines) following the blockade of PD-1/PD-L1 in the PD-
L1+ TME. To validate these hypotheses, future mechanistic studies
may evaluate single-cell-level transcriptomic profiles from baseline
and on-treatment samples of both PD-L1+ and PD-L1- cases with
matched clinical information of ICI efficacy.
One of the major limitations of this work is that the current

analyses make it difficult to provide a definitive mechanism
underlying the distinct PD-L1 predictiveness. Additionally, the study
was exploratory in nature, and the technical and statistical pipelines
are not perfect. Raw reads and count data, except for the
IMvigor210 study (the distribution of counts is shown in Supplemen-
tary Fig. 35), were unavailable, increasing the risk that our methods
are susceptible to technical factors such as read depth, tumor fraction,
and other aspects of library preparation or in-silico factors.
Considering the limited number of included cancer types renders
low power to detect differences during cross-cancer correlative
analysis, adjustments for multiple comparisons were not made.
Nevertheless, our study demonstrated that a proportion of

patients’ treatment decisions might be misguided by PD-L1
expression due to TME, which may prove helpful for selecting
suitable candidates for PD-L1 testing. Importantly, we confirmed
the consistency of clinical and molecular observations in three
large clinical trials involving over 1200 patients, which adds
confidence to the results. Taken together, further studies are
necessary to determine whether our proposed concept of PD-L1
predictiveness and associated biological aspects are generalizable
to other unexplored treatment strategies, patient characteristics,
and PD-L1 scoring cutoffs.
In conclusion, our work reveals previously unappreciated

context-dependent capacity for PD-L1 expression to predict
benefit of ICI, which fill an important gap in our understanding
of the varying PD-L1 performance. Classifying PD-L1 predictive-
ness based on tumor transcriptome information might be a
promising strategy to guide the personalized application of PD-L1
expression in predicting immunotherapy outcomes, although this
concept requires further confirmation.

METHODS
Search strategy, selection criteria, and data extraction for
randomized controlled trials
We performed a systematic literature search of PubMed, EMBASE,
MEDLINE, and Scopus to identify phase 2 and 3 randomized
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controlled trials (RCTs) published prior to August 16, 2022. The
search terms included “PD-1”, “PD-L1”, “nivolumab”, “atezolizu-
mab”, “pembrolizumab”, “cemiplimab”, “avelumab”, “durvalumab”,
“tislelizumab”, and “randomized”. Only studies published in
English were considered. References from review articles and
included studies were reviewed to ensure completeness. We
included only the most updated or final results of RCTs when
several publications of the same trial were identified.
To be eligible, randomized trials had to assess PD-1 or PD-L1

inhibitors versus standard-of-care in subsequent-line setting, and
had to have data available for the hazard ratio (HR) and 95%
confidence interval (CI) for death or progression in PD-L1+ and/or
PD-L1- subgroups. The scoring method and threshold of PD-L1
immunohistochemistry (IHC) positivity were eligible in any of the
followings: tumor proportional score (TPS) of 1%, combined
positive score (CPS) of 1, tumor cells (TC) of 1%, tumor-infiltrating
immune cells (IC) of 1%, or other means used to define PD-L1
positivity by investigators. We excluded studies that compared
anti-PD-1/PD-L1 agents with placebo, studies that presented
survival curves without reporting HRs and 95% CIs, and studies
that only evaluated combination treatment. We also excluded
studies that only reported the results of either the PD-L1+ or PD-
L1- subgroups if, in a particular cancer type, only one trial was
available. This is because, in such cases, the PD-L1 predictive
capacity cannot be evaluated for that cancer type.
From each study, we extracted the name of study, year of

publication, cancer type, study phase, line of therapy, target of
inhibitor, study drug, PD-L1 antibody clone, PD-L1 scoring
method, cell subset for evaluation, number of patients, and HR
and CI according to PD-L1 expression status.

Collection of molecular data from TCGA
We derived clinical (https://tcga-pancan-atlas-hub.s3.us-east-
1.amazonaws.com/download/Survival_SupplementalTable_S1_20
171025_xena_sp) and transcripts per million (TPM)-normalized
RNA-seq data of TCGA Pan-Cancer cohort (https://toil.xenahubs.
net/download/tcga_RSEM_gene_tpm.gz) from UCSC Xena brow-
ser. Normal samples coded with “11” were removed. The Toil63

was used to perform the RNA-seq pipeline. CutAdapt was
employed to remove extraneous adapters, while STAR was utilized
for alignment and read coverage, and RSEM was employed for
expression quantification. The STAR and RSEM indexes were
constructed using the HG38 reference genome and Gencode’s v23
comprehensive CHR annotation file.
Tumor mutation burden (TMB) was calculated using nonsynon-

ymous SNP and INDEL mutations per megabase via whole exome
sequencing. The data were downloaded from the mutation-
load_updated.txt file located at the GDC PanImmune Data Portal
(https://api.gdc.cancer.gov/data/ff3f962c-3573-44ae-a8f4-e5ac0ae
a64b6). The MC3 project employed multiple rules to remove poor
quality samples64. Tumor neoantigen burden (TNB) were down-
loaded from TCGA_pMHC_SNV_sampleSummary_MC3_v0.2.8.-
CONTROLLED_170404.tsv located at GDC PanImmune Data
Portal (https://api.gdc.cancer.gov/data/0d3ee0a7-0557-447b-9ada
-bc7838d1effb). The pipeline for generating TNB has been
described in details in a previous publication15. Briefly, the MC3
variant file (mc3.v0.2.8.CONTROLLED.maf) was used to extract
somatic nonsynonymous coding single nucleotide variants based
on following filters in “PASS,” “wga,” “native_wga_mix”; NCAL-
LERS > 1; barcode in whitelist where do_not_use=False; Variant_-
Classification= “Missense_Mutation”; and Variant_Type= “SNP.”
Then, potential neoantigenic peptides were identified using
NetMHCpan v3.0 based on HLA types derived from RNA-seq via
OptiType. Peptides containing amino acid mutations were
regarded as possible antigens if they showed a predicted binding
to autologous MHC.

Methods of OAK, POPLAR, and IMvigor210 trials
The OAK and POPLAR trial data have been granted permission by
Genentech/Roche, while the IMvigor210 data were publicly
available (see Data Availability section). Detailed descriptions of
the eligibility criteria and recruitment methods for OAK2, POPLAR2,
and IMvigor21016,17 trials have been reported previously. Briefly,
the randomized, multicenter, open-label phase II POPLAR and
phase III OAK trials compared atezolizumab and docetaxel among
non-small-cell lung cancer (NSCLC) patients who progressed
following platinum-based chemotherapy. The single-arm, phase
II IMvigor210 trial examined atezolizumab among patients with
locally advanced or metastatic urothelial bladder cancer across
first-line and second-line settings. These trials were done in
accordance with the Declaration of Helsinki and approval was
obtained from local ethics committees.
All patients were available for PD-L1 gene expression data,

while 361 (51.6%), 155 (80.7%), and 347 (99.7%) patients in three
trials, respectively, had available PD-L1 IHC information. PD-L1
expression on tumor cells was stained by IHC using formalin fixed
paraffin embedded (FFPE) tumor tissues, and the expression level
was scored as the sum of PD-L1+ tumor cells as a proportion of
the total number of viable tumor cells. The OAK trial used 22C3
assay and the POPLAR and IMvigor210 trials used SP142 assay.
The procedures of RNA-seq for the OAK18, POPLAR18, and

IMvigor21019 trials have been published previously. In these trials,
RNA extraction was performed on tumor samples with ≥20% tumor
cell content, of which >75% demonstrated ≥45% tumor purity. RNA
was extracted from the macro-dissection-marked H&E images (High
Pure FFPET RNA Isolation Kit, Roche). All transcriptome profiles were
generated using TruSeq RNA Access technology (Illumina). Riboso-
mal RNA reads were removed by aligning RNA-seq reads, followed
by alignment of remaining reads to the NCI Build 38 human
reference genome using GSNAP version 2013-10-10, allowing for up
to two mismatches per 75 base sequences. Transcript annotation
was based on the Ensembl genes database (release 77). Gene
expression levels were quantified by calculating the number of
reads mapped to the exons of each RefSeq gene in a strand-specific
manner, utilizing the R package Genomic Alignments. All RNA-seq
data were normalized as log2(TPM+ 0.001).
The OAK and IMvigor210 trials provided data for TMB, while

only the IMvigor210 trial provided data for TNB. Tissue TMB was
evaluated using FFPE samples through comprehensive genomic
profiling with FoundationOne. TMB ≥ 16 mut/Mb was used as a
cutoff since it has been validated in a prospective study using
FoundationOne testing65. In the OAK study, TMB was defined as
the number of somatic, coding SNVs and indels detected at an
allele frequency of ≥5%, after excluding known and likely
oncogenic driver events and germline SNPs. Any artifacts were
removed by comparing to a database comprised of normal,
healthy FFPE tissue and computational filtering for strand bias.
The details of the TMB and TNB pipeline used in the
IMvigor210 study have been published19. Briefly, TMB was
calculated based on the number of SNVs and indels detected in
coding regions, excluding known and predicted germline altera-
tions as well as known likely somatic variants. To identify
expressed mutations, we tallied RNA-seq alignments for somatic
mutations found in exome data using VariantTools’ tallyVariants
function. We then predicted the neoantigen potential of each
mutation by identifying the HLA genotypes of the subjects and
assigning the optimal HLA-neoepitope pair across all HLA alleles
and 8-11 mer peptides containing the mutation, based on the
minimum IC50 values predicted by NetMHCcons.

Identifying immuno-modulators of PD-L1 predictiveness and
constructing the PD-L1 predictiveness score
A two-step procedure was applied to identify modulators of PD-L1
predictiveness, with the intent of evaluating the association of
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each candidate variable with cross-cancer and within-cancer
variabilities in predictive value of PD-L1 expression. The variables
for screening included four biomarkers previously associated with
ICI response (Interferon [IFN]-γ signature, CD8 score, TMB, and
TNB)47, and 1058 immune-related genes from 58 gene sets that
were previously used for scoring and clustering of the pan-cancer
immune landscape15.
In the first step, for a given cancer type, we estimated the ability

of PD-L1 expression to stratify benefits of overall survival (OS) and
progression-free survival (PFS) for ICI versus standard-of-care by
computing hazard ratio difference (HRD) based on RCT data, which
was defined as the pooled HR of the PD-L1- subgroup minus that of
the PD-L1+ subgroup. Then, we calculated the median values of
selected variables of the corresponding cancer types in TCGA and
evaluated their correlations with HRD across cancer types. The
Spearman rank correlation coefficient Rs was used to estimate how
well the cross-cancer PD-L1 predictiveness variance could be
explained by a variable. Many studies have justified using this
cross-cancer correlative analysis to find predictors of ICI response or
immune-related adverse events11,45,46.
Next, variables that significantly correlated with both OS and

PFS HRD entered the second step, where an interaction test was
performed to rank variables by their interaction effects with PD-L1
predictiveness within a cancer type. This method has been proven
to effectively estimating interaction of any two variables on
prognosis49,50. We assume a multivariate Cox proportional hazard
(Cox-PH) regression model: Hazard= a × PD-L1+b × V+ d× PD-
L1 × V+ c. Hazard is the hazard of death or progression. PD-L1
and V represent the expression level of PD-L1 gene expression
and that of a candidate variable, respectively (e.g., 0 indicates
value <median, 1 indicates value ≥ median). The interaction term
of PD-L1 and V is PD-L1 × V, and the association slope between
PD-L1 and Hazard is a+ d× V. A positive or negative d value
represents that a high V will decrease or increase the beneficial
association between PD-L1 expression and survival benefit of ICI.
Identification of modulator was based on the Wald test statistic for
testing a null interaction effect, d= 0. To quantify the extent of
interaction effect, a standardized Wald test z-value for each
variable was calculated by the coefficient d divided by its
standard error.
Finally, the V with the highest z-value was used to generate the

PD-L1 predictiveness score (PD-L1 PS) based on the linear
regression model between V and OS HRD across cancer type via
the R package caret (version 6.0-94): PD-L1 PS= α ×V+ β, using a
standard leave-one-out cross-validation method.

Estimation of tumor microenvironment (TME) signature
The gene sets used in this study were summarized by
Supplementary table 14. For each dataset, before calculating the
enrichment level of each TME signature, we applied quantile
normalization to standardize the TPM data using the R package
preprocessCore (version 1.62.1). Additionally, we normalized the
expression values of each gene by subtracting the average
expression level among all samples. The levels of IFN-γ signature
and T-cell inflamed gene expression profile were calculated as the
average expression of the genes obtained from Ayers et al. 66.
CD8 score was calculated as the average expression of CD8A and
CD8B. Gene set variation analysis was conducted with gene sets
from the MSigDB database using the R package GSVA (version
1.48.1). The kernel was set by the augment kcdf= ‘Gaussian’,
based on our input expression being log2(TPM+ 0.001).

Cell deconvolution and clustering
We predicted relative TME cell proportions in the three trials based
on bulk RNA-seq by using Kassandra54, which showed better
single-cell-level accuracy and stability than previous tools. We
performed 1000 times-repeated unsupervised hierarchical

agglomerative clustering to identify cell patterns using the R
package ConsensusClusterPlus (version 1.64.0) (reps= 1000,
pItem= 0.8, pFeature= 1). Consensus cumulative distribution
function plot testing the cluster number from 2 to 6 to determine
the optimal number of clusters (maxK= 6). To enhance efficiency,
other quicker quantification methods including MCP-counter67

and ESTIMATE68 were used for TCGA Pan-Cancer cohort.

Evaluation of CDKN1C expression at single-cell level
We utilized 10 publicly available single-cell RNA-seq datasets across
various cancer types collected by Ru et al. 56, including NSCLC, head
and neck cancer, melanoma, colorectal cancer, breast cancer, and
liver cancer. Cells were clustered into different lineages and sub-
lineages based on Ru et al.‘s pipeline56, and CDKN1C expression was
evaluated in each subpopulation. Additionally, we assessed CDKN1C
expression in the largest single-cell fibroblast database to date
(https://gist-fgl.github.io/sc-caf-atlas/#)57. This database included
gene expression information for seven subsets of 104,692 fibroblasts,
including myofibroblasts, inflammatory cancer-associated fibroblasts
(CAFs), adipo-genic CAFs, endothelial-to-mesenchymal transition
CAFs, peripheral nerve-like CAFs, antigen-presenting CAFs, and
normal fibroblasts.

Statistical analysis
A random-effect model was used to pool the trial-level HRs and
95% CIs for each cancer type using the R package meta (version
6.5-0), separately in PD-L1+ and PD-L1- subgroups. Statistical
heterogeneity between trials was quantified using the I2 value.
The heterogeneity of efficacy between PD-L1+ and PD-L1-
subgroups was measured by P for interaction (Pi). In the analyses
of individual-patient level data, categorical and continuous
variables were compared by the χ2 test and Wilcoxon rank-sum
test, respectively. Kaplan–Meier method was used to estimate
median OS and PFS, and to draw survival curves. Survival between
two groups was compared by HRs and 95% CIs using Cox
regression model using the R packages survival (version 3.5-5) and
survminer (version 0.4.9), and the significance was tested by a log-
rank test. We used Fisher’s exact test to compare ORR between
two groups, and the Clopper-Pearson method for 95% CIs. The
forest-plots and the heatmaps were generated using the R
packages forestplot (version 3.1.1) and pheatmap (version 1.0.12),
respectively. All analyses were conducted using R (version 4.2.1)
and were considered statistically significant if two-sided P < 0.05.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
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