
ARTICLE OPEN

An international multi-institutional validation study of the
algorithm for prostate cancer detection and Gleason grading
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Abdukhamid Radzhabov 6, Alexander Quaas1, Peter Hammerer6, Ansgar Dellmann7, Wolfgang Hulla3, Michael C. Haffner8,
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George Netto16, Peter Caie2 and Reinhard Buettner 1

Pathologic examination of prostate biopsies is time consuming due to the large number of slides per case. In this retrospective
study, we validate a deep learning-based classifier for prostate cancer (PCA) detection and Gleason grading (AI tool) in biopsy
samples. Five external cohorts of patients with multifocal prostate biopsy were analyzed from high-volume pathology institutes. A
total of 5922 H&E sections representing 7473 biopsy cores from 423 patient cases (digitized using three scanners) were assessed
concerning tumor detection. Two tumor-bearing datasets (core n= 227 and 159) were graded by an international group of
pathologists including expert urologic pathologists (n= 11) to validate the Gleason grading classifier. The sensitivity, specificity, and
NPV for the detection of tumor-bearing biopsies was in a range of 0.971–1.000, 0.875–0.976, and 0.988–1.000, respectively, across
the different test cohorts. In several biopsy slides tumor tissue was correctly detected by the AI tool that was initially missed by
pathologists. Most false positive misclassifications represented lesions suspicious for carcinoma or cancer mimickers. The
quadratically weighted kappa levels for Gleason grading agreement for single pathologists was 0.62–0.80 (0.77 for AI tool) and
0.64–0.76 (0.72 for AI tool) for the two grading datasets, respectively. In cases where consensus for grading was reached among
pathologists, kappa levels for AI tool were 0.903 and 0.855. The PCA detection classifier showed high accuracy for PCA detection in
biopsy cases during external validation, independent of the institute and scanner used. High levels of agreement for Gleason
grading were indistinguishable between experienced genitourinary pathologists and the AI tool.
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INTRODUCTION
Digital pathology is making its way into routine diagnostic
pathology workflow. Digitization allows for more than just the
signing out of cases without a microscope; and several other
optimizations exist such as effective management of archived
cases, easy accessibility of cases for pathological and inter-
disciplinary discussions, and the automatization of many diag-
nostic pathology tasks.
Pathologic examination of prostate specimens is laborious and

time consuming due to the large number of slides per case
(50–100 slides per case). Several clinical grade, AI-based diagnostic
tools and a plethora of research algorithms were recently
published for tumor detection and Gleason grading of prostate
cancer in histological sections1–11. Recently, additional applica-
tions for detection of molecular-genetic alterations based on
tumor morphology have also been reported12,13.
Most of these studies provide appealing evidence for high

diagnostic accuracy and potential integration of the tools into
routine diagnostics. However, in most of these studies validation
material included only cases from a small number of independent
clinical centers (one or no external validation) which might
question the effective generalizability of the algorithm to material

from other pathology departments. Some of the other critical
points during algorithm development is the necessity of large
amounts of training data, quality control, and tight involvement of
pathologists in all aspects of algorithm development (data
curation, annotation, algorithm validation)1,11,12,14.
The aim of the current study is the validation of a clinical grade

AI tool for prostate cancer detection and Gleason grading from
prostate biopsy cases. The validation of tumor detection was
carried out using large multi-institutional datasets of prostate
biopsy cores from five pathology departments representing highly
heterogenous pathology lab practices digitized using three
different histoscanners. The validation of the Gleason grading
algorithm was performed using biopsy samples from two
pathology departments analyzed by 11 board-certified patholo-
gists representing 8 different countries. We show that the
performance of the AI tool for both tumor detection and Gleason
grading is indistinguishable from experienced genitourinary
pathologists. Our findings support that this AI tool can be
effectively applied to a highly heterogeneous material from
different pathology departments and digitized across different
scanner types.
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RESULTS
The AI tool and test cohort characteristics
The AI tool for tumor detection and Gleason grading (Figs. 1a, b
and 2 and Supplementary Figs. 1–3) was evaluated using six
datasets from five different pathology departments (Fig. 1c). A
very small subset of temporal separated biopsy cores from one
large cohort (UKK-1; n= 190) was used to extend the training
dataset; further cases from this cohort (UKK-2) with in total
2296 slides constituted a test cohort (timely separated cases, not
seen by the AI tool) (Fig. 1c). The histological sections from all
cohorts were digitized using Hamamatsu histoscanners (Fig. 1c)
with one cohort (WNS B; subset of cases from WNS A, slides
n= 679) digitized by both Hamamatsu and Leica scanners
(Supplementary Figs. 4 and 5). With the exception of one cohort
(ACH; ×20 magnification), all cohorts were digitized under ×40
objective magnification.

Validation of tumor detection
The AI tool provides two alternative metrics for tumor detection
which were used for the classification of single tumor cores as
either positive for tumor or not: (1) area of region(s) detected by
the algorithm as a tumor (no probability thresholding, just highest
tumor probability for a region among tissue classes recognized by
the algorithm) and (2) maximal probability for any of the regions
within a core to be a tumor. Using a small calibration subset
reserved from the training dataset we selected a threshold for
both tumor area (first approach, 0.05 mm2) and maximal tumor
tissue class probability per core (second approach, 0.85) for
classifying single cores as positive for tumor. The AI tool

parameters were frozen for further validation on external case
cohorts.
We provide validation results separately for biopsy slides with

clear classification (tumor or benign, n= 5847) and for slides with
suspicious lesions (ASAP, n= 75). As for biopsy cores with a clear
classification, very high levels of accuracy for tumor detection
were received by both approaches for tumor presence prediction
at the slide level (Fig. 3a, b). The area thresholding approach at a
selected threshold (0.05 mm2) allowed for a sensitivity, specificity,
and negative predictive value (NPV) within ranges of 0.945–0.988,
0.893–0.979, and 0.973–0.986, respectively, for the six indepen-
dent test cohorts (Fig. 3a). The second approach for the detection
of biopsy cores with prostate cancer (at the selected whole-slide
image maximal tumor probability threshold of 85%) allowed for
tumor detection with slightly higher sensitivity and negative
predictive value compared to the first approach, with a sensitivity,
specificity, and a NPV in a range of 0.971–1.000, 0.875–0.976, and
0.988–1.000, respectively, for the test cohorts (Fig. 3b). In two
cohorts (ACH, BRA) maximal levels of sensitivity and NPV (1.0)
were evident. Some variations of sensitivity and specificity are
noticeable among cohorts from different institutions, in cohorts
digitized by different scanner systems, and for ACH cohort that
was digitized using an objective magnification of ×20. These
variations are, however, from the clinical and diagnostic point of
view within acceptable ranges of specificity and sensitivity (for
detailed presentation of the structure of true and false positive
and true and false negative slides within each test cohort, see
Fig. 3c, d). On the case level, our algorithm shows sensitivity of 1.0
for tumor detection in all cohorts (Supplementary Table 6).

Fig. 1 Principle of AI tool, study design, and characteristics of study cohorts. a The AI tool consists of tissue detection-, prostate cancer
detection-, and Gleason grading-modules representing different deep learning-based algorithms. The prostate cancer detection module also
detects other tissue classes, such as benign glandular, stromal tissue, high-grade prostatic intraepithelial neoplasia (HGPIN) and some others.
b Study design includes validation of the AI tool using material from five pathology departments. Two cohorts (tumor-bearing slides) were
used for validation of Gleason grading and were analyzed by 11 board-certified pathologists and AI tool. c Slides from five departments were
included in the study. WNS B represents a subcohort of WNS A scanned by a different histoscanner. #A negligibly small subset of temporally
separated biopsy slides (UKK-1) was originally included into the training dataset. We provide this information for transparency. *This
calculation excludes UKK-1 slides. UKK University Hospital Cologne, WNS Hospital Wiener Neustadt, TRO Institute of Pathology Troidorf, ACH
University Hospital Achen, BRA Municipal Hospital Brunswick.
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Most false positive tumor misclassifications and alerts occurred
in the setting of known carcinoma mimickers as well as from
regions with dense histiocyte-rich inflammatory infiltrate (e.g.,
granulomatous prostatitis). A visual summary of these features, is
shown in Fig. 4a and Supplementary Fig. 7. During review of the
false positively highlighted regions, most of them were perceived
by pathologists as useful alerts in regions that warrant additional
attention and IHC evaluation. The analysis of biopsy slides with
false negative classifications by the algorithm is summarized in
Fig. 4b and Supplementary Fig. 6. This analysis did not reveal any
obvious morphological similarities among misclassified tumor
regions, with suboptimal tissue cutting and staining quality as well
as mechanical artifacts in at least part of the cases being the only
noticeable parameter. False negatively misclassified cores did not
affect a case level classification in any of the cases from the
cohorts. The algorithm highlighted the detection of biopsy slides
containing tumor tissue that were missed by pathologists during
initial evaluation. This information is available for the UKK-2 and
WNS cohorts where 13 single biopsy slides containing tumor
tissue, respectively, were correctly identified by the AI algorithm
(representative examples in Supplementary Figs. 8 and 9).
Among the biopsy slides with unclear classification, considered

as suspicious (ASAP) by pathologists during central review
(n= 75), 10/16 (62.5%), 24/34 (70.6%), 6/8 (75.0%), 7/13 (53.9%),
and 3/4 (75.0%) were nominated with a tumor alert for UKK-2,
WNS-A, WNS-B, ACH, and BRA datasets respectively, showing high
concordance to pathologists opinion and representing useful
alerts for further clarification (e.g., with deeper levels and
immunohistochemistry). Representative examples of such regions
are shown in Supplementary Fig. 10.

Gleason grading validation
Two cohorts of prostate biopsy cores containing tumor were
included into the Gleason grading experiments. Two hundred

forty-three whole-slide images with one or more biopsy cores
containing prostate carcinoma from UKK-2 cohort (67 consecutive
prostate biopsy cases) and 177 whole-slide images from WNS-A
cohort (60 consecutive cases) were included in this study. The
UKK-2 cohort was graded independently by a group of board-
certified pathologists (n= 10; genitourinary pathologists n= 8,
general surgical pathologists n= 2), the WNS-A cohort with the
same group of pathologists plus one other board-certified
genitourinary pathologist (n= 11). The Gleason Scoring was
performed by pathologists according to the recommendations
of Genitourinary Pathology Society, providing Gleason score and
Gleason grade group. At that, only H&E staining was used without
any knowledge of immunohistochemistry. Intraductal carcinoma
was not graded when clearly identifiable. In cases of suspicion of
intraductal carcinoma that would potentially change the overall
Gleason score for a core or lacking confidence in carcinoma
diagnosis (e.g., by very small, well differentiated, artificially
changed tumor regions) the pathologists were able to exclude
these cores from grading with respective comment. In cases
containing several biopsy cores in a single slide, a global grading
over all cores within the slide was provided by graders. In total,
227 and 159 slides with one or more biopsy cores were graded by
all pathologists from UKK and WNS cohorts, respectively.
First, we systematically compared the grading results between

single graders (pathologists and AI tool). The quadratically
weighted kappa levels for single pathologists ranged 0.62–0.80
(0.77 for AI tool) and 0.64–0.76 (0.72 for AI tool) for UKK and WNS
cohorts, correspondingly (Fig. 5a, b). Some differences in
composition of Gleason grade groups (Fig. 6a) might be
responsible for slight global differences in agreement levels
among graders on these two cohorts. In general, there was a trend
to higher graded cases in WNS cohort (Fig. 6a). Moreover, we
investigated the influence of absolute area occupied by tumor
tissue (AI tool-based estimates) on differences in grading
agreement between two cohorts (Supplementary Fig. 11). A

Fig. 2 Example of outputs provided by AI tool. The example of a biopsy slide with four biopsy cores is shown under different magnifications
(a–c). Tumor maps are provided as overlays or contours upon the original slides (red color: tumor, blue: detected tissue regions). The
quantitative metrics (including tumor area) are generated on the per slide basis. For examples of Gleason grading algorithm output see
Supplementary Figs. 1–3. Scale bars: a 1000 µm. b 200 µm. c 100 µm.

Y Tolkach et al.

3

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2023)    77 



positive correlation (Pearson’s p 0.14, p= 0.03 and p 0.24,
p= 0.003) between absolute tumor area in a slides and higher
agreement between single graders was evident, however, this was
rather weak in effect magnitude. There was also no effect of the
number of biopsy cores in single slides (UKK: single core slides
n= 198, multiple cores n= 29; WNS: n= 120, n= 39) on the
concordance levels among pathologists (Wilcoxon test p > 0.5 for
both cohorts).
Next, we analyzed subsets of 151 and 122 whole-slide images

from UKK and WNS cohorts, respectively, where consensus
concerning grading was reached with at least six pathologists
providing the same grade group (Fig. 6c, d). Quadratically
weighted kappa levels for AI tool vs. consensus opinion of
pathologists were substantially higher in such cases (UKK: 0.903,
WNS: 0.855) with even higher agreement (up to 0.958) when more
than 6 pathologists agreed on Gleason score of single slides
(Fig. 6c). Confusion tables for grading results are provided in
Fig. 6e, f and Supplementary Fig. 12A, B. Agreement levels, when
biopsies were stratified according to GG1 vs. GG2-5, was also high,
especially in cases where consensus could be reached among
pathologists (Supplementary Fig. 12C, D). Detailed information on
grading results of biopsies where consensus among pathologists
was not reached is presented in Supplementary Figs. 13 and 14.
Additionally, we performed an analysis of how grading of single
pathologists and AI tool compares, when these single pathologists
are not included into consensus grading calculation (Supplemen-
tary Fig. 15). Representative cases with major disagreement
among graders are provided in Fig. 7, with disagreement mostly
stemming from well-known, subjective interpretation of gland
architecture.

Comparison to publicly available algorithms
Additionally, we tested a state-of-the-art publicly available
algorithm (winning algorithm from recent, large PANDA challenge
to prostate cancer detection and Gleason grading8) on our tumor
detection and Gleason grading datasets (details to

implementation in Supplementary Methods). The performance
of PANDA algorithm for Gleason grading was inferior compared to
our algorithm (for PANDA and developed algorithm, respectively,
quadratically weighted kappa for WNS dataset: 0.69 vs. 0.72, for
UKK dataset 0.72 vs. 0.77; Supplementary Table 4) with
substantially inferior results for tumor detection (Supplementary
Table 3).

DISCUSSION
Prostate cancer detection in histological sections of multiregional
prostate biopsies and Gleason grading of the detected carcinoma
are routine, laborious pathology tasks. Artificial intelligence-based
algorithms proved to be accurate tools in many tumor types,
including prostate cancer1–11,15. In this study, we clinically validate
an AI-based tool (recently received an CE-IVD certification) for
tumor detection and Gleason grading in histological sections of
prostate core biopsies (Figs. 1a, b and 2 and Supplementary Figs.
1–3). This validation study is one of the largest clinical validation
studies of AI tool for digital pathology to date. It includes 6
datasets stemming from 5 pathology departments and compris-
ing >5900 diagnostic slides, scanned with three different scanners
and at two different magnifications (Fig. 1c). The amount of
heterogeneity concerning different lab techniques, quality of
cutting, staining, digitization, captured by the study cohort is
enormous (Supplementary Figs. 4 and 5) and represents “real-
world” practice without pre-selection of cases.
The AI tool showed a high accuracy for prostate adenocarci-

noma detection. In the study we tested two slightly different
approaches to render single biopsy cores positive or negative for
tumor (Fig. 3). Both approaches provided very similar tumor
detection accuracy metrics (Fig. 3a, b). However, our approach,
using aggregated maximal probability of tissue regions being a
tumor systematically provided better balance between very high
sensitivity (0.975–1.000) and negative predictive value
(0.988–1.000) and high specificity. This was true in all six

Fig. 3 Tumor detection accuracy of AI tool. Analysis includes biopsy slides with clear classification into benign or tumor-bearing (excluding
75 slides with “suspicious” regions, s. Fig. 1c). a Using maximal probability of being a tumor for different regions of single slides for
identification of biopsy slides with tumor tissue. These thresholds were identified on a small internal validation dataset during algorithm
development. b Using area threshold for identification of biopsy slides with tumor tissue. Confusion matrices for single slide AI-based
classification compared to ground truth information: c Using a probability threshold, d Using a tumor area threshold. ACC overall accuracy, F1
F1 score, PPV positive predictive value, NPV negative predictive value, SENS sensitivity, SPEC specificity, AI: Ben slides classified as benign by AI
tool, AI: Tu slides classified as tumor-bearing by AI tool, GT: Ben ground truth: benign slides, GT: Tu ground truth: slides containing tumor.
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independent datasets used for validation. High NPVs/sensitivity
are naturally of particular importance for routine diagnostic cases.
Importantly, an additional value of the AI tool was demonstrated
by its detection of biopsy cores containing tumor tissue that was
missed by pathologists during initial review (up to 13 cores per
cohort, see “Results”). Even if it did not have any implications for
the whole case status in our study, it might certainly have,
especially in pathology departments not sub-specialized in
genitourinary pathology.
Most false positive tumor misclassifications issued by the AI tool

stemmed from known mimickers of carcinoma or morphologically
complex regions representing useful alerts for pathologists in
clinical practice (Fig. 4a and Supplementary Fig. 7). False negative
tumor detections were occasionally evident with at least some of
them arising in regions with mechanical/cutting artifacts or other
quality control issues (out-of-focus regions), a known problem for
AI-based algorithms14. This warrants two strategies to be
implemented. First, AI tool predictions in context of any artifacts
should be interpreted by pathologists with additional caution.
Second, using an automatized quality control tool before
processing slides with tumor detection algorithm might be of
additional benefit as the former will identify and highlight or mask
all artificially changed regions during the tumor detection step.
Several studies published to date have validated clinical grade

AI-based algorithms for prostate cancer detection in histological
sections using external data, summarized in Supplementary Table
1. Campanella et al.1 developed an algorithm based on the weakly
supervised approach using 12,132 core needle biopsy slides which
was validated using external dataset of another 12,727 slides
reaching AUROC of 0.986. The AUROC might be a suboptimal
metric for diagnostic tools in certain circumstances16 and does not
allow a direct comparison to the results of the actual study as we
use a fixed threshold (AUROC value for our tool in the
development study was 0.99211). An updated version of the
Campanella et al. algorithm was validated clinically in three
studies2,10,17. In the study of Raciti et al.17 a dataset consisting of
232 slides (slide with tumor n= 93, without intraductal carci-
noma). The sensitivity and specificity of the algorithm for

detection of “suspicious” slides was 0.96 (4/93 slides with tumor
missed) and 0.98, respectively. Authors show improvements of
pathologists’ sensitivity using the same cases after a wash-out
period of 4 weeks when assisted by algorithm. In the study of da
Silva et al.2, the sensitivity and specificity on a dataset containing
579 slides from 100 patients was 0.99 and 0.93, respectively, with
some slides excluded from analysis due to disagreement of
pathologists on the ground truth status. In the study of Perincheri
et al.10 algorithm reached sensitivity of 0.977 and specificity of
0.993 for detection of “suspicious” biopsy slides (n= 1876). In all
three studies all slides originated from one pathology department,
respectively. Importantly, the algorithm used in these three
studies2,10,17 does not detect tumor, but renders slide as
suspicious (presence of any of the following lesions: tumor, focal
glandular atypia, atypical small acinar proliferation, high-grade
prostatic intraepithelial neoplasia with adjacent atypical glands—
conditions with high interobserver variability and interpretability)
which prevents exact comparison to our results (we concentrated
on only tumor detection). Even so, the AI tool in our study (>5900
diagnostic slides, >420 patient cases from five pathology
departments) show similar performance with high, diagnostically
meaningful accuracy metrics for tumor detection. Also, in the
slides with unclear classification which were considered as
suspicious by pathologists, the AI tool provides positive alerts in
a substantial number of cases (53.9%–75.0% dependent on test
cohort) allowing for high awareness levels to such regions among
pathologists.
One other clinical grade algorithm was validated in a study by

Pantanowitz et al.9. The sensitivity and specificity on the internal
(same institute as training data, slides n= 2501) and external
(slides n= 355) datasets was 0.996 and 0.901 and 0.985 and 0.973,
respectively. Importantly, authors used additional slides from
external dataset to first calibrate the algorithm to this external
dataset (to digitization, staining parameters, tissue quality, etc.)
which is not a typical practice. Therefore, the real generalization
capabilities of the algorithm to new/external data could not be
estimated based on this study. The parameters of our algorithm
were frozen at the beginning of the study without any forms of

Fig. 4 Examples of false positive and false negative misclassifications/alerts by AI tool. a Most false positive misclassifications/alerts are
from known carcinoma mimickers: atrophic glands (4), histiocytic and inflammatory reactions (6,9), unusual luminal content (5) or complex
structure of benign glands (2,8). Mechanically distorted regions (1), intraluminal calcifications (3), prominent stromal hyperplasia (7) were
rarely a reason for false positive misclassifications/alerts. Such regions were interpreted as useful alerts by most pathologists. For additional
examples see Supplementary Fig. 7. b Examples of false negative misclassifications. One of the unifying qualities of substantial number of
such areas (see also Supplementary Fig. 6) were low quality of material or mechanical artifacts (3,6,7,8). Therefore, in case of artifacts or low
quality of cutting and staining the predictions of the model should be interpreted with caution. Comments: All scale bars 100 µm.
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accommodation of the algorithm to external data, which is also a
regulatory requirement for clinical-grade tools.
In one other study by Ström et al.7, authors report sensitivity of

99.6% and specificity of 86.6% on the reserved internal validation
dataset (enriched for high-grade cases). Both studies used original
semiautomatic labeling techniques for annotation creation.
The second diagnostic aspect of our study is AI-based Gleason

grading. Using two external sets of biopsy cores (slides n= 227
and 159) representative of all Gleason grade groups and a large,
international group of board-certified pathologists (n= 11; 2
general surgical pathologists, 9 experiences genitourinary pathol-
ogists) representing diagnostic practices of different countries
(Germany, Austria, USA, Netherlands, Israel, Japan, Vietnam,
Russia) we showed that the developed algorithm performs on
par with experienced genitourinary pathologists (Figs. 5 and 6).
The average quadratically weighted kappa value for the AI tool
was 0.77 in the first cohort (UKK; pathologists average kappa
values 0.62–0.80) and 0.72 in the second cohort (WNS; patholo-
gists average kappa values 0.64–0.76). Moreover, the agreement
between the AI tool and pathologists was especially high in cases
where consensus among pathologists could be reached (>0.855;
Fig. 6c, d). Also, for the diagnostically critical Gleason grade group
1 (Gleason Score 3+ 3= 6; clinical decision: active surveillance vs.
active therapy) the AI tool showed similarly high levels of
agreement to participating pathologists (Supplementary Fig.
12C, D). Several large studies evaluated performance of AI-based
tools for prostate cancer Gleason grading against human
pathologists in a controlled setting using external datasets5,7,
summarized in Supplementary Table 2. Studies by Strom et al.7

and Bulten et al.5 show similar levels of agreement compared to
our study among pathologists and the AI tool in external
validation datasets (kappa levels 0.60–0.72). Some other studies
showed that pathologists assisted by AI algorithms can provide
more concordant and reliable grading6,15, mirroring the real
diagnostic benefits of complementary human-AI tool interaction
within a diagnostic process. Moreover, one large computational
challenge (PANDA) addressed the development of Gleason
grading algorithms in a competitive manner releasing large

datasets for training and validation8. In our study, we compared
the developed algorithm with a winning solution of PANDA
challenge (Supplementary Tables 3 and 4) showing superiority of
our algorithm. To facilitate further academic research in the area
of Gleason grading and interoperability studies of algorithms, we
release part of our Gleason Grading datasets (WNS, UKK) with
accompanying grading results by pathologists.
Our study is not devoid of limitations. All cohorts analyzed in

the study are retrospectively gathered archived cases. Further
prospective evaluation with integration of the AI tool into
diagnostic routine of pathologists is necessary. The optimal ways
of interaction between human pathologists and AI tools to
achieve maximal complementary effects is still an open field of
research. Issues such as a overly high confidence of pathologists in
the predictions of AI tool should be addressed by prospective
evaluation. Although this study is one of the largest validation
studies of AI tools for digital pathology to date including 5
different departments, the heterogeneity of pathology practice is
huge in the real world. Additional validation with inclusion of
more pathology departments is warranted. The AI tool might still
make diagnostic mistakes and misses tumor, as human diagnosing
also does. Further (continuous) development with the inclusion of
difficult cases into the training data is a typical way to mitigate this
problem. We used a small part of cases from one department to
extend our training data. These cases were temporally separated
from the cases included into the test dataset and represent a
negligibly small volume of training material compared to the
training dataset and to the size of the remaining test dataset. We
did not see any effects on the accuracy of the algorithm on the
compromised dataset, especially compared to four other, com-
pletely independent, external test datasets.
In this large, multi-institutional, international study we validate a

clinical grade AI tool for prostate cancer detection and Gleason
grading on biopsy material from 5 pathology departments,
digitized with three different scanners at two different magnifica-
tions. We show high levels of diagnostic accuracy for prostate
cancer detection and agreement levels for Gleason grading
comparable with experienced genitourinary pathologists.

Fig. 5 Gleason grading: agreement analysis between pathologists and AI tool. Two datasets of tumor-containing biopsy slides were used
for this analysis (consecutive cases from UKK-2 and WNS A cohorts). Quadratically weighted kappa statistics was used for calculation of
agreement. Presented are comparisons between single graders (UKK: 10 board-certified pathologists and AI tool; WNS: 11 board-certified
pathologists and AI tool) as well as average quadratically weighted kappa levels for single graders. Pathologists 1 and 9 (P01 and P09) are
general surgical pathologists working routinely with prostate cases. All other pathologists are experienced genitourinary pathologists. AI Tool
performs on par with pathologists. For distribution of Gleason grade groups in cohorts see Fig. 6a. a Cohort UKK. b Cohort WNS.
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METHODS
Patient cohorts, materials
Five independent cohorts of archived pathological patient cases
from large academic pathology departments with sub-
specialization in genitourinary pathology were used for this study:
UKK—University Hospital Cologne, Germany, WNS—Hospital
Wiener Neustadt, Austria, TRO—Pathology institute Troisdorf,
Germany, ACH—University Hospital Aachen, Germany, BRA—
Municipal Hospital Brunswick, Germany (Fig. 1c). All cases were
primary multifocal prostate biopsies from patients with a suspicion
of prostate cancer without prior therapy. From one large cohort
(University Hospital Cologne, UKK, n= 2486 cores) a very small
subset of slides (UKK-1, n= 190 cores, all cases temporally
separated with at least 9 months from cases used for further test)
were included in the training dataset. Where possible, consecutive
biopsy cases were used without pre-selection.

Establishing ground truth
All biopsy cores from all cohorts were centrally reviewed by
experienced uropathologists for the presence of tumor (YT, AP,
AQ). Corresponding immunohistochemistry (IHC) results were also
reviewed when available. This multi-pathologist review of the
retrospective diagnostic material was used to establish the ground
truth (tumor or benign). High-grade prostatic intraepithelial
neoplasia (HGPIN) lesions were classified as benign, although
the algorithm recognizes HGPIN as a separate tissue class. During
central review, some biopsy cores were classified as “suspicious” of
carcinoma due to the presence of atypical small acinar prolifera-
tion (ASAP). In most situations, the suspicious region was either no
longer present in corresponding IHC stains, the IHC slides were
not available, or IHC results were inconclusive prohibiting final
classification as tumor or benign. These biopsy slides (n= 75,
Fig. 1c) were addressed in a separate sub-analysis.

Histological slide digitization
Three case cohorts (UKK, TRO, BRA) were digitized using a
NanoZoomer S360 histoscanner (Hamamatsu, Japan; resolution
micron per pixel (mpp)= 0.2305), one cohort (ACH) was digitized
using a NanoZoomer C9600-12 (mpp= 0.4516; this scanner allows
only for scanning at magnification ×200), and one other cohort
(WNS) was digitized using both a NanoZoomer S360 (mpp=
0.2305) and a Leica Aperio GT450 (Leica Biosystems, Wetzlar,
Germany; mpp= 0.26). All histoscanners were maintained accord-
ing to the manufacturers´ instructions and underwent regular
technical servicing. All pen marks were removed from the
specimens before digitization. A small number of slides were
excluded from the study due to digitization issues (broken glass,
out-of-focus regions, failed digitization, and histoscanners not
accepting slides due to unknown reasons).

Description of AI tool
The AI tool for prostate cancer detection and grading was
developed by Indica Labs (HALO Prostate AI®, Albuquerque, NM,
USA) and is a CE-IVD certified assistive tool for pathological
diagnosis (Fig. 2). Briefly, the tool consists of three AI modules:
tissue detection, prostate cancer detection, and Gleason grading
algorithms. The two first algorithms (tissue detection, and tumor
detection) are based on deep learning principle and semantic
segmentation convolutional neural networks. The Gleason grading
module represents a classification convolutional neural network.
The tumor detection and Gleason grading are carried out at a
resolution 1.5 µm/px, roughly corresponding to ×50 optical
magnification. The AI tool was developed using more than
800,000 single image tiles generated from manually annotated
whole-slide images. These included a large radical prostatectomy
dataset11 as well as additional whole-slide images from the
Institute of Pathology of the University Hospital of Cologne
containing seminal vesicle tissue (n= 50; radical prostatectomy

Fig. 6 Gleason grading: distribution of Gleason grade groups among cohorts and performance of AI tool versus consensus grading of
pathologists. a Distribution of Gleason grade groups in UKK and WNS cohorts of tumor-containing biopsy slides. This is generated using
majority of votes of graders (see also b for distribution of votes of pathologists). As in UKK cohort (graded by ten pathologists) ~30 cases have
equivocal quantity of majority votes for two grade groups simultaneously, grading of AI tool was added to produce unambiguous distribution
data. For WNS cohort (graded by 11 pathologists) majority of votes classification resulted in unambiguous classification without adding AI tool
grading results. Both cohorts were representative for all Gleason grade groups. b Distribution of the pathologists’ votes for single grade group
per biopsy core (excluding AI tool). Consensus was considered in cases where at least 6 pathology votes were for a single grade group.
c, d Quadratically weighted kappa levels for AI tool-provided grading results vs. grading results of pathologists in cases where consensus was
reached (at least 6 votes for single grade groups), c UKK cohort, d WNS cohort. Substantial increases of agreement are evident for AI tool in
cases where higher levels of consensus among pathologists are present. Confusion tables for UKK (e) and WNS (f) cohorts for cases where at
least 6 pathologists were agreeing on the Gleason grading of single cores (consensus cases). GG grade group.
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specimens) and a small set of whole-slide images of prostate
biopsy cores with and without tumor (n= 190, UKK-1 dataset,
Fig. 1c) to enrich the training dataset for biopsy tissue containing
some specific artifacts. The AI tool does not utilize any stain
normalization or style transfer approaches for compensation of
inter-institutional variability. The AI tool is implemented within the
HALO AP IMS and case viewer system (Indica Labs, CE-IVD
certification for digital diagnosis in pathology).

Principles of validation, statistical analysis
The AI tool provides several types of output: (1) color maps (red
color) for regions with a high probability of being prostate cancer
(overlaid on the original whole-slide images); (2) color-coded
maps representing Gleason grading estimates (yellow—Gleason
Pattern (GP) 3, orange—GP4, red—GP5), and (3) a number of
computed metrics, whole-slide level: tissue area, tumor area,
maximal tumor probability, Gleason pattern area (GP3, GP4, GP5),
Gleason Score, and Gleason Grade Group. The AI tool’s
performance for tumor detection was assessed at the slide level
using typical accuracy metrics for computer vision studies (overall
accuracy, F1 score, sensitivity, specificity, positive and negative
prediction values). Gleason grading accuracy/agreement analysis
was compared between participating pathologists and the AI tool
at the slide level (Gleason Grade Groups), and also using
consensus Gleason scores derived for a group of pathologists.
Agreement analysis was performed using quadratically weighted
kappa statistics in irr package for R, considering the distance
between grade group classifications in cases of disagreement (and
outlining biological and prognostic relevance of the discrepancy).
All the statistical analyses were made in R version 4.0.3 (The R
Foundation for Statistical Computing). This study was performed

in adherence to STARD guidelines (“Standards for Reporting
Diagnostic Accuracy studies”; s. Checklist in Supplementary Data).

Using PANDA challenge data for validation purposes
To replicate the PANDA algorithm, we based our code on their
public code (see “Data availability” section) We made several
modifications to get better performance on our validation sets.
First, we had the classifier run on all the tiles that passed a tissue
threshold as opposed to picking the darkest 36/64 tiles for their
ensembles model1/model2 respectively. Second instead of using
the second pyramidal level for analysis we used a fixed resolution
of 1.9 um/px. This was the approximate resolution the classifier
was trained on. Since some of the validation set was scanned at a
higher resolution then the pandas set, using the second level
would have resulted in images of ~1.0 um/px. Lastly, we only used
the ensemble corresponding to model 2 for the Gleason grading
as using both led to inferior results. Using both did improve tumor
detection scores, however, and we report the tumor detection for
the full ensemble.

Ethical approval
All study steps were performed in accordance with the Declaration
of Helsinki. This study was approved by the Ethical Committee of
the University of Cologne (20-1583), Ethical Committee of Lower
Austria (GS1-EK-4/694-2021), Ethical Committee of the University
of Aachen (EK 405/21), Ethical Committee of the Medical Council
of Lower Saxony region, Germany (30/51/2021), and Ethical
Committee of the Medical Council of the Nordrhein region,
Germany (355/2021). Necessity for obtaining patients’ informed
consent has been waived due to the fully retrospective and
archived nature of materials used in this study.

Fig. 7 Examples of cases with discrepant Gleason grading where consensus among pathologists was not reached. a Case 1. b Case 2.
c Case 3. d Case 4. Comments: Consensus is defined as at least six pathologists providing the same grade group; scale bars: a 100 µm.
b 200 µm. c 200 µm. d 50 µm.
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
A part of each Gleason Grading datasets (UKK and WNS; 50 biopsies/dataset,
anonymized, balanced for Gleason grade groups) with grading results by 10(11)
pathologists was publicly released for academic research only at Zenodo (UKK cohort:
https://zenodo.org/record/8102833; WNS: https://zenodo.org/record/8102929). The
images are in the OME-TIFF format at original resolution (×40) and publicly available
for download. The sheet with grading results can be received from the corresponding
author (Y.T.) after completing a request form (available in Zenodo-repositorium). The
data (images and grading results) can be used for academic research purposes only,
no commercial use is allowed. The full datasets for tumor detection and Gleason
grading can be requested from corresponding author (Y.T.).

CODE AVAILABILITY
There is no code to be shared withing this study as the algorithm used represents a
proprietary tool. The code for implementation of publicly available PANDA algorithm
that was used in this study is available at https://github.com/kentaroy47/Kaggle-
PANDA-1st-place-solution.
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