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Actionability classification of variants of unknown significance
correlates with functional effect
Amber Johnson 1, Patrick Kwok-Shing Ng1, Michael Kahle1, Julia Castillo1, Bianca Amador1, Yujia Wang 2, Jia Zeng1,
Vijaykumar Holla1, Thuy Vu 1, Fei Su1, Sun-Hee Kim1, Tara Conway1, Xianli Jiang2, Ken Chen 2, Kenna R. Mills Shaw1,
Timothy A. Yap 1,3, Jordi Rodon1,3, Gordon B. Mills 4 and Funda Meric-Bernstam 1,3✉

Genomically-informed therapy requires consideration of the functional impact of genomic alterations on protein expression and/or
function. However, a substantial number of variants are of unknown significance (VUS). The MD Anderson Precision Oncology
Decision Support (PODS) team developed an actionability classification scheme that categorizes VUS as either “Unknown” or
“Potentially” actionable based on their location within functional domains and/or proximity to known oncogenic variants. We then
compared PODS VUS actionability classification with results from a functional genomics platform consisting of mutant generation
and cell viability assays. 106 (24%) of 438 VUS in 20 actionable genes were classified as oncogenic in functional assays. Variants
categorized by PODS as Potentially actionable (N= 204) were more likely to be oncogenic than those categorized as Unknown
(N= 230) (37% vs 13%, p= 4.08e-09). Our results demonstrate that rule-based actionability classification of VUS can identify
patients more likely to have actionable variants for consideration with genomically-matched therapy.
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INTRODUCTION
Genomic sequencing is often performed in patients with
advanced or metastatic disease in order to identify alterations
that may affect therapeutic decision-making and provide addi-
tional approved or investigational options. However, not all
patients have alterations in actionable genes, and furthermore,
not all alterations in actionable genes affect gene function.
Current standards and guidelines for delivering tumor genomic
sequencing reports within a clinical setting include the require-
ment for interpretation and categorization of detected variants for
their clinical significance1. A joint consensus recommendation by
the Association for Molecular Pathology, American Society of
Clinical Oncology, and College of American Pathologists recom-
mended a four-tiered system designating variants of strong (tier
1), potential (tier 2), unknown (tier 3), and benign (tier 4) clinical
significance2. Likewise, the FDA recently published a fact sheet
detailing three levels of evidence for tumor biomarkers detected
within next-generation sequencing tests: companion diagnostic
(level 1), clinical significance (level 2), and potential clinical
significance (level 3)3, and the European Society for Medical
Oncology (ESMO) has published the ESMO Scale of Clinical
Actionability for molecular Targets (ESCAT)4, along with data
showing a correlation between improved response and the ESCAT
tier4,5. Several academic groups have also published their own
schemes for determining the level of evidence for targeting a
specific genomic alteration with a particular therapy within an
indicated tumor type4,6–20, and multiple knowledgebases exist to
serve as a source of alteration-level interpretation data (e.g.,
PersonalizedCancerTherapy.org, OncoKB, The Jackson Laboratory
Clinical Knowledgebase, as previously reviewed21). While these
knowledgebases provide essential information for identifying
alterations of significance, a large percentage of alterations
detected in patient samples have not been previously

experimentally or clinically characterized, may not appear within
these knowledgebases, and fall within the unknown or uncertain
classification (variants of unknown significance, VUS).
In a previous study, we quantified the number of VUS within

therapeutically actionable genes identified in patients’ genomic
sequencing reports reviewed by the PODS team22. 48% of variant
annotations provided to oncologists indicated that the variant is a
VUS. The large percentage of VUS identified within patients’
sequencing reports presents a great challenge to clinicians. Thus,
many groups have developed high-throughput pipelines to
characterize functionally somatic and/or germline VUS23–30,
including a functional genomics platform established at MD
Anderson31. This platform utilizes two cell lines, MCF10A and Ba/
F3, to measure an alteration’s impact on cell viability under growth
factor independent conditions. While these platforms generate
invaluable information with regards to the clinical actionability of
a specific variant, a bottleneck still exists in testing and generating
these data in a timely enough manner for point-of-care decision
making.
To address the real-time need for determining whether a

variant is likely to be functionally significant and therapeutically
actionable, the PODS team created a tiered actionability scheme32

(Fig. 1). The first step in the scheme is to determine if the gene
harboring the variant is therapeutically actionable. PODS scientists
classify genes as therapeutically actionable if there is at minimum
preclinical evidence that alterations within the gene predict
sensitivity or resistance to a clinically available therapy (FDA-
approved or investigational agent available within clinical trials) or
if alterations within the gene are part of current clinical trial
eligibility criteria. Variants within actionable genes are then
researched for any known or predicted (inferred) functional
impact or therapeutic relevance. Based on these data, PODS
assigns a Functional Significance value, which is then utilized to
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determine Variant Actionability, which may be captured as Yes
(based on published literature, inferred due to the loss of
characterized domains, or based on functional genomics testing),
Potentially, Unknown, or No. For example, activating mutations in
the oncogene BRAF and inactivating mutations in the tumor
suppressor gene BRCA1 are considered actionable (Supplementary
Table 1). If the variant’s Functional Significance is Unknown and
there is no known effect of the variant on therapeutic sensitivity or
resistance, the variant is classified as either Unknown or
Potentially for its Variant Actionability. Variants are Potentially
actionable if they are located within a functional domain where
other oncogenic variants are known to occur, or, if in general, are
within close proximity to other oncogenic variants. Otherwise,
these variants are categorized as Unknown for actionability.
In this study, we sought to determine how often VUS in

actionable genes are oncogenic using a functional genomics
platform that utilizes two cell lines, MCF10A and BaF3, to measure
an alteration’s impact on cell viability under growth factor
independent conditions31. We then determined whether our
actionability framework that further classifies VUS into Potentially
actionable or Unknown actionability enriches the knowledgebase
with variants more likely to be functionally significant, and thus, of
therapeutic relevance.

RESULTS
Functional characterization of VUS identified by PODS
Informative results were obtained for 470 variants requested for
functional genomics testing. 438 of these variants (Fig. 2a) were
annotated prior to functional genomics testing as Unknown for
Functional Significance and either Potentially (N= 206, 47%) or
Unknown (N= 232, 53%) for Variant Actionability (Fig. 2b). The
remaining 32 variants were either not annotated prior to testing
(N= 7) or they were already known to be actionable or not
actionable based on data curated from the published literature
(N= 25). For all 438 variants of unknown functional significance,
variants also Unknown for actionability spanned 33 of 36 genes

tested, whereas those Potentially actionable spanned 28 of 36
genes tested (Fig. 2c).
Of the 438 VUS, 106 (24%) increased cell viability in at least one

cell line in comparison with its wildtype counterpart (oncogenic),
328 (75%) had no effect differing from wildtype in either cell line
or decreased cell viability in comparison with the wildtype (not
oncogenic), and 4 (1%) had opposing effects within the two cell
lines (conflicting data) (Fig. 3a). After VUS were submitted to the
functional genomics platform, new literature was found before
functional genomics testing was completed for 12 variants,
including 10 (2.3%) variants known to be actionable and 2
(0.5%) known to be not actionable due to newly curated literature
(Fig. 3b). Of the 10 known to be actionable variants (Supplemen-
tary Table 2), 7 demonstrated a gain-of-function within the
published literature that was also observed within the platform.
The remaining three variants had no published functional data but
were nonetheless considered actionable by PODS due to drug
sensitivity or resistance data. The two variants known to be not
actionable showed no effect within the functional genomics
platform. Eight variants could not be clearly classified as
actionable or not actionable due to either cell type-dependent
functional effects (4 variants, Fig. 3a) or conflicting data between
functional genomics results and the published literature (4
variants, Supplementary Table 3). Thus, 97 (22.1%) variants
became actionable and 321 (73.3%) became not actionable due
solely to functional genomics data (Fig. 3b).

PODS classification of VUS as potentially actionable correlates
with functional characterization
Next, we determined if those variants categorized as Potentially
actionable by PODS classification were more likely to be
confirmed actionable by functional genomics testing. The four
variants that had opposing effects in the two cell lines tested were
not included further. 30/230 (13%) variants categorized as
Unknown for actionability prior to testing were found to be
functionally oncogenic in at least one of the two cell lines tested;
whereas, 76/204 (37%) variants categorized as Potentially

Fig. 1 Variant Actionability classification. Schematic depicting PODS’ process of defining variant actionability.

A Johnson et al.

2

npj Precision Oncology (2023)    67 Published in partnership with The Hormel Institute, University of Minnesota

1
2
3
4
5
6
7
8
9
0
()
:,;



actionable prior to testing were found to be functionally
oncogenic within the functional genomics platform (Fig. 4a).
Thus, those annotated as Potentially actionable are more likely to
be functionally validated as actionable (Fisher’s Exact Test, odds
ratio: 3.94, p= 4.08e-09) than those classified as Unknown for
actionability. We also computationally applied the PODS
Unknown/Potentially actionability classification scheme to a
second collection of variants with informative functional genomics
results whose testing originates from submission to the platform
by other groups (not PODS) or from our team but without prior
annotation. Of 777 variants, 6590 were categorized as Potentially
actionable based solely upon the described PODS criteria, while
118 were categorized as Unknown. 44% (n= 290) of the
Potentially actionable variants were verified to be oncogenic in
the functional genomics platform compared with only 8% (n= 9)
of those categorized as Unknown (Fisher’s Exact Test, odds ratio:
9.50, p= 4.719e-16; Fig. 4b). Thus, these data support our
conclusion that variants annotated by PODS as Potentially
actionable are more likely to be oncogenic than those annotated
as Unknown for actionability.
VUS that were oncogenic within the functional genomics

platform (N= 106, Supplementary Table 4) pre-categorized as
Unknown for actionability spanned 13 genes, and those pre-
categorized as Potentially actionable spanned 16 genes (Fig. 5a).
We next determined proximity for the nearest actionable
alteration for all 106 variants determined to be functionally
oncogenic in the functional genomics platform and pre-
categorized as either Unknown or Potentially actionable. Two
variants were excluded as they are truncating mutations, which
are typically assigned an actionability value based on what is
known in the published literature regarding the functional impact
of the lost protein region and not solely on its proximity to other
known actionable alterations. Of those 104 variants examined,
there is an actionable alteration at the same amino acid position
or within the amino acid span (for in-frame insertions and/or
deletions) for 52% of the variants (Fig. 5b). For another 23% of

variants, another actionable alteration exists within at least 2
amino acids. Thus, the majority of VUS demonstrated to be
oncogenic within the functional genomics platform are within 2
amino acids of another alteration also demonstrated to be
actionable based on the published literature or functional
genomics testing.

DISCUSSION
Somatic genomic sequencing is recommended for all patients
when one or more genomic biomarkers are linked to a regulatory
body-approved therapy in the patient’s tumor type33. These
genomic alterations are designated as AMP Tier 1A1/ PODS level
1A34 and have the highest level of evidence for clinical action. If
the drug approval is linked to a specific alteration, such as BRAF
V600E, interpreting the results and therapeutic choices is relatively
straight forward. However, some FDA indications and professional
guidelines are linked to a general type of alteration and not a
specific variant. For example, erdafitinib is FDA approved for the
treatment of urothelial cancers with susceptible FGFR3 or FGFR2
genetic alterations, per FDA label35. In this case, functionally
characterizing novel FGFR2 and FGFR3 alterations has significant
therapeutic implications. For patients where no Tier 1A alterations
are detected or they were previously acted upon, identifying
functionally significant alterations that may be predictive of
response to targeted therapies investigated within the context of
a clinical trial becomes equally as important. However, a large
portion of cancer-associated mutations have not been functionally
characterized. Among all 16,738 annotated alterations within
PODS as of 4/27/2022, 65% are not known for their therapeutic
actionability (Unknown or Potentially actionable, Supplementary
Fig. 1). Moreover, in a previous study, we determined that
approximately 50% of 535 patients assessed by the PODS team
had no clearly actionable mutation to pursue for enrollment on a
clinical trial at the time of assessment22, and a similar study found

Fig. 2 Functional genomics screening of VUS. 1294 variants requested for functional genomics (FG) testing during the years 2015–2019 by
the PODS team entered the pipeline for construction of mutant-expressing clones. 737 variants were either dropped from the pipeline due to
technical difficulties or subsequently rejected due to a sequencing error found upon validation. Informative results for ingestion within the
PODS knowledgebase were obtained for 470 variants. Of these, 438 were fully annotated prior to the functional genomics testing and
determined to be variants of unknown functional significance classified as either Unknown (n= 232) or Potentially actionable (n= 206).
Results were excluded for 87 variants deemed non-informative due to the lack of an informative positive control or the function of the gene
did not support actionability assessment within the assay. Copyright used with the permission of The Board of Regents of the University of
Texas System through The University of Texas MD Anderson Cancer Center (a). Percentage of 438 VUS pre-classified as either Unknown or
Potentially actionable (b) and represented per gene (c).
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only 41% of patient samples had a potentially actionable
mutation10.
The ideal scenario for determining whether a VUS is likely to be

actionable is to experimentally test the function of the alteration.
Functional genomics platforms are one way to characterize the
tumorigenic potential of a large number of mutations. The
platform utilized in this study measures a mutation’s impact on
cell viability in growth factor independent conditions compared
with expression of its wildtype counterpart. 24% of mutations
tested increased cell viability (Fig. 3a), providing evidence that
they may be tumor-promoting events that could potentially
confer sensitivity to targeted therapies. For the remainder of the
variants, these may either be benign passenger mutations, or their
tumorigenic properties may not be seen in the genetic back-
ground of the cell models used and/or the assay setting of the
platform. For example, we observed several mutations within
FGFR2 that confer increased survival in the presence of FGF ligand,
but not in its absence (data not shown). Additionally, we
acknowledge another limitation of the current platform. Some

variants may promote other tumorigenic phenotypes such as
migration or angiogenesis, which are not assessed on this
platform. Therefore, we excluded variants (i.e., annotated as
non-informative) residing in genes where neither the wildtype not
any variation of the gene promoted cell viability to avoid over
interpretation of the testing result.
While the functional analysis data are value-adding for variant-

level knowledgebases, such as PODS, the information is typically
not generated quick enough to influence care for the initial
patient for which the alteration was identified. Notably, the PODS
functional genomics effort was initiated with the intent to be able
to guide decision-making for individual patients. However, as
more of the advanced cancer population underwent comprehen-
sive testing on platforms that go beyond “hot spot” testing for
recurrent mutations, it quickly became apparent that the current
genomics platform does not have fast enough turn-around to
guide the care of individual cancer patients who often have
rapidly progressing disease. Therefore, instead, we embarked on
systematic characterization of recurrent VUS in known drivers, in
order to impact subsequent patients with these mutations. In the
future, tracking functional impact of individual mutations shared
from larger scale functional genomics efforts, as well as tracking
individual clinical outcome data of patients with genomic
alterations treated on genomically-informed trials, will likely
improve decision support efforts.
Methods for predicting the likelihood that an alteration is

tumor-promoting are value-adding when functional data is not
available. Multiple informatics tools, such as Mutation Assessor36,
Hotspot3D37, HotMAPS38, SIFT39, Polyphen-240, FATHMM-XF41,
CanPredict42, MutationTaster43, SNAP44, GAVIN45, EVE46, CGI47,48,
VEST449, CScape50, and CHASM51 were developed for this
purpose. These tools use a variety of properties and features
to predict the functional impact of a mutation, including
evolutionary conservation, protein features, 3D protein struc-
tures, machine learning from curated driver mutations, and other
codon-specific physiochemical properties. Some tools such as
CanDrA52 combine features across tools to make a prediction.
Another tool, e-MutPath, assesses the effect mutations have on
functional pathways by overlapping gene expression perturba-
tions in cancer with patient-specific mutations and identified
perturbations in protein-protein interactions53. With so many
tools and options that may give varying predictions, it can be
difficult to discern the best approach, although various
comparisons have been made31,52,54,55. We chose four widely
used prediction tools in order to assess how they perform
relative to our functional genomics results (Supplementary
Fig. 2). Alterations predicted to be drivers by CGI47 (30% vs
10%; Fisher’s Exact Test, odds ratio: 4.08, p= 3.221e-06), VEST449

(35% vs 12%; Fisher’s Exact Test, odds ratio: 3.99, p= 4.187e-08),
CHASMplus56 (30% vs 6%; Fisher’s Exact Test, odds ratio: 6.23,
p= 9.849e-09), and CScape50 (24% vs 4%; Fisher’s Exact Test,
odds ratio: 7.71, p= 0.01449) were more likely to be oncogenic
in the functional genomics platform than those predicted by the
respective tools to be passengers. However, with large-scale
decision support efforts, the only known input may be the amino
acid change, limiting the application of some bioinformatic
prediction tools. Indeed, not all alterations could be called by
each tool. With only protein amino acid change as input, 360/434
(83%) were called by CGI, 401/434 (92%) were called by VEST4,
401/434 (92%) were called by CHASMplus, and 373/434 (86%)
were called by CScape. Thus, the PODS team’s schema is
complimentary to these tools. It relies on curated knowledge of
known functional mutations likely to be oncogenic in conjunc-
tion with manual assessment of protein domains to classify a
VUS as Potentially actionable if it resides within the same
functional domain as other oncogenic mutations and/or is
located in close proximity or at the same codon as other
oncogenic mutations. This approach is supported by literature

Fig. 3 Actionable variants identified from functional genomics
screening. Variants of unknown significance were categorized as
oncogenic or not oncogenic dependent upon whether the mutation
increased cell viability in comparison with expression of the
wildtype gene in at least one tested cell line (oncogenic) or either
decreased cell viability or conferred no change in cell viability in
comparison with the wildtype (not oncogenic). Variants that
displayed opposing effects (increased and decreased) in the two
cell lines were categorized as conflicting data (a). Knowledge
accumulated from the published literature within the PODS knowl-
edgebase at the time of functional genomics results were returned
was assessed. Variants where literature-based actionability already
existed are “Known actionable”, variants where literature-based data
existed reflecting a non-actionable assertion are “Known not
actionable”, and those that became actionable or not actionable
due solely to functional genomics data are shown. If conflicting data
existed, the variants are classified as “Unclear” (b).
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demonstrating that functionally significant, non-frameshift/
truncating alterations tend to cluster in specific functional
regions of the gene. For example, 17/20 of the most frequent
PIK3CA mutations in breast cancer57 that are also oncogenic,
reside within a region characterized and captured within
UniProt58.
Additionally, if an uncharacterized mutation is located at a

hotspot, defined as a recurrently mutated amino acid in cancer, it
may be considered more likely to be pathogenic. Hot spot
annotation databases can be useful for predicting functional
effect59. For example, the hotspot KRAS codon G12 is substituted
for a variety of other amino acids within cancer samples. Many of
these substitutions have been shown to be oncogenic and/or
confer the same functional effect of impairing hydrolysis of GTP,
(A60,61/C61,62/D61/F63/R61/S60,64/V61/Y65), albeit to differing degrees.
Thus, other non-characterized variants of G12 would be

considered Potentially actionable. However, other recurrently
mutated codons are polymorphisms and benign in nature, such
as KIT M541L (rs3822214, dbSNP). Thus, the PODS team does not
rely on frequency of detection to differentiate between Potentially
actionable and Unknown for actionability variants. Our approach
necessitates that other alterations at the hotpot or functionally
characterized region alter protein function in a manner that is
likely tumor promoting in order for VUS at that codon or region to
be classified as Potentially actionable.
Until this study, the merit of our tiered actionability scheme for

VUS had not been tested for the value of a Potential call. Our data
here show that alterations categorized as Potentially actionable by
the criteria described are more likely to be functionally significant
than those categorized as Unknown for actionability (Fig. 4), as
demonstrated in cell viability assays. We also demonstrate that the
majority of the functionally validated variants are in near proximity

Fig. 4 Potentially actionable variants are more likely to be functionally validated. Variants pre-classified as either Unknown or Potentially
actionable prior to functional genomics (FG) testing are displayed by whether they were oncogenic (increased cell viability) or not oncogenic
(no change or decreased cell viability) within the FG pipeline (Fisher’s Exact Test, odds ratio: 3.94, p= 4.08e-09) (a). A second set of variants
computationally determined to be Potentially actionable or Unknown for actionability are displayed by whether they were oncogenic
(increased cell viability) or not oncogenic (no change or decreased cell viability) within the FG pipeline (Fisher’s Exact Test, odds ratio: 9.50,
p= 4.719e-16) (b).
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(1–2 amino acids) to other oncogenic variants (Fig. 5b). These data
suggest that among the Potentially actionable variants, there may
be even more stratification of likelihood that is useful: those within
2 amino acids of another oncogenic variant being even more
likely to be functionally oncogenic.
There has been some debate about how to optimize efficacy

signal in genomically-informed trials. In our study, of the 438 VUS,
only 24% were oncogenic. This supports the idea that when
genomically-informed trials are conducted, if the goal is to
enhance the efficacy signal, accrual either should be limited to
known alterations, or alternately incorporate a functional annota-
tion step that will incorporate emerging alterations with literature
support and provide a tiered classification of VUS for considera-
tion of enrollment in selected scenarios.
Altogether these data demonstrate that functional annotations

relying on experimental data cannot be replaced by predicted
functionality by proximity and protein features, as 63% of VUS
classified as Potentially actionable were not functionally validated
in the systems assessed (Fig. 4). However, the PODS tiered VUS
actionability scheme does add value in stratifying alterations more
likely to be functionally significant: 37% of the Potentially
actionable variants had a functionally significant effect in the
functional genomics platform. This information would be impor-
tant to take into consideration for an individual patient along with
expected therapeutic efficacy of the genomically-matched therapy
and other treatment options available. Therefore, genomic
annotation of VUS may identify additional patients that benefit
from emerging therapeutics.

METHODS
Clinical genomic testing and PODS variant annotations
Patients underwent genomic testing using local or commercial
clinical genomic next-generation sequencing tests as standard of
care or under genomic sequencing studies with written informed
consent (NCT01772771). The prospective genomic testing proto-
col (with written informed consent), as well as a protocol for
retrospective review of clinical genomic testing results (with
waiver of informed consent) was reviewed and approved by the
MD Anderson Cancer Center Institutional Review Board. Variants
identified within patients’ CLIA sequencing reports are entered
into the PODS knowledgebase. PODS scientists classified genes as
therapeutically actionable (Fig. 1)32. Variants within actionable
genes were then researched for any known or predicted
functional impact or therapeutic relevance. Based on these data,
PODS assigned a Functional Significance classification, which was
then utilized to determine the Variant Actionability classification.
Some variants may have more than one Variant Actionability
value; each value associated with treatment or resistance to a
specific drug or class of drugs (Supplementary Table 1). In these
cases, the highest value was utilized for all analyses within the
paper (Yes > Potentially > Unknown > No).
We also computationally applied our rules for assignment of an

Unknown or Potentially actionable value to a second set of
variants, which originated from other groups also utilizing the
functional genomics platform or variants submitted by PODS
without prior annotation (Fig. 4b). Like with manual annotation, a

Fig. 5 Functionally validated oncogenic variants are in near proximity to other oncogenic variants. Variants pre-classified as either
Unknown or Potentially actionable prior to functional genomics (FG) testing and demonstrated to be oncogenic within the FG platform are
shown per gene (a). The proximity to other known actionable alterations, as determined by accessing the PODS knowledgebase on 9/17/2021,
is shown (b).
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Potentially actionable value is given if either the alteration resides
within a protein feature considered functional (disordered regions
excluded) and that contains at least one actionable mutation of
the subtype missense, in-frame insertion, in-frame deletion,
duplication, or deletion-insertion within or overlapping with the
amino acid range of the alteration, or the alteration is within five
amino acids of an actionable alteration of the subtypes previously
specified irrespective of location within a functionally character-
ized protein feature.

Variant submission and testing
1,294 variants requested for testing by the PODS team during the
years 2015–2019 entered the functional genomics pipeline
(Fig. 2a). Lentiviral vectors, originating from Clontech, expressing
variants of interest or corresponding wildtype were constructed
and validated as previously described29. Seven hundred thirty-
seven variants were dropped out during the process due to
various technical reasons, including unavailability of correct ORF
and failure in full-length sequencing validation. Expression vectors
for 557 variants were constructed, full-length sequencing vali-
dated, and functional testing proceeded with two growth factor-
dependent cell line models, Ba/F3 and MCF10A, as previously
described31. Briefly, lentivirus vectors expressing either the wild-
type gene or the variant of interest were expressed within the two
cell lines. Ba/F3 cells originate from MD Anderson Characterized
Cell Line Core facility, and MCF10A cells originate from ATCC (CRL-
10317). Transduced cells were incubated without dependent
growth factors (i.e. IL-3 for Ba/F3, EGF and insulin for MCF10A) for
3 weeks. Cell viability was measured during the 3-week assay
period, and the effect of the variant was compared with the
corresponding wild type. Results were considered informative
(470 variants) for utilization within the PODS knowledgebase if
expression of at least one variant of the gene or the wildtype gene
promoted cell viability within the cell line; thus, demonstrating
that the oncogenic potential of the gene can be observed in the
genetic background of the cell model utilized. Otherwise, results
were considered non-informative in the respective cell line(s). 87
variant results were deemed non-informative for this reason or
because the wildtype gene functioned in a manner opposite of
the effect being examined for actionability. Specifically, expression
of FGF6, typically considered an oncogene66,67, suppressed cell
growth in the assay; and PTCH1, typically considered a tumor
suppressor gene68,69, increased cell viability. Thus, we could not
confidently assess mutations for actionable gain-of-function
(FGF6) or loss-of-function (PTCH1) mutations. ARAF mutations
were only considered non-informative within MCF10A cells, as the
wildtype gene demonstrated tumor suppressive activity within
this cell line but not Ba/F3 cells. ARAF is typically considered an
oncogene70,71; thus, oncogenic gain-of-function mutations within
MCF10A cells could not be determined.

Determining functionally validated, actionable variants
Variants were considered actionable by functional genomics
testing if they increased cell survival and/or proliferation in
comparison with the wildtype gene in at least one cell line tested,
and the variant resides within a gene classified as actionable by
the PODS team at the time the result was captured. At the time of
data capture, four variants remained Unknown for Functional
Significance after functional genomics testing after considering
their effect within the platform in combination with what was
known at the time within the published literature. Detailed
annotations are provided in Supplementary Table 3 for these
variants. A two-sided Fisher’s Exact Test was performed to
determine if those annotated as potentially actionable were more
likely to be functionally validated as actionable.

Utilizing bioinformatic prediction tools
The publicly available web interface for the Cancer Genome
Interpreter47, available at https://www.cancergenomeinterpreter.org,
was utilized to categorize variants as a driver (predicted and/or
annotated) or a passenger. Additionally, OpenCravat72 was utilized to
access prediction tools VEST473, CHASMplus56, and CScape50. First,
protein amino acid changes were mapped to a genomic position and
DNA change via TransVar74 version 2.5.10.20211024 using UCSC
reference genome HG19 that was indexed by samtools (version
1.17)75. Outputs from TransVar were checked against input protein
changes, and incorrect mappings were removed. For variants with
multiple inferences, results were retained for those where the cDNA
and protein amino acid change match between TransVar and
OpenCravat. OpenCravat inferred variants with the most severe
sequence ontology as primary variants and retained other mapped
transcripts as secondary information. Alterations, where the inferred
amino acid change from the prediction tool does not match with the
amino acid change serving as input from functional genomics testing,
were discarded from inclusion. For inferences with primary transcripts
or protein changes that did not match between Transvar and
OpenCravat, we selected the MANE and Ensembl transcripts with the
same protein changes for CHASMplus and VEST4. As no transcript
information for CScape was available in OpenCravat, we excluded
predictions for those unmatched from the analysis. A significance
level of 0.05 was used for determining predicted oncogenic drivers
versus passengers for CHASMplus and VEST4, and a threshold of 0.5
was used for CScape as recommended by the tool.

Determining the nearest oncogenic variant
To determine the nearest oncogenic variant to a “variant of
interest” that was validated to be actionable by functional
genomics testing, a search of the PODS database was conducted
on 9/17/2021. Variants that had at least one actionability value of
“Yes” based on published literature or functional genomics testing
and are of the subtype missense, in-frame deletion, in-frame
insertion, duplication, or deletion-insertion qualified as “other”
oncogenic variants. The distance between the two variants was
calculated as follows:

● When the variant of interest represents a single codon and the
other oncogenic variant represents a single codon, the
difference between the two codons was subtracted (e.g,
D323A and D323E; distance= 0)

● When the variant of interest represents a single codon and the
other oncogenic variant comprises multiple codons, the
distance was determined to be 0 if the variant of interest
(e.g, K385M) resides within the amino acid range of the other
oncogenic variant (e.g, Y375_K455del)

● When the variant of interest comprises multiple codons and
the other oncogenic variant represents a single codon, the
distance was calculated to be 0 if the other oncogenic variant
(e.g., Y65C) resides within the range of amino acids for the
variant of interest (e.g., H64_Y65_delinsQS).

● When the variant of interest comprises multiple codons and the
other oncogenic variant also comprises multiple codons, the
distance was calculated as 0 if the amino acid range of the two
variants are identical or the amino acid range of either the
variant of interest or the nearest oncogenic variant is nested
within the other’s amino acid range (e.g., P551_M552 > L and
K550_K558del). For all other scenarios, the distance is calculated
as the difference between the two most N-terminal amino acids
(e.g., D770_N771insGF and N771_P772insH, distance = 1)

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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DATA AVAILABILITY
Patients’ tumors were sequenced within a very large variety of external CLIA-certified
laboratories, in addition to MD Anderson’s internal CLIA-certified laboratory. Clinical
sequencing data was collected and entered within an internal MD Anderson
database as part of the informed consent protocol (NCT01772771) from these various
sources. The PODS team accessed sequencing data within the MD Anderson
database and determined variants of unknown significance, upon physician request.
The mutations identified and tested within the functional genomics platform for all
variants referenced within the paper are available at https://ibl.mdanderson.org/
fasmic/#!/. The accession number is FASMIC00230421.

CODE AVAILABILITY
Code is available for generation of bioinformatic tool-predicted oncogenicity values
(Supplementary Fig. 2) at https://github.com/KChen-lab/Data-Analysis-of-Variant-
Functional-Effects.
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