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Grading of lung adenocarcinomas with simultaneous
segmentation by artificial intelligence (GLASS-AI)
John H. Lockhart 1,2, Hayley D. Ackerman 1,2, Kyubum Lee 3, Mahmoud Abdalah4, Andrew John Davis1,2, Nicole Hackel1,2,
Theresa A. Boyle5, James Saller5, Aysenur Keske6, Kay Hänggi6, Brian Ruffell 6, Olya Stringfield4, W. Douglas Cress 1,
Aik Choon Tan3 and Elsa R. Flores 1,2✉

Preclinical genetically engineered mouse models (GEMMs) of lung adenocarcinoma are invaluable for investigating molecular
drivers of tumor formation, progression, and therapeutic resistance. However, histological analysis of these GEMMs requires
significant time and training to ensure accuracy and consistency. To achieve a more objective and standardized analysis, we used
machine learning to create GLASS-AI, a histological image analysis tool that the broader cancer research community can utilize to
grade, segment, and analyze tumors in preclinical models of lung adenocarcinoma. GLASS-AI demonstrates strong agreement with
expert human raters while uncovering a significant degree of unreported intratumor heterogeneity. Integrating
immunohistochemical staining with high-resolution grade analysis by GLASS-AI identified dysregulation of Mapk/Erk signaling in
high-grade lung adenocarcinomas and locally advanced tumor regions. Our work demonstrates the benefit of employing GLASS-AI
in preclinical lung adenocarcinoma models and the power of integrating machine learning and molecular biology techniques for
studying the molecular pathways that underlie cancer progression.
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INTRODUCTION
The approval of whole slide scanners for use in clinical pathology by
the U.S. Food and Drug Administration (FDA) in 2017 led to the
rapid proliferation of digital pathology images in both healthcare
and pre-clinical settings. Not only have whole slide images (WSIs)
increased the efficiency of pathologists’ workflow, but their
digitization also enables collaboration among geographically
distant groups. Furthermore, advances in computer vision and
image processing have given rise to several applications that can
assist in the histopathological analysis of WSIs, particularly in the
field of oncology. These applications often utilize pre-trained
convolutional neural networks (CNNs) to perform or assist with
time-consuming tasks, such as nuclei segmentation1,2, histological
staining analysis3, and tumor segmentation4–6. Similar machine-
learning approaches have been developed for more nuanced
analyses, including quantifying tumor-associated or tumor-
infiltrating immune cells7–9, microsatellite instability10, and predic-
tion of patient mutational status from WSIs11,12. Machine learning
models trained to classify tumors into diagnostically distinct grades
using existing systems, such as the Gleason score for prostate
cancer13–15, have also been reported. In many of these studies, the
accuracy of the machine-learning model has been measured in
terms of agreement with expert human raters on a sample-by-
sample basis. While a suitable performance measure, this compar-
ison level fails to capture much of the information uncovered by the
high-resolution analysis these algorithms perform.
In addition, the development of these machine-learning models

has been focused almost exclusively on analyzing human samples.
These efforts benefit tremendously from publicly available data
sets from human patients, like those stored in The Cancer Genome
Atlas (TCGA)’s collection of WSIs and associated molecular data16.
However, the intense focus on clinical applications has provided

few machine-learning models useful for translational and basic
research projects that rely on pre-clinical animal models.
Machine learning applications in pre-clinical research present an

excellent opportunity to enhance and accelerate analyses of the
experimental data produced from these efforts. Several genetically
engineered mouse models of lung adenocarcinoma (LUAD) have
been reported, of which the KrasLSL-G12D/+ model is the most
widely used17. This well-studied mouse model is a valuable
baseline for studying other mutations commonly found in LUAD,
such as Trp53R172H, separately or in conjunction with the activating
KrasG12D mutation. Unlike human patients, these mouse models
often develop over 100 primary tumors of varying histological
grades throughout the lungs, which makes thoroughly analyzing
these valuable specimens extremely time-consuming, even for
experienced cancer researchers or clinicians.
Here, we report GLASS-AI (Grading of Lung Adenocarcinoma

with Simultaneous Segmentation by Artificial Intelligence), a
machine learning pipeline for the analysis of mouse models of
lung adenocarcinoma that provides a rapid and reproducible
means of analyzing tumor grade from WSIs. Analysis of several
mouse models of LUAD revealed a high degree of accuracy
comparable to expert human raters. Furthermore, the high-
resolution analysis performed by GLASS-AI revealed extensive
intratumor heterogeneity that was not reported by the human
raters. Alignment of these heterogeneous tumor regions with
adjacent immunostained sections showed a strong correlation
between tumor grade and aberrant Mapk/Erk signaling that
differed between Kras;G12D/+ RosamG/mG (K), TAp73;Δtd/Δtd

KrasG12D/+ (TK), and Kras;G12D/+ Trp53;R172H/+ RosamG/mG (KP-
R172H) mouse models. The GLASS-AI pipeline empowers pre-
clinical research by rapid, reproducible analysis of LUAD without
requiring extensive training of human raters.
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RESULTS
Training of machine learning model
Developing an accurate machine learning model requires a large
amount of high-quality training data. To construct our training
dataset, we collected WSIs from Kras;G12D/+ RosamG/mG (K) (n= 4),
TAp73;Δtd/Δtd KrasG12D/+ (TK) (n= 15), and Kras;G12D/+ Trp53Δ/Δ

(n= 14) mice 30 weeks after LUAD initiation. KrasG12D mice and
other mice with additional deletions of tumor suppressor proteins
(i.e., Trp53) or protein isoforms (i.e., the TA isoform of Trp73) were
used to ensure that low, medium, and high-grade tumors present
in our training data. The 33 WSIs were divided among three expert
human raters, ensuring each rater had at least one WSI from each
mouse genotype and randomly assigning the remainder. The
raters then segmented and graded tumors throughout the WSIs
using the mouse LUAD grading scale previously reported18,19

(Supplementary Fig. 1).
The annotated WSIs were then used to build a training library of

~6000 patches for each of the six target classes that were then
split 60/20/20 for model training, validation, and testing (Fig. 1a).
Data augmentation was used to ensure that the total area of each
of the target classes was equally represented within each of the
training, validation, and testing datasets (Supplementary Fig. 2).
Our machine learning model was based on ResNet1820 with a
rectified linear unit (ReLU)-only pre-activation (Fig. 1b). Transposed
convolutional layers were included after the ResNet layers to
output graphical maps of tumor grading calls (Fig. 1c, middle) and
segmented tumors (Fig. 1c, right), in addition to tabulation of
areas of each grade within each segmented tumor and the whole
image. WSIs can be input directly into GLASS-AI to quickly identify
and grade the tumors throughout a lung cross-section (Fig. 1d).
After training, GLASS-AI achieved an accuracy of 88% on the

patches in the final testing data set. However, the image patches
used in this assessment only partially capture segmentation and
classification accuracy due to their small size and disconnected
nature. To test the accuracy of GLASS-AI on complete specimens,
we collected a subset of 10 WSIs (5 Kras;G12D/+ RosamG/mG and 5
TAp73;Δtd/Δtd KrasG12D/+) from a new cohort of mouse models of
LUAD that were collected after GLASS-AI had been trained. These
10 WSIs contained 1958 tumors manually segmented and graded
by a fourth human rater who did not contribute to the annotation
of the model training dataset.
After segmentation by GLASS-AI, each tumor in WSIs was

assigned an overall grade tumor using the same criteria employed
by the human raters;21 overall tumor grades were assigned based
on the highest tumor grade present that comprised at least 10% of
the tumor’s area. GLASS-AI achieved a Micro-averaged F1-score of
0.867 (global precision = 0.864, global recall = 0.869) across the 10
WSIs. Examining the F1-score for each class showed a trend toward
higher scores with increasing tumor grade (Fig. 2a). By comparing
the ratio of the tumor areas annotated by GLASS-AI and the human
rater, we found that GLASS-AI annotated an average of 31% more
tumor area. This increase was most pronounced in the Grade 1
tumors (Fig. 2b), which are usually smaller and more difficult to
notice than tumors of higher grades. Reviewing the Grade 1 areas
identified by GLASS-AI and not the human rater showed that a
number of these regions were likely Grade 1 LUAD or
atypical adenomatous hyperplasia that was missed by the human
rater (Fig. 2d). We also observed a large increase in the amount of
normal airway area found by GLASS-AI. Upon inspection, we found
that this was due to the misclassification of the smooth muscle cells
of the pulmonary arteries, a cell type also surrounding the airways of
the lung (Supplementary Fig. 3).
GLASS-AI successfully recognized tumors within 1932 of the

1958 manually segmented tumors within the 10 WSIs (Table 1). All
26 of the tumors missed by GLASS-AI were manually annotated as
Grade 1 and were classified as “normal alveoli” (Fig. 2e). In
addition to identifying 98.7% of manually annotated tumors,

GLASS-AI’s segmentation also covered 90% of the manually
annotated tumor area. To directly compare overall tumor grading
between GLASS-AI and the human rater, the manually annotated
regions were combined with GLASS-AI’s grading to assign the
overall tumor grade to each manually segmented tumor. GLASS-AI
and the human rater assigned the same grade to 1677 (85.6%) of
the annotated tumors resulting in a Cohen’s kappa of 0.782 (95%
CI: 0.759–0.806) with a linear weighted kappa of 0.835. We
observed that the grading agreement was high across all four
tumor grades (Fig. 2c) despite the high degree of intratumor
heterogeneity found in LUAD tumors (Fig. 2f, g). GLASS-AI also
analyzed all 10 WSIs in 75 min, at ~7.5 min per slide, while the
human rater required ~4.5 h per slide. The speed, accuracy, and
resolution of GLASS-AI can greatly empower the analysis of mouse
models of LUAD.

GLASS-AI analysis of mouse models of lung adenocarcinoma
The initial test of the GLASS-AI pipeline was carried out on
Kras;G12D/+ RosamG/mG (K) and TAp73;Δtd/Δtd KrasG12D/+ (TK) mouse
models (Fig. 3a) to assess the utility of GLASS-AI for comparing the
experimental TK mouse model of LUAD to an existing, well-
characterized K LUAD model. The tumor phenotypes of the K
mouse model have been characterized by previous studies17,19,22,
while the tumor phenotypes in the TK model are unknown. These
comparisons were carried out with the entire cohort of 11 K and
13 TK mice that contained the subset of 10 WSIs analyzed in Fig. 2.
To directly assess changes in tumor progression associated with
the loss of TAp73, the mice used for this study were collected 30
weeks after initiation of LUAD by intratracheal instillation with
adenovirus expressing Cre recombinase under the control of a
CMV promoter.
After analyzing the cohort of 11 K and 13 TK mice with GLASS-

AI, we found that the average number of tumors in TK mice was
73% higher than in K mice (469 [95%CI= 322–470] vs. 271 [95%
CI= 199–344], p= 0.021, Student’s t-test statistic t= 2.48, df=22,
Cohen’s d= 1.049) (Fig. 3b, left axis). GLASS-AI found that the
majority of tumors in the K mice were Grade 3, with only a few
Grade 1 or Grade 4 tumors. However, the TK mice exhibited a
significant decrease in the average proportion of tumors rated as
Grade 3 compared to K mice (39.4% [95%CI= 31.3–47.5] vs. 58.5%
[95%CI= 47.2–69.7, p.adj= 0.0206, Student’s t-test statistic
t= 3.10, df=22, Cohen’s d= 1.258). This shift away from Grade 3
tumors was accompanied by an increase in the average
proportion of Grade 2 (38.7% [95%CI= 31.2–46.1] vs. 27% [95%
CI= 17.6–36.0], p.adj= 0.1028, Student’s t-test statistic t= 2.24,
df= 22, Cohen’s d= 0.913) and Grade 4 tumors (9.0% [95%
CI= 2.4–15.6] vs. 3.5% [95%CI= 1.7–5.3], p.adj= 0.2274, Student’s
t-test statistic t= 1.61, df= 22, Cohen’s d= 0.687) that did not
reach statistical significance (Fig. 3b, right axis).
In addition, the total proportion of lung area occupied by

tumors annotated by GLASS-AI in TK mice was significantly higher
than in K mice (28.3% [95%CI= 20.5–36.1] vs. 16.0% [95%
CI= 9.6–22.4], p= 0.0159, Student’s t-test statistic t= 2.61, df=
22, Cohen’s d= 1.084). When examined in more detail, TK mice
exhibited an increase in the percentage of lung area filled by
tumors of each grade of LUAD, particularly Grade 3 (14.8% [95%
CI= 7.5–22.1] vs. 8.8% [95%CI= 4.8–13.0], p.adj= 0.3282, Stu-
dent’s t-test statistic t= 1.48, df= 22, Cohen’s d= 0.624) and
Grade 4 (11.8% [95%CI= 4.2–19.4] vs. 6.2% [95%CI= 0.8–11.6],
p.adj= 0.3282, Student’s t-test statistic t= 1.26, Cohen’s d= 0.528)
that did not reach statistical significance (Fig. 3c). Interestingly,
when we examined the percent of lung area of each tumor grade
found by GLASS-AI without assigning overall grades to the tumors,
we found that TK mice had a significant expansion of Grade 2 area
compared to K mice (11.3% [95%CI= 7.7–15.0] vs. 4.3% [95%
CI= 2.7–5.9], p.adj= 0.0052, Student’s t-test statistic t= 3.41,
df=22, Cohen’s d= 1.417). This expansion was proportionally
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larger than the Grade 3 (11.2% [95%CI= 7.2–15.1] vs. 8.5% [95%
CI= 4.6–12.4], p.adj= 0.1702, Student’s t-test statistic t= 1.78,
df= 22, Cohen’s d= 0.726) and Grade 4 expansions (4.9% [95%
CI= 1.1–8.6] vs. 2.9% [95%CI= 0.2–5.7], p.adj= 0.1702, Student’s
t-test statistic t= 1.69, df= 22, Cohen’s d= 0.679), which did not
reach statistical significance (Supplementary Fig. 4). Since we did
not observe a large increase in the area of Grade 2 tumors, we
reasoned the increased Grade 2 area identified by GLASS-AI would
be in Grade 3 or Grade 4 tumors. Indeed, we found that the
percentage of total Grade 2 area in all Grade 3 tumors increased
from 25% in K mice to 43% in TK mice and likewise increased from
17 to 26% in all Grade 4 tumors (Supplementary Fig. 5).

We next examined the distribution of individual tumor sizes to
determine if the increased tumor burden observed in TK mice
compared to K mice was due solely to the increased tumor
number. Interestingly, while the median tumor size of TK mice was
found to be significantly smaller than K mice (2542 µm2 [95%
CI= 2429–2643] vs. 3093 µm2 [95%CI= 2889–3240], p= 0.0026,
Mann–Whitney test statistic z=−3.0149, r= 0.022) (Supplemen-
tary Fig. S6), a closer examination of the cumulative distribution of
tumors revealed that TK mice had a broader distribution of tumor
sizes with a higher proportion of smaller and larger tumors than
K mice (p < 0.0001, Komolgorov-Smirnov test statistic D= 0.051)
(Fig. 3d). However, the 6-log range of tumor sizes we observed
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Fig. 1 Supervised training of GLASS-AI machine learning model. a The GLASS-AI training dataset was generated from 33 whole slide images
from three mouse models of lung adenocarcinoma (LUAD) analyzed by human graders. WSIs were divided into 224 × 224 pixel (112 × 112 µm)
patches, and 6000 patches for each of the six classes were used to train our CNN. b Diagram of GLASS-AI network architecture. c Example
region from input H&E WSI (left), tumor grading map (middle), and tumor segmentation map (right) produced by GLASS-AI. d Example of
complete grading map produced by GLASS-AI. Scale bars represent 100 µm (c) or 1 mm (d).
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meant that the more numerous small tumors of the TK mice
contributed relatively little to the overall tumor burden. Indeed,
50% of the total tumor area was contained in only 30 (0.5%) and
125 (1.0%) tumors from K and TK mice, respectively. Looking at the
distribution of sizes of tumors of each grade in the K and TK mice,
we observed that tumors of higher grades were significantly larger
than lower-grade tumors, as expected. Furthermore, we noted that
the median size of Grade 3 tumors from TK mice was also

significantly larger than that of K mice (7929 µm2 [95%
CI= 7183–8744] vs. 5367 µm2 [95%CI= 4971–5774], p.adj < 0.0001,
Dunn’s multiple comparisons test statistic z= 5.927, r= 0.067)
(Fig. 3e). Therefore, we can conclude that the greater tumor
burden of TK mice is due to both the higher number of tumors and
the expansion of higher-grade tumors from the increased Grade 2
areas within them.
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Uncovering intratumor heterogeneity
It is important to note that the annotations generated by our
expert human raters were based on standard criteria for tumor
grading, in which a tumor is assigned a single grade based on the
highest grade observed that comprises at least 10–20% of the
tumor area21. However, GLASS-AI gave grades to individual pixels
within the image before tumor segmentation, producing a mosaic
of grades within a single tumor (Fig. 4a). This information can be
used to understand better the effects of genes of interest and
drivers of tumor progression in mouse models of LUAD, including
the loss of TAp73 in our LUAD mouse models.
By representing each tumor as a stacked bar divided by the

proportion of the tumor area made up of each grade of LUAD, we
could visualize the overall distribution of intratumor heterogeneity
in the LUAD mouse models (Fig. 4b). From these graphs, we
identified patterns in tumor composition, such as the relatively
small proportion of Grade 1 area found in Grade 4 tumors or the
presence of Grade 2 area in tumors of a higher grade. The shift
from predominantly Grade 3 tumors in K mice to other tumor
grades, namely Grade 2 and Grade 4, in TK mice was also evident
from these graphs (Fig. 4b).
While informative, these visual representations of tumor hetero-

geneity can provide only a qualitative estimation of heterogeneity
in our genetically engineered mouse models of LUAD. To overcome
this shortcoming, we employed the Shannon Diversity Index (SDI)
as a more quantitative estimate of intratumor heterogeneity. SDI
estimates the uncertainty in predicting the grade of a given square
micron in a tumor given by SDI ¼ �Pn

i¼1 pi lnpi , where pi is the
proportion of the i-th of the n present grades from Grade 1 to
Grade 4. After estimating the mean SDI from each tumor in a
mouse, we found that the TK mice had a higher overall SDI than K
mice (0.20 [95%CI= 0.18–0.21] vs. 0.16 [95%CI= 0.13–0.19],
p= 0.0079, Student’s t-test statistic t= 2.922, df= 22, Cohen’s
d= 1.511) (Fig. 4c). We also compared the individual tumors of
each grade within the K and TK mice and found a trend of
increasing heterogeneity with increasing tumor grade in both
genotypes (p.adj < 0.001 for all comparisons) (Fig. 4d, numerals).
This trend is expected due to our overall tumor grade assignment
method, which limits low-grade tumors from containing significant
amounts of higher-grade regions. However, we observed that the
Grade 3 tumors of TK mice had a significantly higher median SDI
than K mice (0.37 [95%CI= 0.35–0.38] vs. 0.04 [95%CI= 0.02–0.08],
p.adj< 0.001, Dunn’s test statistic z= 18.75, r= 0.2141) (Fig. 4d).
These data indicate that the loss of TAp73 increases intratumor
heterogeneity, perhaps due to the accumulation of other mutations
and defects during tumor progression.

Aberrant Mek/Erk signaling is associated with grade 4 regions
in high-grade tumors
To investigate how the loss of TAp73 contributes to tumor
progression and to correlate tumor grading by GLASS-AI with

molecular indicators of progression, we performed immunohis-
tochemistry (IHC) for phosphorylated Mek (p-Mek) and phos-
phorylated Mapk/Erk (p-Erk) on mouse lung sections with adjacent
H&E sections graded by GLASS-AI. These downstream effectors of
Ras signaling have been previously reported to stain subsets of
mouse LUAD tumors and be largely absent in adjacent normal
tissue18. To facilitate comparisons to these studies, we also
analyzed a Kras;G12D/+ Trp53;R172H/+ RosamG/mG (KP-R172H, n= 3)
mouse model (Supplementary Fig. 7) in addition to the Kras;G12D/+

RosamG/mG (K, n= 3) and TAp73;Δtd/Δtd KrasG12D/+ (TK, n= 5) mice.
We performed global and local registration on each p-MEK and

p-ERK IHC WSI using the H&E-stained WSI as a reference
(Supplementary Fig. 8). After image registration, individual cells
within each IHC image were segmented and categorized as
positive or negative. Using the adjusted coordinates of the
registered images, the cells identified in the p-MEK and p-ERK IHC
WSIs were then projected back to the tumor grading maps that
GLASS-AI produced from the H&E-stained WSI, assigned to the
corresponding GLASS-AI output class, and associated with
individual tumors in which they were contained. Tumors less
than 2000 sq. microns in area or containing fewer than 50 total
cells identified from the IHC-stained slide were excluded from the
downstream analysis to minimize artifacts from imperfect image
registration and cell segmentation.
In all three mouse models, both p-Mek and p-Erk positivity

increased with overall tumor grade, and nearly 100% of Grade 4
tumors were positively stained for both markers (Fig. 5a). p-Mek
exhibited a broader staining distribution than p-Erk, which
primarily appeared in small regions of tumors and occasionally
throughout the entire tumor (Fig. 5b). The predominantly focal
staining of p-Erk has also been previously reported to occur in
high-grade tumors of KrasG12D/+ mice and mice with additional
mutations or deletions of Trp5318,23.
The high-resolution tumor grading produced by GLASS-AI

allowed us to examine the distribution of p-Mek and p-Erk
staining within regions of different grades in a single tumor.
Tumors that displayed an uneven distribution of positively stained
cells were determined using a likelihood-ratio G-test
G ¼ 2

P4
i¼1Oi ln

Oi
Ei
, where Oi is the observed count of positively

stained cells in the i-th tumor grade and Ei is the expected count
of positively stained cells calculated from the total number of
positively stained cells in the tumor multiplied by the proportion
of the tumor’s area classified as the i-th grade by GLASS-AI. These
distributions were compared against a Chi-square distribution to
determine significance. The proportion of tumors with signifi-
cantly unequal distribution of either p-Mek or p-Erk was very small
in Grade 3 or lower tumors. However, most Grade 4 tumors of all
three mouse models displayed significantly disproportionate
staining for both markers (Fig. 5c, d). The large increase in the
proportion of Grade 4 tumors identified by the G-test compared to
the lower grades may indicate that the development of foci of
dysregulated Mek/Erk signaling may drive tumor progression.
Based on these observations, we hypothesized that the

enrichment of p-Mek and p-Erk staining in the high-grade LUAD
of our mouse models should occur in the highest-grade regions of
these tumors. By examining the likelihood ratios of the individual
grade regions in each tumor, we found that K mice displayed a
striking discordance in the enrichment of p-Mek and p-Erk
staining, with p-Mek being enriched in higher grade regions in
tumors and p-Erk enriching in lower-grade regions of the same
tumor (Fig. 5e). In contrast, tumors from TK and KP-R172H mice
exhibited a more consistent enrichment of p-Mek and p-Erk
staining in the higher-grade regions. We noted that Grade 4
regions exhibited the strongest enrichment for p-Erk even in
tumors with a small proportion of Grade 4 area (Fig. 5e, bottom).

Table 1. Overall tumor grade assignment by human raters and
GLASS-AI.

GLASS-AI grade Manual annotation

Grade 1 Grade 2 Grade 3 Grade 4 Total

Normal 26 0 0 0 26

Grade 1 649 66 12 0 727

Grade 2 56 322 40 1 419

Grade 3 23 53 690 2 768

Grade 4 0 0 2 16 18

Total 754 441 744 19 1958
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DISCUSSION
Applying machine learning models to digitized WSIs will likely
revolutionize how these data are analyzed. Computer vision can
assist clinicians by providing rapid screening of images, and the
higher resolution analysis performed by machine learning models
can uncover features that go unnoticed or unreported by human
raters. The analysis of preclinical models will also benefit from
employing these machine learning models in analysis pipelines by
facilitating rapid, reproducible analysis. In this study, we report a
purpose-built neural network for grading lung adenocarcinomas in
genetically engineered mouse models that provides an unparalleled
identification and analysis of tumor grade heterogeneity. We also
demonstrate how this pipeline can be integrated with widely used

molecular biology techniques to extend our understanding of the
drivers of tumor progression and heterogeneity in LUAD. For
example, the consistent enrichment of p-Erk in high-grade regions,
even within tumors with a lower overall tumor grade, supports our
hypothesis that the localized loss of Mek/Erk regulation beyond the
activation of the Ras-Raf-Mek-Erk pathway by oncogenic Kras
mutation may drive tumor overall progression. The shift in p-Erk
enrichment from low-grade regions in K mice to high-grade regions
in TK and KP-R172H mice also highlights the role of the p53 family,
and TAp73 in particular, as crucial antagonists of Kras-mediated
dedifferentiation in LUAD24 and tumor heterogeneity.
Tumor heterogeneity has been implicated in the progression of

many cancer types, including non-small cell lung cancers25,26.
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Increased intratumor heterogeneity has been linked to decreased
overall survival25,27,28, poor response to therapy29, and even increased
metastasis30. This heterogeneity is presumed to arise from the clonal
evolution of tumor cells within a neoplasm31,32. Typically, tumor
heterogeneity is estimated using bulk molecular analyses, such as
RNAseq or copy number variation. Previous studies have utilized bulk
sample analyses correlated with histomorphological features to
predict spatial heterogeneity of molecular markers33,34. However,
recent studies have begun using spatially sensitive techniques31 or

multi-region sampling35. Combining these approaches with high-
resolution analysis from machine learning pipelines like GLASS-AI
could provide an unprecedented understanding of cancer develop-
ment, progression to metastasis, and treatment response through
information derived from spatial genomics, transcriptomics, and
proteomics correlated with tumor phenotype.
The recent development of commercially available spatial

transcriptomics platforms is a promising step forward in correlating
molecular and histological analyses. Some groups have begun
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developing machine learning applications utilizing these technolo-
gies36. However, these platforms focus on fresh-frozen specimens
rather than the FFPE samples typically used for histological analyses
in both mouse and human LUAD. Further improvement of these
technologies to enable the use of FFPE archival tissues would
significantly enhance our understanding of the molecular drivers of
tumor progression and heterogeneity and allow the prediction of
molecular features from routine histological preparations. This ability
to accurately predict molecular markers from simple FFPE, H&E-
stained histology images could be used to flag specimens for further

molecular characterization and even provide increased diagnostic
and therapeutic precision to clinics without regular access to these
molecular techniques.

METHODS
Mouse models and husbandry
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(KP-R172H), and Kras;LSL-G12D/+ Trp53flox/flox mice were generated
on a C57BL/6 background. Between 8 and 10 weeks of age, mice
were intratracheally instilled with 7.5 × 107 PFU of adenovirus
containing Cre recombinase under the control of a CMV promoter,
as previously described19. Mice were euthanized 30 weeks after
infection, and lungs were collected, fixed overnight in formalin,
and embedded in paraffin for further processing. All procedures
were approved by the Institutional Animal Care and Use
Committee (IACUC) at the University of South Florida.

Tissue processing
Formalin-fixed paraffin-embedded (FFPE) lung tissue blocks were
sectioned at 4-μm thickness by the Tissue Core at Moffitt Cancer
Center. Hematoxylin and eosin (H&E)-stained sections were
prepared by the Tissue Core immediately after sectioning.
Immunostaining of mouse lung sections was performed overnight
at 4 °C in humidified chambers with antibodies against p-Mek1/2
(Ser221) (Cell Signaling Technology Cat# 2338, RRID: AB_490903;
1:200) or p-Mapk (Erk1/2) (Thr202/Tyr204) (Cell Signaling Technol-
ogy Cat# 4370, RRID: AB_2315112; 1:400) in 2.5% normal horse
serum. The IHC signal was developed using DAB after conjugation
with ImmPRESS HRP Horse anti-rabbit IgG PLUS polymer kit
(Vector Laboratories Cat# MP-7801). Nuclei were counterstained
by immersing the slides in Gill’s hematoxylin for 1 min (Vector
Laboratories Cat# H-3401).

Image pre-processing
Whole slide images (WSIs) were generated from H&E and
immunostained slides using an Aperio ScanScope AT2 Slide Scanner
(Leica) at 20x magnification with a resolution of 0.5022 microns/pixel.
To improve the consistency of our pipeline on H&E slides with
various staining intensities, staining was normalized using the
Macenko method37. WSIs of immunostained sections were co-
registered to adjacent H&E-stained sections by a combination of
global and local co-registration in MATLAB. The global co-registration
was achieved by first applying a rigid co-registration to the whole
slide of IHC and aligning it to the H&E slide. After the initial rigid
alignment, the global co-registration was improved by applying an
affine transformation to the IHC slide. This affine co-registration step
was lightly applied using only a few iterations to avoid undesired
deformation. Local co-registration was then performed by manually
aligning tumor regions identified by the pipeline in the H&E image to
tumor regions in the IHC slide.

Machine learning model design
GLASS-AI was written in MATLAB 2021a using the Parallel Processing,
Deep Learning, Image Processing, and Computer Vision toolboxes.
The standalone GLASS-AI applications for Windows and Mac were
built using the MATLAB App Designer and MATLAB Compiler. The
network architecture of GLASS-AI was based on ResNet1820; an 18-
layer residual network pre-trained on the ImageNet dataset38. An
atrous convolution layer and an atrous spatial pyramid pooling layer
were added after the final ResNet18 convolutional layer. The atrous
layer performs several simultaneous convolutions on the same input
using a set of dilated filters. For example, a 3 × 3 filter with a dilation
rate of 4 skips that many pixels between each sampled pixel,
effectively spanning a region of 11 × 11. Atrous convolution increases
context assimilation by applying multiple dilated filters simulta-
neously to the input matrix and pooling the results in the next layer.
The latent features were then expanded back to the dimensions of
the input image patch with transposed convolution before
classification. Finally, a smoothing step was added after classification
to minimize artifacts from image patch edges. A detailed graphical
overview of the network architecture of GLASS-AI is provided in
Supplementary Data 1.

Training image library construction
To construct the training dataset, 33 WSIs were acquired from an
available cohort of genetically engineered mouse models of LUAD of
varying genotypes (Kras;G12D/+ RosamG/mG n= 4, TAp73;Δtd/Δtd

KrasG12D/+ n= 15, Kras;G12D/+ Trp53Δ/Δ, n= 14). The slides were then
divided randomly among three expert human raters, with each
rater’s set of 11 WSIs containing at least one slide from each mouse
model. The raters manually annotated the individual tumors with
grades, normal airways, and normal alveoli throughout each WSI. A
total of 6,850 tumors were annotated across the 33 WSIs.
The annotated WSIs were divided into corresponding

224 × 224-pixel image and label patches. Patches were then
grouped by the annotated class (Normal alveolar, Normal airway,
Grade 1 LUAD, Grade 2 LUAD, Grade 3 LUAD, and Grade 4 LUAD)
that was most abundant within each patch; however, all the
annotations present within the patches were left intact (i.e., a
patch that was predominantly Grade 3 could still contain Normal
Alveolar and Grade 4 LUAD annotated pixels). An initial set of 6000
patches were randomly selected for each class from the respective
patch group and split 60/20/20 for training, validation, and testing
of the machine learning model after ensuring that patches from
an individual slide were only present within a single split. Because
each image patch could contain varying amounts of each target
class, the area of each of the six target classes in each library was
balanced via data augmentation by shifting, skewing, and/or
rotating patches in which the underrepresented class was the
most abundant class present (Supplementary Fig. 2). Using
MATLAB Deep Learning Toolbox and 2 NVIDIA P2000 GPUs, the
model was set to train for 20 epochs using adaptive moment
estimation on 128-patch minibatches with an initial learning rate
of 0.01.

Statistical analysis
Data were analyzed using the statistical tests indicated in the
figure legends using GraphPad Prism 9 software. Non-parametric
tests were used where indicated to compare data with high
skewness or kurtosis. p < 0.05 was considered statistically sig-
nificant unless otherwise stated in the figure legends. Compar-
isons with more than two groups were first analyzed with an
omnibus ANOVA (for parametric) or Kruskal–Wallis test (for non-
parametric) before proceeding with the posthoc testing indicated
in the figure legends. Family-wise error rate corrections were
performed for all multiple comparisons using the method
indicated in the figure legends. P-values for these comparisons
are reported after adjustment (p.adj). Effect sizes were calculated
using Cohen’s d ¼ x1�x2

s with pooled variance for parametric tests
and standardized effect size r ¼ z

ðn1þn2Þ for non-parametric tests.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The set of image and label patches used to train GLASS-AI have been deposited in
Zenodo (https://doi.org/10.5281/zenodo.7967749). The other datasets generated
during and analyzed in this study are available from the corresponding author upon
reasonable request.

CODE AVAILABILITY
The MATLAB source code for the GLASS-AI standalone applications and links to pre-
compiled versions of the application for Windows and MacOS are available at https://
github.com/jlockhar/GLASS-AI/. A set of H&E-stained images from a mouse lung
adenocarcinoma slide are included for demonstration and benchmarking purposes.
GLASS-AI was reported in the AIMe registry for artificial intelligence in biomedical
research (https://aime.report/cEX3O6).
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