
ARTICLE OPEN

Comprehensive analysis of angiogenesis pattern and related
immune landscape for individual treatment in osteosarcoma
Zhuangyao Liao 1,2,4, Ming Li1,2,4, Guoming Wen 2,3,4, Kun Wang2,3, Dengbo Yao2,3, Enming Chen1,2, Yuwei Liang1,2, Tong Xing 2,3,
Kaihui Su1,2, Changchun Liang2,3, Zhen Che1,2, Qing Ning1,2, Jun Tang1,2, Wenbin Yan1,2, Yuxi Li1✉ and Lin Huang 1✉

Postoperative recurrence and metastasis are the main reasons for the poor prognosis of osteosarcoma (OS). Currently, an ideal
predictor for not only prognosis but also drug sensitivity and immunotherapy responses in OS patients is urgently needed.
Angiogenesis plays a crucial role in tumour progression, which suggests its immense potential for predicting prognosis and
responses to immunotherapy for OS. Angiogenesis patterns in OS were explored in depth in this study to construct a prognostic
model called ANGscore and clarify the underlying mechanism involved in the immune microenvironment. The efficacy and
robustness of the model were validated in multiple datasets, including bulk RNA-seq datasets (TARGET-OS, GSE21257), a single-cell
RNA-seq dataset (GSE152048) and immunotherapy-related datasets (GSE91061, GSE173839). OS patients with a high ANGscore had
a worse prognosis, accompanied by the immune desert phenotype. Pseudotime and cellular communication analyses in scRNA-seq
data revealed that as the ANGscore increased, the malignant degree of cells increased, and IFN-γ signalling was involved in tumour
progression and regulation of the tumour immune microenvironment. Furthermore, the ANGscore was associated with immune cell
infiltration and the response rate to immunotherapy. OS patients with high ANGscore might be resistant to uprosertib, and be
sensitive to VE821, AZD6738 and BMS.345541. In conclusion, we established a novel ANGscore system by comprehensively
analysing the expression pattern of angiogenesis genes, which can accurately differentiate the prognosis and immune
characteristics of OS populations. Additionally, the ANGscore can be used for patient stratification during immunotherapy, and
guide individualized treatment strategies.
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INTRODUCTION
Osteosarcoma (OS), a malignant tumour predominantly occurring
in children and adolescents, has the characteristics of low
morbidity but high mortality1. Primary osteosarcoma mainly arises
in the long bones of the extremities, with a high rate of metastasis,
mostly to the lung2,3. Currently, combined treatments including
surgery, radiotherapy and chemotherapy result in an overall
5-year survival rate of 60–70% for patients with nonmetastatic
osteosarcoma. However, the 5-year survival rate of patients with
osteosarcoma recurrence and metastases after initial treatment is
only 16%4,5. Owing to the heterogeneous causes and complex
tumour microenvironment (TME) of osteosarcoma, traditional
treatment is prone to drug resistance. Therefore, a novel predictor
is urgently needed to stratify OS patients and develop individua-
lized treatment plans.
Due to the growing and proliferating demand of the tumour,

osteosarcoma needs to generate new blood vessels to obtain
more nutrients. Angiogenesis has been reported as a typical
characteristic during OS progression, including proliferation,
migration and metastasis6–8. As an important regulator of
angiogenesis, the vascular endothelial growth factor (VEGF)
pathway is activated by multiple inducers in osteosarcoma, such
as WISP19, CCL310 and CCL511, suggesting abnormal activation of
angiogenesis in OS. Based on the tight relationship between
angiogenesis and OS, antiangiogenic drugs have been considered
as potential treatments for OS patients. Several clinical trials of
anti-vascular agents have been conducted in osteosarcoma

populations with promising results5,12,13. However, the process
of angiogenesis is regulated by multiple factors, including a
variety of immune cells and cytokines14, and a more accurate
classification of OS patients is conducive to the selection of a more
appropriate anti-vascular treatment plan or a treatment plan
combined with other drugs.
The tumour immune microenvironment (TIME) refers to the

interaction environment formed by malignant cells in the tumour
and various surrounding immune cells. The mutual regulatory
relationship between angiogenesis and the TIME has been
described in many studies. Regulatory T cells (Tregs) can directly
release the proangiogenic factors VEGF and basic fibroblast
growth factor (bFGF), or secrete specific cytokines, which
indirectly induce the production of VEGF and bFGF to promote
tumour angiogenesis15. Natural killer (NK) cells are also essential
for the induction of VEGF expression under hypoxic conditions.
Previous studies have demonstrated that some decidual NK cells
(dNK) can induce the formation of capillary-like structures in non-
small cell lung cancer, colorectal cancer, etc16–18. Furthermore,
abnormal dilatation of tumour blood vessels can upregulate the
expression of chemokines to accelerate the recruitment of Tregs
into tumours19,20. Circulating VEGF impedes dendritic cell (DC)
maturation and function, allowing tumour cells to escape immune
surveillance21. Hence, assessment of angiogenesis-associated
profiles in OS patients also helps to evaluate the TIME, which
may contribute to improving the efficiency of both antiangiogenic
treatment and immunotherapy.
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In the present study, we integrated expression profiles from
public datasets for a comprehensive evaluation of angiogenesis
characteristics in OS. The angiogenesis signature exhibited an
overall phenomenon closely related to immunity, including the
infiltration of immune cells, the cancer immunity cycle and the
expression of immune checkpoints. Based on the angiogenesis
signature, we developed an angiogenesis scoring system called
the ANGscore to distinguish overall survival (OS) and the tumour
immune microenvironment, which were validated in conventional
bulk RNA-seq datasets, single-cell RNA sequencing (scRNA-seq)
dataset and immunotherapy-related datasets. Our findings
suggest that the ANGscore is a stable and efficient predictor to
characterize the angiogenesis state, prognosis, TIME, likelihood of
metastasis development and the response to immunotherapy
in OS.

RESULTS
Study workflow
For the training and validation cohorts, we included 84 patients
from the TARGET-OS database, 47 patients from GSE21257 for the
RNA-seq data, and 11 patients from GSE152048 for the single cell
RNA-seq data. A total of 109 patients from GSE91061 and 106
patients from GSE173839 were included to validate the predictive
efficacy of the immunotherapy response rate. For scRNA-seq data,
we performed quality control and normalization, and 100987 cells
were included in subsequent analyses. In addition, 36 angiogen-
esis genes were included in the analysis (Supplementary Table 1).
The flow diagram of this study is shown in Fig. 1.

Identification of angiogenesis related patterns in OS
The overall correlation and interaction of angiogenesis genes in
the TARGET-OS database are shown in Supplementary Figs. 1, 2.
Based on consensus clustering of the expression of the 36

angiogenesis genes, we identified three different angiogenesis
patterns, namely, Cluster 1, Cluster 2 and Cluster 3 (Fig. 2a). PCA
analysis confirmed the cluster division (Fig. 2b). Survival curves
exhibited that Cluster 2 showed significantly improved overall
survival and recurrence-free survival (Fig. 2c, d), and the
expression of angiogenesis genes among the three clusters had
overall significant differences (Fig. 2e).
To explore the underlying biological functions between three

distinct angiogenesis patterns, we conducted GSVA with the
MSigDB hallmark gene sets. The results indicated that Cluster 2
was enriched in circuit-activated immune infiltration-related
functions, including allograft rejection, inflammatory response,
IL2/STAT5 signalling and IL6/JAK/STAT3 signalling (Fig. 3a, b). In
addition, oxidative phosphorylation, the reactive oxygen species
pathway and fatty acid metabolism, which represent biological
oxidation processes, were also enriched. Previous studies reported
that activated T-cell mitochondrial metabolism and oxidative
phosphorylation could improve antitumour performance22, which
suggest that Cluster 2 patients may be in a state of compound
immunity. Moreover, Cluster 1 and Cluster 3 showed prominent
associations with biological processes related to immune suppres-
sion (Fig. 3a–c).
We then performed ssGSEA algorithm to detect the common

cancer related signature in the three clusters (Supplementary
Table 2). We found that Cluster 2 OS patients had higher
enrichment scores in CD8 T-cell effectors, antigen processing
machinery and immune checkpoints, confirming our conjecture
(Fig. 3d).

Differences in the TME for the three angiogenesis patterns
To explore the immunological characteristics of the three distinct
patterns, we estimated the abundance of immune components,

including immunomodulators, immune checkpoints, immune cell
infiltration in the TME and activation of the cancer immunity cycle.
We found that MHC-I and MHC-II components, involved in antigen
presentation and processing, such as HLA-A, HLA-B, HLA-DRB1
and HLA-DMB, were upregulated in Cluster 2. In addition, the
chemokines and their specific receptors, promoting the recruit-
ment of NK cells and CD8+ T cells, including CCL4, CCL13, CCR1,
CXCR3, CXCL9 and CXCL10, were also upregulated in this group
(Fig. 4a), which indicated the activated immune microenviron-
ment in Cluster 2.
Due to the complex chemokine-receptor network of dynamic

interactions, there are limitations in solely explaining the process
by individual chemokine expression. Therefore, we comprehen-
sively elucidated the cancer immune characteristics of different
populations by calculating the cancer immune cycle to quantify
the degree of activation of each step. The results showed that
most of the steps were highly activated in Cluster 2, especially
cancer antigen presentation (Step 2), immune cell recruitment
such as CD4+ T cell, CD8+ T cell, dendritic cell, macrophage, NK
cell and B-cell recruiting (Step 4), infiltration of immune cells into
tumours (Step 5) and killing of cancer cells (Step 7). It is worth
noting that Cluster 1 showed significant upregulation in the
recognition of cancer cells by T cells (Step 6), suggesting its
dysregulation of other immune process, such as decreased
recruitment of immune cells in the early stage, the reduction in
effector cytotoxic T cells and decreased abundance of immune cell
infiltration, etc. The overall activities of Cluster 3 showed a
significant downregulation in Steps 2, 4 and 5, which may
contribute to its immune suppression phenotype (Fig. 4b).
Thereafter, we used ssGSEA to qualify the infiltration of 28
immune cells in the TME. Activated CD8 T cells, natural killer cells
and natural killer T cells were abundant in Cluster 2, confirming its
enhanced antitumour status. Compared with Cluster 3, Cluster 1
had a lower enrichment in natural killer cells and natural killer
T cells (Fig. 4c), consistent with its worsening prognosis. We also
compared the expression of the common immune checkpoints,
and Cluster 2 had higher overall expression of CD274 (PD-L1),
PDCD1LG2 (PD-L2), CTLA4, LAG3, HAVCR2 (TIM-3), IDO1 and TIGIT
(Fig. 4d).
Taken together, the above results suggest that the three

angiogenesis patterns had distinctive differences in the cancer
immunity cycle and immune cell infiltration in the TME, especially
the immune-inflamed phenotype in Cluster 2.

Classification of OS subtypes by angiogenesis-related gene
patterns
To explore the underlying genes modulated by angiogenesis
genes, we conducted differential analyses between each pair of
clusters of the three angiogenesis patterns. We identified 66
common DEGs (Fig. 4e), and the univariate Cox regression results
showed that 32 candidates were significantly prognostic (Supple-
mentary Table 3). Based on the above 32 angiogenesis-related
genes, consensus clustering was used to divide OS patients in the
TARGET-OS database into four subtypes, namely, angiogenesis-
related gene Clusters 1-4 (Fig. 5a). The overall survival and
recurrence-free survival of angiogenesis-related (ANG-related)
Cluster 1 and Cluster 4 were better than those of the other two
clusters (Fig. 5b, c). In addition, a majority of the cancer immune
cycle was activated in ANG-related Cluster 1 and Cluster 4,
especially in CD8+ T cell, macrophage, NK cell and B-cell
recruitment (Fig. 5d). We found that the expression of some
genes in ANG-related Cluster 1 and Cluster 4 was different from
the other two groups, such as TIMP1, COL5A2, etc (Fig. 5e).
Previous research has reported that TIMP1 is involved in the
mechanism of anti-angiogenesis in patients with diabetes
mellitus23, and the function of other differential expression genes
may collaboratively suggest that these two populations are in a
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negative state of angiogenesis24. Consistent with angiogenesis
Cluster 2, we also identified ANG-related Cluster 1 and Cluster 4 as
having higher enrichment scores for CD8+ T effectors and
immune checkpoints (Fig. 5f). These findings suggested that the
angiogenesis related gene signature showed a good classification
effect and the ANG-related Cluster 1 and Cluster 4 were associated
with immune activation in the TME.

ANGscore system can predict OS patient outcome
To improve the classification system for clinical application, we
first performed PCA on the 32 DEGs, and the ANGscore was
calculated for each patient using the formula based on the PCA
weights. We divided patients into a high score group and a low
score group, and found that the high score group exhibited worse
survival than the low score group (Fig. 6a, b). We also explored the

connection between the ANGscore and TME components. Pearson
correlation analysis showed that the ANGscore had significantly
negative correlations with NK cells, NK T cells, central memory CD4
T cells and CD8 T cells (Fig. 6c). We subsequently conducted GSEA
between the low and high ANGscore groups based on Hallmark
and KEGG pathways and found that the low score group was
significantly enriched in immune related Hallmark pathways,
including allograft rejection and IL6/JAK/STAT3 signalling (Fig. 6d).
In the KEGG pathways, the low score group was also enriched in
chemokine signalling pathway, cytokine to cytokine receptor
interaction, natural killer cell mediated cytotoxicity and T-cell
receptor signalling pathway (Fig. 6e), consistent with the outcome
of TME immune cell infiltration.
To understand the attribute changes between the clustering

classification and ANGscore system of individual patients, we used
an alluvial diagram for visualization. Interestingly, Cluster 2, with a

Fig. 1 Flowchart of this study. Flowchart for comprehensive analysis of angiogenesis patterns in patients with osteosarcoma (OS). (Created
with Biorender.com).
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good prognosis, belonged to the low ANGscore group, while ANG-
related Cluster 1 and Cluster 4 belonged to the same group
(Fig. 6f). On the other hand, we found that ANG-related Cluster 3
had the highest ANGscore, which may contribute to its worst
survival among the four clusters (Fig. 6g).

Correlation of ANGscore with the malignancy of osteosarcoma
cells
We next used scRNA-seq data to identify the underlying
modulators in the TME that contribute to the angiogenesis
patterns. After quality control, removal of double cells and
processing to eliminate batch effects (Supplementary Fig. 3), we
clustered cells into 10 main clusters, including osteoblastic cells,
myeloid cells, fibroblasts, myoblasts, osteoclasts, TILs and
endothelial cells, based on the reported cell markers (Supplemen-
tary Table 4, Fig. 7a, b). We found that most osteoblastic cells had
overall higher ANGscores than other cell types (Fig. 7c).
Considering that osteoblastic cells are one of the major malignant
OS cells in clinical and its high ANGscore (Fig. 7d), we then
employed somatic copy number alteration analysis in osteoblastic
cells through the R CopyKAT package. Aneuploids were identified
as malignant cells (Fig. 7e, f). Interestingly, Osteoblastic cells 3, a
group of relatively small and independent osteoblastic cells, were
almost all malignant cells (Fig. 7g, h). Osteoblastic cells 3 had the
highest ANGscore among the three osteoblastic cells clusters
(Fig. 7i), indicating the robustness of the ANGscore system in
different datasets. To understand the evolutionary trajectory of
the three malignant osteoblastic cells, we applied pseudotime
analysis and found that osteoblastic cells 3 was mainly located in

the middle and rear segments of the trajectory (Fig. 7j, k), which
meant osteoblastic cells 3 had a higher degree of malignant
potential. ANGscore also gradually increased as trajectory
progressed (Fig. 7l), suggesting the validity of this scoring system.
To characterize the complex TME in both the high score and

low score groups, we used CellChat to assess interactions between
different cells. We first extracted TILs and then further clustered
and annotated this group of cells (Fig. 8a, b). Consistent with
previous results, pathways associated with angiogenesis, such as
the VEGF signalling pathway and ANGPTL signalling pathway
networks, were notably strengthened in the high score group,
especially osteoblastic cells 3 (Fig. 8c, d). The analysis of
ligand–receptor interactions showed that the communication
signals of VEGFB-VEGFR1 and ANGPTL2-(ITGA5+ ITGB1) were
significantly enhanced (Fig. 8e). VEGFB is essential for the survival
of blood vessels through regulating the expression of many
vascular pro-survival genes via VEGFR125. ANGPTL2 has also been
reported to promote lymph node and distant metastases in skin
squamous cell carcinoma through tumour angiogenesis26. Inter-
estingly, the immune-related IFN-γ signalling pathway network
was also strengthened in the high score group (Fig. 8f). In
osteoblastic cells 3, there was upregulated signalling of IFNG-
(IFNGR1+ IFNGR2) sent by CD8+ T cells and NK cells (Fig. 8g),
suggesting that IFN-γ signalling plays a crucial role in the
progression of OS and regulation of the immune microenviron-
ment. These results further validated the universality and
effectiveness of the ANGscore scoring system in the single cell
level.

Fig. 2 Angiogenesis patterns in the TARGET-OS cohort. a Consensus clustering matrix at K= 2. b PCA analysis of three angiogenesis clusters.
c Survival analysis of overall survival (OS) for patients with three clusters using Kaplan–Meier curves. d Survival analysis of relapse free survival
(RFS) for patients with three clusters using Kaplan–Meier curves. e The expression of angiogenesis genes among three angiogenesis clusters.
The asterisks represent the statistical P value (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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ANGscore predicts prognosis and clinical response to immune
Therapy in OS. To validate the robustness of the ANGscore, we
calculated the score for each sample with complete clinical data in

the external validation set (GSE21257). We observed prognostic
improvement in the low score group compared with the high
score group (P= 0.03) (Fig. 9a) and patients with metastasis in the

Fig. 3 Biological characteristics of angiogenesis pattern in the TARGET-OS cohort. a–c Heatmaps showing differentially enriched hallmark
pathways among pairs of the three angiogenesis patterns by GSVA. d GSVA analysis representing the significance of differential enrichment of
common cancer-related signatures among the three angiogenesis patterns.
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Fig. 4 TME and immune characteristics of the three angiogenesis patterns in the TARGET-OS cohort. a Heatmap showing differential
expression of chemokines, receptors and MHC molecules among the three angiogenesis patterns. b Differences in seven steps of the cancer
immunity cycle among three angiogenesis patterns. c The abundance of TME components in three angiogenesis patterns. d Heatmap
showing the expression of immune checkpoint genes in the three angiogenesis patterns. e Venn diagram showing common DEGs for the
three angiogenesis patterns.
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high score group had a higher proportion in both the TARGET-OS
and GSE21257 datasets (Fig. 9b, c). At the same time, the ANGscore
of the cells from metastasis samples was significantly elevated in
the single cell dataset (Fig. 9d). Based on the relationship between
the ANGscore and immune cells, we explored the prediction of the
ANGscore for prognosis and immunotherapy response rate in
another external validation set (GSE91061), which included
melanoma patient RNA-seq data and clinical information contain-
ing prognosis and response to immunotherapy. In both all samples
and samples only during the treatment process, samples with a
low ANGscore had a better prognostic benefit (Fig. 9e, f). Patients
during treatment in the high score group had a higher percentage
of non-response (Fig. 9g), which was also reflected in another
GSE173839 cohort (Fig. 9h). Together, these findings indicate that
the ANGscore is a potential and stable predictor of the prognosis
and responses to immunotherapy in OS.

Efficacy of the ANGscore in predicting drug sensitivity. To explore
candidate drugs for patients identified by the ANGscore system,

we calculated the half maximal inhibitory concentration (IC50)
value of drugs from GDSC (Supplementary Table 5 and 6). The
landscape of the correlation between the ANGscore and IC50
value of drugs in respectively TARGET-OS dataset and GSE21257
cohort is shown in Fig. 10a. The targets of these drugs are listed in
the Supplementary table 7. As a whole, the IC50 of most drugs
was inversely proportional to the ANGscore and the expression of
some angiogenesis genes. We explored the drugs with the highest
correlation with ANGscore in both TARGET-OS and GSE21257
datasets and found that the IC50 value of uprosertib, an inhibitor
of AKT, was positively correlated with the ANGscore in both two
cohorts, and there were significant differences between the high
score group and the low score group (Fig. 10b). On the other
hand, the IC50 values of VE821, AZD6738, BMS.345541 were lower
in the high score group (Fig. 10c–e). These results suggest that
high score patients identified by the ANGscore system may be
resistant to uprosertib, and the other three drugs may be potential
candidates for the high score population in OS. Finally, the overall
mechanism figure of this study is shown in Supplementary Fig. 4.

Fig. 5 Classification of OS clusters based on angiogenesis signatures in the TARGET-OS cohort. a PCA analysis of three angiogenesis-
related clusters based on the expression of the 32 angiogenesis-related signature genes. b Survival analysis of overall survival (OS) for patients
with four angiogenesis-related clusters using Kaplan–Meier curves. c Survival analysis of relapse free survival (RFS) for patients with four
angiogenesis-related clusters using Kaplan–Meier curves. d Differences in seven steps of the cancer immunity cycle among four angiogenesis-
related clusters. e The expression of angiogenesis genes among four angiogenesis-related clusters. f GSVA analysis representing the
significance of differential enrichment of common cancer-related signatures among the four angiogenesis-related clusters.
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DISCUSSION
This study analysed angiogenesis patterns comprehensively in
OS for the first time, and constructed an angiogenesis scoring
system, which was identified to be correlated with the

infiltration of immune cells, the cancer immunity cycle and
drug sensitivity, in the TARGET-OS dataset, and further
validated its robustness and effectiveness in other external
cohorts, including GSE21257 (Bulk RNA-seq cohort), GSE152048

Fig. 6 Quantification system based on ANGscore in the TARGET-OS cohort. a, b Survival analysis for overall survival (OS) and relapse-free
survival (RFS) for patients with high and low ANGscore. c Correlations between ANGscore and TME components. d, e GSEA analysis of
hallmark and KEGG between the high ANGscore group and the low ANGscore group. f Alluvial diagram showing the connection of
angiogenesis patterns, angiogenesis-related clusters and ANGscore. g Differences in ANGscore among four angiogenesis-related gene
clusters. The Kruskal–wallis test was used to compare the significant differences.
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Fig. 7 High ANGscore showed an elevated malignancy phenotype in the scRNA-seq data from OS patients. a t-SNE plot showing the
composition of 10 cell clusters. b Bubble plot of the average and ratio expression of marker genes in different cell subtypes. c The dynamics of
ANGscore in the t-SNE plot. d Violin plot of the ANGscore in 10 cell clusters. e t-SNE plot showing the subpopulation analysis of the
osteoblastic cells. f t-SNE plot showing the somatic copy number alterations analysis of the osteoblastic cells. g Proportion of malignant cells
in the osteoblastic cells. h t-SNE plot showing the aneuploid from the osteoblastic cells. i Violin plot of the ANGscore in the osteoblastic cells.
j Pseudotime analysis of the aneuploid from the osteoblastic cells. k Pseudotime analysis according to the osteoblastic cell clusters.
l Pseudotime analysis according to the ANGscore.
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(single cell RNA-seq cohort), GSE91061 and GSE173839 (two
immunotherapy cohorts).
Angiogenesis is considered an extremely complicated process

in tumour progression, that attributes to the imbalance between
proangiogenic and antiangiogenic factors27. The perturbed
equilibrium of angiogenesis will subsequently generate an
immunosuppressive microenvironment. Hyperactive angiogenesis
can elevate differential pressure and downregulate endothelial
adhesion molecules, which results in a reduction in the number of
tumour-infiltrating lymphocytes28. Consistent results were found
in our study. In the training set, among the three angiogenesis
patterns based on the clustering of angiogenesis genes, Cluster 2
had a higher abundance of immune cell infiltration than Cluster 1
and Cluster 3, especially in CD8 T cells, NK cells and NK T cells. In
contrast, the expression levels of proangiogenic genes VEGFA and
FSTL1 (Follistatin Like 1) in Cluster 2 were the lowest, suggesting
the lowest angiogenesis activity of Cluster 2. The immunity cycle
was also activated in Cluster 2, especially in NK cell, macrophage
and CD8 T cell recruitment. Increased vascular activation in
osteosarcoma suggests a lack of immune infiltration. TIMP1, highly

expressed in Cluster 2, was reported to interfere with the TGFβ
induced decidual-like and pro-angiogenesis phenotypes in NK
cells and was envisaged as a modulator of NK cells29. In addition,
FSTL1 was involved in bone metastasis by generating a
microenvironment of low-activity cytotoxic lymphocytes30, which
was consistent with the phenomenon of its higher expression in
Cluster 1 and Cluster 3. The ANGscore system, which could
comprehensively quantify the angiogenesis state for OS patients,
was found to be significantly negatively correlated with specific
components of the TME, such as NK cells, NK T cells and central
memory CD8 T cells, further indicating the interaction between
the tumour immune microenvironment and angiogenesis.
In recent years, the continuous development of single-cell

sequencing technology has made it a better technique to explore
tumour heterogeneity, immune cell infiltration, and intercellular
communication than bulk RNA-seq technology. We identified a
novel cluster of osteoblastic cells with the highest ANGscore by
analysing scRNA-seq data, and classical angiogenesis signallings
such as VEGFA and ANGPTL signallings in intercellular commu-
nications, were activated in the high score group. It is worth

Fig. 8 Cellular communication analysis in aneuploid between the high score group and the low score group. a t-SNE plot showing the
subpopulation analysis of the TILs. b Bubble plot of the average and ratio expression of marker genes in different TILs subtypes. c Circos plots
displaying putative ligand-receptor interactions between osteoblastic cells and other TILs cell clusters from the low ANGcore (left) and high
ANGscore (right) group in VEGF signalling pathway. d Circos plots displaying putative ligand-receptor interactions between osteoblastic cells
and other TILs cell clusters from the low ANGcore (left) and high ANGscore (right) group in ANGPTL signalling pathway. e Bubble plot showing
the receptor-ligand binding interactions from osteoblastic cells to other cell clusters in the low ANGcore (left) and high ANGscore (right)
group. f Circos plots displaying putative ligand-receptor interactions between osteoblastic cells and other TILs cell clusters from the low
ANGcore (left) and high ANGscore (right) group in IGF-γ signalling pathway. g Bubble plot showing the receptor-ligand binding interactions
from TILs subtypes to osteoblastic cells in the low ANGcore (left) and high ANGscore (right) group.
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noting that in the high score group, the osteoblastic cell cluster
received higher IFN-γ signalling from CD8 T cells, NK cells and NK
T cells. Another recently published study of the scRNA-seq data for
OS, which also identified an IFN-γ dominant cluster of OS patients
with immunosuppressive phenotype and worsening prognosis31.
Activation of the IFN-γ pathway may accelerate phenotypic
induction of tumour cells by immune cells in OS. Previous work
has established that IFN-γ plays a crucial role in tumour
angiogenesis suppression32,33. Studies have reported that CD8
CTLs can release IFN-γ to impress the proliferation and migration
of endothelial cells, thereby restraining tumour vasculariza-
tion34–36. Activated NK cells can also secrete large amounts of
IFN-γ to activate downstream signalling pathways, such as signal
transducers and activators of transcription (STAT) and control the
infection. At the same time, IFN-γ released by NK cells could also
restrain tumour angiogenesis and stimulate T-cell responses in
lymph nodes37–39. However, IFN-γ can also promote angiogenesis
under specific conditions. NK cells in the first-trimester decidua
(dNK) mainly produce a great deal of IFN-γ and proangiogenic
cytokines, including VEGF and angiogenin, and show weak
cytotoxicity compared with peripheral blood NK (pNK) cells40–42.
There are also reports that demonstrate that NK cells infiltrating
tumours exhibit a decidual-like phenotype42,43. The specific
marker CD9 of dNK cells was also detected in tumour-infiltrating
NK cells44–46, which indicated that tumour infiltrating NK cells may
be polarized into a decidual-like phenotype and thus reduce
toxicity and promote tumour. An enhanced IFN-γ signal of NK cells
against osteoblastic cells was also observed in our results. The
above results demonstrated the association of IFN-γ signalling
with malignant features of osteosarcoma cells, suggesting the
potential of drug therapy targeting this pathway.
With the bottleneck encountered after the standardized

treatment of OS patients, basic research and clinical trials on
immunotherapy for OS are increasing. Blockade of PD-1/PD-L1

interactions in a mouse model of metastatic OS can improve the
response of CTL to OS, and also enhance the chemotherapy effect
of cisplatin on osteosarcoma47,48. The overall expression of
immune checkpoints in cluster 2 was also elevated, suggesting
that this population may be more sensitive to immune checkpoint
inhibitors. In addition to immune checkpoints, cytokines can
influence the efficacy of immunotherapy by regulating the activity
and composition of immune cells in the tumour microenviron-
ment. The cytokine TGF-β is an important cause of metastasis and
chemotherapy resistance in osteosarcoma49. Compared with TGF-
β blockers alone, TGF-β blockers combined with DC vaccines
showed stronger CTL activity and antitumour effects50. Interest-
ingly, TGFβ can polarize CD56dimCD16+ pNK cells to an
immunosuppressive, proangiogenic CD56bright dNK pheno-
type42–44, indicating the possibility of TGFβ-mediated angiogen-
esis. This suggests great potential for future combination therapies
combining cytokines and antiangiogenic drugs for OS patients.
Additionally, nearly a third of clinical trials for OS patients are

currently conducted with the drugs targeting specific molecule or
relevant pathways, including PARP, tyrosine kinases and the PI3K/
AKT/mTOR pathway, etc51. However, we found OS patients with
high ANGscore may be resistant to uprosertib, an inhibitor
targeting the PI3K/AKT/mTOR signaling. The ANGscore signature
assessment can help patients choose other more sensitive
targeted drug therapies. ATR (ataxia telangiectasia and Rad3-
related), the common drug target of VE821 and AZD6738, is a
serine/threonine kinase and DNA damage sensor, which is
essential for promoting deoxynucleotide synthesis, initiating
replication forks, and repairing DNA double-strand breaks52.
Notably, combined ATR and PARP inhibition has been reported
to destabilize stalled replication forks and exhibit synergistic
toxicity to tumour cells53,54, and it may be a potential targeted
therapy for high ANGscore osteosarcoma population.

Fig. 9 Implication of the ANGscore and its role in the prediction of response to immunotherapy. a Survival analysis for overall survival (OS)
for patients with high and low ANGscores in GSE21257 cohort. b, c The proportion of patients who was metastatic in the low ANGscore and
the high ANGscore groups in the TARGET-OS cohort and GSE21257 cohort d Difference in ANGscore between primary and metastatic samples
from the GSE154884 dataset. e, f Survival analysis for overall survival (OS) for all samples and samples only during the treatment process with
high and low ANGscore in GSE91061 cohort. g, h The proportion of patients who responded to immunotherapy in the low ANGscore and the
high ANGscore groups in the GSE91061 cohort and GSE173839 cohort.

Z Liao et al.

11

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2023)    62 



Fig. 10 Efficacy of the ANGscore in predicting drug sensitivity. a Bubble plots of the relationship between ANGscore, angiogenesis genes
and drugs in the TARGET-OS (up) cohort and GSE21257 (down) cohort. b–e Boxplots of the comparison of IC50 of drugs between the low
ANGscore and the high ANGscore groups, and correlation between the IC50 and ANGscore in the TARGET-OS (left) cohort and GSE21257
(right) cohort.
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Several studies have developed related signatures for OS, but
there are shortcomings, such as only prognosis prediction, too few
datasets and too shallow mechanism mining. Our analysis
demonstrated that the ANGscore is an independent prognostic
evaluation index for OS, providing an ideal and potential predictor
of prognosis, metastasis and therapeutic response for OS patients.
However, there are remain limitations in our study. Although the
ANGscore exhibited excellent performance of in two bulk RNA-seq
cohorts, one scRNA-seq cohort and two immunotherapy cohorts,
prospective cohort studies are still needed to confirm its reliability.
In addition, we performed comprehensive pseudotime and
intercellular communication analyses of single cell sequencing
data. Nevertheless, only one scRNA-seq dataset may still have
population limitations, and more single-cell data need to be
integrated in the future. Moreover, some angiogenesis genes have
not been investigated in both in vitro and in vivo experiments,
which are essential for an in-depth exploration of the mechanisms
underlying the angiogenesis pattern of OS in the future. In
conclusion, the ANGscore system developed in this study is a
practical predictor of prognosis and therapeutic response for OS
patients including postoperative patients, which has great
potential for in the assessment of clinical outcomes.

METHODS
Data acquisition and preprocessing
The log (FPKM+ 1) expression data of the TARGET-OS dataset were
downloaded from the UCSC Xena data portal (https://
xenabrowser.net/datapages/) and transformed into transcripts per
kilobase million (TPM). The expression profiling of the array dataset
(GSE21257), the single-cell sequencing dataset (GSE152048) and
two immunotherapy-related datasets (GSE91061 and GSE173839)
were downloaded from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/gds). Briefly, patients with
fully equipped clinical messages, including survival time, grade, and
metastasis status were included in our subsequent analyses
(Supplementary Table 8).
For the RNA-seq and microarray data with probe annotation, we

performed quality control and normalization before analyses. For
the scRNA-seq data, we first performed quality control with the R
package Seurat55, removed doublet cells with the R package
doubletfinder56 and batch effect with the R package harmony57.
Subsequently, we performed dimensionality reduction, and cell
clustering based on the t-SNE algorithm. CopyKAT was used to
detect somatic copy number alterations to identify malignant
cells58. CellChat was used to analyse the intercellular communica-
tion networks between different cell types59. Monocle was
performed to construct the pseudotime trajectory revealing the
progression of malignant cells60.
The angiogenesis gene list was downloaded from the MSigDB

database GSEA (https://www.gsea-msigdb.org/gsea) hallmark
gene sets.
The work has been reported in line with the REMARK criteria.

Unsupervised consensus clustering
We performed the consensus clustering algorithm based on the
k-means method using the R package ConsensusClusterPlus with
1,000 repetitions to identify distinct angiogenesis-related pat-
terns61. Subsequently, we used the R packages survival and
survminer to explore the prognostic difference between clusters.

Gene set variation analysis (GSVA) and single sample gene set
enrichment analysis (ssGSEA)
GSVA enrichment analysis was performed with the R package
GSVA62. Pathways of hallmark were also downloaded from the
MSigDB database. Signature gene sets were collected from

previous literature63. The key gene list representing the process
of the cancer immunity cycle (Supplementary table 9) was
obtained from Mellman et al.64. The immune step score indicating
specific activities was calculated by the ssGSEA algorithm based
on expression of the above genes. Immune cell infiltration in the
tumour microenvironment was also estimated by ssGSEA based
on the specific genes summarized in a previous study65.

Identification of differentially expressed genes (DEGs) and
univariate regression
The log (TPM+ 1) expression data were analysed to detect DEGs
between each pair of the three angiogenesis-related patterns
based on t tests with the R package limma66. Common DEGs were
identified by interacting DEGs between each two clusters of the
three angiogenesis patterns. Subsequently we performed uni-
variate Cox regression on above the DEGs with their expression
and overall survival, and genes with a false discovery rate
(FDR) < 0.05 were defined as angiogenesis-related genes.

Development of an angiogenesis-related signature
To construct a quantitative score to predict the angiogenesis
pattern and prognosis of patients, angiogenesis-related genes
were extracted to perform principal component analysis (PCA).
The first two principal components (PC1 and PC2) were used to
explain the importance of each variable. By referring to a previous
method of constructing model, we developed a scoring algorithm
called ANGscore to quantify the state of angiogenesis:

ANGscore ¼
X

ðPC1 � expi þ PC2 � expiÞ

The expi represents the expression level of the angiogenesis-
related genes, while PC1 and PC2 are the first two principal
components generated by PCA. Each patient was calculated for an
ANGscore to estimate the extent of patient angiogenesis.
For scRNA-seq data, we calculated ANGscore through the Seurat

function “AddModuleScore”, which averaged the expression of
angiogenesis genes in each single cell.

Drug sensitivity analysis
The OncoPredict R package was applied to predict the candidate
drug responses in cancer patients by fitting the expression of
specific genes to obtain the half-maximal inhibitory concentration
(IC50) of the cancer cell lines67. The drug list was downloaded
from Genomics of Drug Sensitivity in Cancer (GDSC; https://
www.cancerrxgene.org/). The expression profile of the reference
cell line was downloaded from the Broad Institute Cancer Cell Line
Encyclopedia (CCLE; https://portals.broadinstitute.org/ccle_legacy/
home). The sensitivity and resistance of candidate drugs between
the high score and low score groups were analysed using the
Wilcoxon test with p < 0.05 as the threshold for statistical
significance.

Statistical analysis
Correlations between variables were estimated with Pearson
correlation analysis. For continuous variables, t test or Wilcoxon
test were used to compare differences between two groups, while
Kruskal–Wallis tests were performed for multiple groups. Survival
curves were generated using Kaplan–Meier method in each
dataset and compared with the log-rank test. All statistical
analyses were implemented via R software (v.4.0.2). Two-sided P
values < 0.05 were considered statistically significant.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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