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Molecular characteristics of microsatellite stable early-onset
colorectal cancer as predictors of prognosis and
immunotherapeutic response
Can Lu 1,2,3,11, Xiaopeng Zhang4,5,11, Josefine Schardey1,11, Ulrich Wirth1, Kathrin Heinrich 6, Luca Massiminio7,
Giulia Martina Cavestro7, Jens Neumann8,9,10, Alexandr V. Bazhin1,9,10, Jens Werner1,9,10 and Florian Kühn1,9,10✉

The incidence of early-onset colorectal cancer (EO-CRC, in patients younger than 50) is increasing worldwide. The specific gene
signatures in EO-CRC patients are largely unknown. Since EO-CRC with microsatellite instability is frequently associated with Lynch
syndrome, we aimed to comprehensively characterize the tumor microenvironment (TME) and gene expression profiles of EO-CRC
with microsatellite stable (MSS-EO-CRC). Here, we demonstrated that MSS-EO-CRC has a similar pattern of tumor-infiltrating
immune cells, immunotherapeutic responses, consensus molecular subtypes, and prognosis as late-onset CRC with MSS (MSS-LO-
CRC). 133 differential expressed genes were identified as unique gene signatures of MSS-EO-CRC. Moreover, we established a risk
score, which was positively associated with PD-L1 expression and could reflect both the level of tumor-infiltrating immune cells and
the prognosis of MSS-EO-CRC patients. Application of this score on the anti-PD-L1 treatment cohort demonstrated that the low-risk
score group has significant therapeutic advantages and clinical benefits. In addition, candidate driver genes were identified in the
different-sidedness of MSS-EO-CRC patients. Altogether, MSS-EO-CRC exhibits distinct molecular profiles that differ from MSS-LO-
CRC even though they have a similar TME characterization and survival pattern. Our risk score appears to be robust enough to
predict prognosis and immunotherapeutic response and therefore could help to optimize the treatment of MSS-EO-CRC.
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INTRODUCTION
Colorectal cancer (CRC) is the third most diagnosed carcinoma and
the second leading cause of cancer-associated mortality globally1.
Although the incidence of late-onset CRC (LO-CRC) diagnosed in
patients 50 years or older has steadily declined over the last two
decades in most Western countries2, the cases of early-onset CRC
(EO-CRC) diagnosed in those younger than 50 years have
increased alarmingly worldwide. By the 2030s, it is estimated that
EO-CRC will account for one-quarter of rectal cancers and 10 to
12% of colon cancers2,3. So far, the underlying causes for the rising
trends of EO-CRC are unknown, but early-life exposures, Western-
style diet, microbial dysbiosis, and physical inactivity might
contribute to the expansion of the EO-CRC population4,5.
Accumulating studies reported that EO-CRCs tend to have a

more advanced TNM (tumor-node-metastasis) stage, higher
prevalence of left-sided carcinoma and poorly differentiated
tumors, a higher proportion of microsatellite instability-high
(MSI-H) status and more germline mutations compared to LO-
CRCs5,6. Extensive efforts have been made to characterize the
somatic mutational profiling of EO-CRCs7,8, which failed to
discover previously unknown alterations to elucidate the patho-
genesis of these carcinomas or to guide clinical therapy. However,
the unique transcriptional features in EO-CRCs remain elusive.
Increasing evidence indicates that most EO-CRCs with MSI-H are

associated with Lynch syndrome9,10. Regarding the well-known
germline mutations of mismatch repair (MMR) genes in Lynch
syndrome, we intend to identify the potential molecular mechan-
ism for developing EO-CRCs with microsatellite stable (MSS-EO-
CRC).
Primary tumor location is essential in predicting the prognosis

and the drug responses for CRC patients11. Clinically, right-sided
and left-sided CRCs are divided according to proximity to the
splenic flexure. Although different sidedness of CRC represents the
distinction in the mutational spectrum and molecular expression
patterns12, the biological effects of tumor location on MSS-EO-CRC
patients remain unclear.
In the present study, multiple transcriptional profiles were

systematically integrated to evaluate the characteristic features of
MSS-EO-CRC compared to LO-CRC with MSS (MSS-LO-CRC). Based
on the differentially expressed genes in MSS-EO-CRC, we
constructed a risk score that significantly correlated with the
tumor microenvironment (TME) characterization and showed a
promising potential to predict response to anti-programmed
death-ligand 1 (PD-L1) immunotherapy. Furthermore, we depicted
the genetic variants and endogenous growth factor receptor
(EGFR)-related molecules’ expression between different sidedness
of MSS-EO-CRC.
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RESULTS
Characterization of tumor microenvironment and prognosis
of MSS-EO-CRC patients
The study flowchart is depicted in Fig. 1. To exclude the potential
effects of confounding variables, we matched MSS-EO-CRC
patients with MSS-LO-CRC ones according to gender and tumor
stage. Supplementary Table 1 summarizes the clinicopathological
characteristics of 88 MSS-EO-CRC patients and 88 MSS-LO-CRC
ones. The immune system is widely recognized as a critical factor
determining the development and progression of CRC13,14. We
found that MSS-EO-CRC patients displayed a similar distribution of
22 tumor-infiltrated immune subsets to MSS-LO-CRC ones (Fig. 2a).
Meanwhile, no differences between MSS-EO-CRC and MSS-LO-CRC
patients were detected in the overall stromal and immune
components in the TME (Fig. 2b). We also conducted TIDE and
Submap algorithm to predict the treatment response of the
population to immunotherapy. These two cohorts have a similar
treatment response rate to anti-PD1 or anti-CTLA4 drugs (Fig. 2c, d).
Consensus molecular subtypes (CMSs) hold a promising role in
deciphering the intrinsic heterogeneity of CRC at the gene
expression level15, playing a crucial role in predicting a patient’s
prognosis and treatment responses16. Our results showed that
MSS-EO-CRC patients have a similar composition of CMSs as MSS-
LO-CRC ones (Fig. 2e). To identify the potential drugs having
different sensitivity in subgroup patients, we predicted that MSS-
LO-CRC patients were more sensitive to OSI.906, while MSS-EO-
CRC ones were more sensitive to PF.4708671 and Salubrinal
(Fig. 2f–h). We found that MSS-EO-CRC patients have a similar
survival rate to MSS-LO-CRC in overall survival (OS) and
recurrence-free survival (RFS) (Fig. 2i, j).
Furthermore, we matched 33 MSS-EO-CRC with 33 MSS-LO-CRC

from TCGA cohort to confirm the above findings. The clinical

characteristics of these patients are listed in Supplementary Table
2. Supplementary Fig. 1 depicted that an independent CRC
dataset could get the similar results as Fig. 2, except from the
sensitivity difference of some drugs.

Identification of unique gene signatures in MSS-EO-CRC
To identify the genetic features in MSS-EO-CRC patients, we
performed a sequential analysis by comparing the gene
expression matrix of MSS-EO-CRC with MSS-LO-CRC and with
normal samples. Firstly, we identified 1073 differentially
expressed genes (DEGs) in MSS-EO-CRC patients compared to
MSS-LO-CRC, including 730 up-regulated and 343 down-
regulated genes (Fig. 3a). Functional annotations based on
the Gene Set Variation Analysis (GSVA) algorithm showed that
these two cohorts displayed significant differences in the
enriched hall marker and molecular pathways (Fig. 3b, c). MSS-
EO-CRC showed higher enrichment of Wnt beta-catenin
signaling, protein secretion, and metabolic activities, whereas
MSS-LO-CRC displayed more potent activity in hedgehog
signaling. Furthermore, the mTOR signaling pathway, Wnt
signaling pathway, and metabolic pathways are markedly
enriched in MSS-EO-CRC, and MSS-LO-CRC significantly
enriched the extracellular matrix (ECM) receptor interaction
pathway. Secondly, 4551 DEGs were obtained from the
differential expression analysis between MSS-EO-CRC samples
and normal controls (Fig. 3d). Considering the particular entity
of EO-CRC in terms of age and carcinoma, we performed the
intersection of DEGs between MSS-EO-CRC versus MSS-LO-CRC
and MSS-EO-CRC versus normal to identify the genes featured
in MSS-EO-CRC patients. In total, 133 DEGs consisting of 102
up-regulated genes and 31 down-regulated genes were
identified as the common DEGs (Fig. 3e, f). Furthermore, the
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Gene Ontology (GO) enrichment analysis showed that these
genes were significantly related to the mitosis activities of
chromosomes and DNA (Fig. 3g). Detailed results of this
functional enrichment analysis are shown in Supplementary
Table 3.

Development of the risk score for MSS-EO-CRC patients
Since MSS-EO-CRC has a different transcriptomic landscape than
MSS-LO-CRC, it is promising to construct a prognostic model for
the subgroup of CRC patients regarding the potential age
discrepancies. However, OS information was only available for
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partial MSS-EO-CRC patients. Thus, MSS-EO-CRC from GEO
datasets (N= 62) and TCGA cohort (N= 33) were separately
considered as training and external validation datasets to build
the clinical model. The baseline clinical characteristics are
summarized in Supplementary Table 4. Twenty-nine genes were
identified from the training set using the univariate Cox regression
analysis on the genes featured in MSS-EO-CRC (Supplementary
Table 5). To refine the parameters incorporated into the model, we
subsequently utilized the Least Absolute Shrinkage and Selection
Operator (Lasso) Cox regression to select the substantial genes
highly predictive of the OS (Fig. 4a). Three genes were identified
with the lambda of 0.176 (Fig. 4b). Further, they entered a
stepwise Cox regression model using a bidirectional selection
strategy. Finally, WASF1 and TNFRSF14 were chosen to construct a
prognostic model using a logistic regression algorithm. A risk
score for prognosis prediction was determined as follows: risk
score = (16.04519 × ExprWASF1)+ (0.00002 × ExprTNFRSF14). We used
the time-dependent ROC curves to evaluate the prognostic
capacity of this risk score. The area under the curves (AUCs) for
1 year and 3 years OS were 0.70 and 0.74 for the training set
(Fig. 4c), 0.83 and 0.87 for the external validation set (Fig. 4d),
respectively. A risk score of 42.021 and 60.298 was separately
defined as the optimal cut-off value to divide the population of
training and validation set into a high-risk group and a low-risk
group. Patients in the high-risk groups have significantly worse
OSs than the low-risk ones in these two cohorts (P < 0.05) (Fig. 4e, f).
Moreover, the prognostic capacity of the risk score remained
robust in the subgroup analysis stratified by the tumor stage
(P < 0.05) (Supplementary Fig. 2a, b). In addition, the distribution
of gender and tumor stage were similar between high- and low-
risk groups of MSS-EO-CRC patients (Supplementary Fig. 2c),
which indicated that these two factors have no association with
the risk score.
Furthermore, the two genes incorporated into the risk score

were prognostic factors for the OS of MSS-EO-CRC patients
(Fig. 4g, h), in which the expression level of WASF1 was inversely
correlated with the prognosis of patients, whereas patients with
higher levels of TNFRSF14 have a better prognosis than lower
ones. Compared to MSS-LO-CRC and normal, WASF1 and
TNFRSF14 were specifically up-regulated and down-regulated in
MSS-EO-CRC, respectively (Fig. 4i). However, no differences were
detected between early-stage and advanced MSS-EO-CRC in the
expression of these two genes (Supplementary Fig. 2d, e).

Characterization of the tumor microenvironment and
immunotherapeutic responses in high and low-risk score
groups
The immune infiltration played a critical role in regulating the
development and progression of CRC via conducting pro-tumor or
anti-tumor biological effects. We found that the risk score was
negatively correlated with the infiltration level of CD8+ T cells,
activated memory CD4+ T cells, and activated dendritic cells in the
TME of MSS-EO-CRC (Fig. 5a). Since the ICP could significantly alter
the function of T lymphocytes, we evaluated the relationship
between the risk score and the expression level of seven

ICP-related molecules in MSS-EO-CRC patients. Our study proved
that the high-risk group has a markedly higher CD274 (PD-L1)
level than the low-risk one (Fig. 5b), suggesting the risk score may
correlate with the response to immunotherapy. Thus, we
evaluated the capacity of the risk score in predicting the treatment
response to anti-PD-L1 antibody Atezolizumab using the IMvi-
gor210 immunotherapy cohort. Patients with high-risk scores had
a worse survival rate than patients with low-risk scores (Fig. 5c).
The percentage of patients who responded to the anti-PD-L1 drug
in the high-risk score group was remarkably lower compared to
the low-risk score group (Fig. 5d). However, no difference of
neoantigen was detected between high- and low-risk score
groups (Fig. 5e).
Targeted therapy has become a promising strategy for

advanced-stage cases. Identifying subgroups of patients more
sensitive to certain drugs is critical to provide individualized
therapy. Our study suggested that the low-risk score group was
more sensitive to two tyrosine kinase inhibitors, lapatinib and
axitinib, than the high-risk one (Fig. 5f, g). Moreover, we applied
the Gene Set Enrichment Analysis (GSEA) analysis on GEO datasets
to decipher the molecular mechanism underlying the risk score.
As shown in Fig. 5h, the ECM receptor interaction pathway was
significantly enriched in the tumors of the low-risk score group.

Construction and assessment of a predictive nomogram
We performed univariate and multivariate Cox regression analyses
on MSS-EO-CRC patients from GEO datasets to assess the risk
score, tumor stage, age, and gender as independent prognostic
markers. The tumor stage and risk score were identified as the
independent prognostic factors for the GEO datasets (tumor stage,
HR: 2.05; 95% CI: 1.24–3.38; P < 0.01; risk score, HR: 1.32; 95%:
1.06–1.63; P < 0.05). We provided the details in Supplementary
Table 6. Thus, we integrated the risk score and tumor stage into a
nomogram model to maximally increase the predicted probability
on 1-year and 3-year OS (Fig. 6a). According to the goodness of fit
between the predicted survival probability and actual survival rate
on calibration plots, the nomogram has a better prediction on
short-term survival (1-year) than long-term survival (3-year)
(Fig. 6b). In addition, the nomogram has a higher concordance
index (C-index) (0.702, 95% CI: 0.640–0.764) than either tumor
stage (0.650, 95% CI: 0.587–0.713) or the risk score (0.649, 95% CI:
0.588–0.710) alone. Decision curve analysis (DCA) demonstrated
that the nomogram model has the most significant net benefit for
MSS-EO-CRC patients compared to the rest two factors (Fig. 6c, d).

Mutational spectrums and EGFR-related molecular expression
in different sidedness of MSS-EO-CRC patients
Due to the distinctive molecular characteristics of CRC with
different sidedness, we intend to explore the potential effects of
tumor location on the mutational landscape and genetic
expression of MSS-EO-CRC. Based on the somatic mutation data
of MSS-EO-CRC patients from TCGA, we predicted the candidate
driving genes using the MutSigCV algorithm with a p-value less
than 0.001. As displayed in Fig. 7a, five genes have been identified
as the significantly mutated genes (SMGs) for left-sided

Fig. 2 Characterization of tumor microenvironment and prognosis of early-onset CRC with MSS. a Comparison of tumor-infiltrating
immune cells between MSS-EO-CRC and MSS-LO-CRC. P-values were corrected using the Benjamini–Hochberg method. b Comparison of the
enrichment score between MSS-EO-CRC and MSS-LO-CRC. c, d Comparison of Immunotherapeutic responses between MSS-EO-CRC and MSS-
LO-CRC using TIDE and SubMap algorithm, respectively. e Consensus molecular subtype analysis of MSS-EO-CRC versus MSS-LO-CRC. f–h Drug
sensitivities comparison between MSS-EO-CRC and MSS-LO-CRC. i Overall survival comparison between MSS-EO-CRC and MSS-LO-CRC.
j Recurrence-free survival comparison between MSS-EO-CRC and MSS-LO-CRC. In the boxplot, the upper and lower boundaries represented
the first and third quartiles, respectively, the central line signified the median and the whiskers extended to the most distant data points not
considered as outliers (within 1.5 times the interquartile range). Outliers were displayed as points above and below the box-and-whisker
diagram. The log-rank test P values were shown for each Kaplan–Meier plot. ***P < 0.001; **P < 0.01; *P < 0.05. MSS-EO-CRC early-onset
colorectal cancer with microsatellite stable, MSS-LO-CRC late-onset colorectal cancer with microsatellite stable, NS no significance.
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MSS-EO-CRC patients, including TP53, FBXW7, KRAS, TGIF1, and
CXCL9. Meanwhile, PSD, B2M, HDAC2, and LARP4B might act as
the driving genes for the tumorigenesis of right-sided MSS-EO-
CRC patients (Fig. 7b).
In addition, multiple studies indicated that right-sided CRC has

significantly higher expression of EGFR and its ligands than left-
sided ones12,17,18. According to the available information on tumor
location and MSS status from TCGA, we separately selected 25
MSS-EO-CRC and 285 MSS-LO-CRC patients to evaluate the
expression pattern of the above molecules. As is depicted in
Fig. 7c, d, MSS-EO-CRC has similar expression changes of AREG with
MSS-LO-CRC, whereas EREG has distinct expression characteristics
in different sidedness of MSS-LO-CRC but MSS-EO-CRC patients.

DISCUSSION
The rising trend of EO-CRC will impose an immersive socio-
economic burden in a modern-aged society. To reduce the
incidence of EO-CRC, the underlying biological mechanism for the
tumorigenesis of EO-CRC could provide novel insights to hinder
the development of CRC in individuals younger than 50 years of
age. Based on tumor stage and gender, we matched MSS-EO-CRC
patients with MSS-LO-CRC ones to comprehensively characterize
the TME and gene expression patterns of MSS-EO-CRC. Further-
more, a risk score was built to predict the prognosis and
immunotherapeutic treatment response of MSS-EO-CRC patients.
We first demonstrated that MSS-EO-CRC patients have a similar

composition of tumor-infiltrating immune cells and stromal
components with MSS-LO-CRC ones. This finding is in line with
data published by Ugai et al., which showed a comparable
proportion of nine subsets of T cells, three subtypes of
macrophages, and eight subgroups of myeloid cells between
MSS-EO-CRC and MSS-LO-CRC patients19. Meanwhile, these two
CRC cohorts also have identical response rates to ICP inhibitors.
Since only CRC patients with MSS were included in our study,
most of these subjects are refractory to immune monotherapy,
mainly caused by the low levels of tumor-infiltrating lymphocytes
and tumor mutation burden20,21. According to the classification of

CMSs, our study displayed that CMS2 was the dominant molecular
subtype for both MSS-EO-CRC and MSS-LO-CRC patients. In
contrast, one clinical study indicated that EO-CRC has a compar-
able composition of CMS2 with LO-CRC, but also explicitly showed
CMS1 was the most common subtype in EO-CRC22. This
discrepancy is primarily due to the distinct inclusion criteria for
MSS status. Furthermore, we proved that MSS-EO-CRC patients
have a similar OS and RFS as MSS-LO-CRC, which aligns with
multiple studies23–25. Therefore, MSS-EO-CRC patients have a
similar TME landscape and comparable survival with MSS-LO-
CRC ones.
Comprehensively illustrating the enriched pathways can give us

more insights into the different potential mechanisms of
tumorigenesis between EO-CRC and LO-CRC. EO-CRC patients
have more robust Wnt signaling activation than LO-CRC26.
Consistently, our study depicted that the mTOR signaling pathway
and Wnt signaling pathway might play a more significant role in
promoting the progression of MSS-EO-CRC than counterparts. It is
widely known that Wnt and mTOR pathways play a critical role in
promoting the progression of cancer. Therefore, MSS-EO-CRC
patients may be more sensitive to Wnt or mTOR-targeting drugs
than MSS-LO-CRC ones. In addition, 133 DEGs were identified as
the unique gene signatures for the MSS-EO-CRC cohort. The
biological enrichment analysis depicted that these genes were
involved with the cellular mitosis of cancer cells. Previous studies
reported that loss of mitosis regulation could lead to the
carcinogenesis via the dysregulated cell cycle and aberrant
proliferation27. Also, several mitosis-associated molecules are
involved with the tumorigenesis and metastasis of cancer28–31,
including CRC. Therefore, the identified gene sets may participate
in the development and progression of MSS-EO-CRC via regulating
mitosis. These results indicated that MSS-EO-CRC has distinct
patterns of molecular mechanism and gene expression compared
to MSS-LO-CRC.
Meanwhile, MSS-EO-CRC has the highest WASF1 expression and

the lowest TNFRSF14 compared to MSS-LO-CRC and controls. Our
study also proved that WASF1 had a detrimental role in MSS-EO-
CRC patients, whereas TNFRSF14 seems a protective factor.
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WASF1, also known as WAVE1, could activate the actin-related
protein 2/3 complex, causing actin polymerization32. Due to the
actin cytoskeleton’s critical role in mediating cancer cell migration
to the blood or lymphatic system33,34, WASF1 has an essential role
in cancer metastasis and invasion. Many studies reported that the
down-regulation of WASF1 could significantly inhibit the progres-
sion and invasion of prostate cancer and ovarian cancer35,36 and
promote anti-drug-induced apoptosis of leukemia cells37,38. It has
been reported that WASF1 depletion could decrease the
proliferative and invasive ability of epithelial ovarian cancer
(EOC) via the PI3K/AKT and p38/MAPK signaling pathways35. Also,

elevated expression of WAVE1 is associated with a worse
prognosis in EOC39, which is in line with our findings. However,
no available studies depicted the biological function of WASF1 in
CRC. TNFRSF14, also known as tumor necrosis factor receptor
superfamily 14, encodes the receptor HVEM activating either co-
stimulatory or co-inhibitory signaling pathways on immune
cells40,41. It is expressed in lymphocytes and myeloid lineage cells
and highly expressed in endothelial cells and adipocytes42.
TNFRSF14/BTLA has the similar inhibitory effect with PD-L1/PD-1
to attenuate the activation of T helper cells43. Recently, increasing
studies indicated the functional activity of TNFRSF14 in
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cancer44–46. Boice et al. found that it could oppose lymphoma
development via the inhibitory cell-cell interactions with BTLA44.
In bladder cancer, the knockdown of TNFRSF14 significantly
enhanced the proliferation of bladder cancer cells through the
activation of the Wnt/β-catenin-dependent pathway46. Conflicting
results have been reported on the prognostic effect of TNFRSF14
on cancer patients; increased expression of TNFRSF14 was

correlated with worse OS in chronic lymphocytic leukemia and
clear cell renal cell carcinoma45,47, whereas the opposite correla-
tion was observed in breast cancer and bladder cancer48,49.
Interestingly, our study indicated that MSS-EO-CRC patients with
higher TNFRSF14 expression have better OS than lower ones.
Hence, WASF1 and TNFRSF14 have the potential to participate in
the development and progression of MSS-EO-CRC.
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To our knowledge, this is the first study proposing a prognostic
model based on gene expression profiles for MSS-EO-CRC
patients. Our risk score was associated with tumor-infiltrated
immune cells of MSS-EO-CRC and had a reliable prediction on the
prognosis of patients. It is widely recognized that tumors with the
infiltration of T cells and PD-L1 expression in the parenchymal are
more likely to acquire clinical responses to ICP inhibitors50. Here,
the risk score has been demonstrated to reflect such features of
TME in MSS-EO-CRC. By applying this score to the anti-PD-L1
treatment cohort of metastatic urothelial cancer, we found that
the low-risk score group was associated with the immune-
inflamed phenotype and higher infiltration of CD8+ T cells, thus,
better prognosis and a higher response rate. Besides, the
nomogram model was constructed based on the risk score and
tumor stage to predict the survival of MSS-EO-CRC patients. We
also proved that this model could provide a more reliable
prediction than either risk score or tumor stage alone. Conse-
quently, the risk score and the nomogram model could contribute
to evaluating the prognosis and immunotherapeutic responses of
MSS-EO-CRC patients.
Furthermore, many studies performed the genomic mutational

comparison between EO-CRC and LO-CRC patients7,8,51. Even so,
they failed to depict the mutational landscape in different
sidedness of EO-CRC patients. In the present study, we

demonstrated that five genes might act as the driver gene for
left-sided MSS-EO-CRC, namely TP53, FBXW7, KRAS, TGIF1, and
CXCL9. In contrast, PSD, B2M, HDAC2, and LARP4B might be
involved in the development of right-sided MSS-EO-CRC. Several
studies consistently pointed out that EO-CRC patients have more
frequent TP53 alterations than LO-CRC7,52,53. Pilozzi et al. also
showed that KRAS mutations have higher rates in EO-CRC than
LO-CRC54. In addition, we found that two subtypes of CRC have
nearly similar expression patterns of EGFR and its ligands except
for EREG. These findings indicated that MSS-EO-CRC patients have
distinct mutational spectrums in different sidedness.
The primary limitation of our study is the relatively low number

of MSS-EO-CRC patients, which made us unable to construct a
prognostic model for long-term survival. Meanwhile, a sizeable
MSS-EO-CRC cohort is needed to further validate our model’s
predictive reliability. Due to the unavailability of cell lines or
animal models particularly associated with MSS-EO-CRC, we failed
to assess the biological function of WASF1 and TNFRSF14 in this
subgroup CRC. Although this study included a limited number of
EO-CRC subjects with MSS from TCGA, we initially hinted that
distinct driver genes might play a significant role in the
tumorigenesis of different-sided MSS-EO-CRC. On the other hand,
our study comprehensively characterized the molecular and
clinical features of MSS-EO-CRC and then proposed a prognostic
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model to predict the patients’ survival and ICP inhibitors’
response.
MSS-EO-CRC has specific gene signatures and different patterns

of tumorigenesis from MSS-LO-CRC, whereas they present a
similar TME characterization and prognosis. A robust risk score and
a nomogram model were established to potentially predict OS
and immunotherapeutic responses of MSS-EO-CRC patients, which
may contribute to identifying high-risk patients suitable for more
intensive therapy.

MATERIALS AND METHODS
Data collection and processing
A comprehensive genomic analysis based on available datasets of
CRC has been performed. Searching strategy (“colon” or “color-
ectal” or “rectal”) and (“cancer*“ or “neoplas*“ or “dysplasia”) and
(“homo sapiens”) and (“gse”) was conducted on Gene Expression
Omnibus (GEO) database to find all suitable CRC datasets. The
eligibility criteria of GEO datasets for inclusion in our study were
listed in the following (Supplementary Fig. 3): (1) Sequencing data
type: transcriptional profiles; (2) Sample type: tissue; (3) Samples
size: larger than 20; (4) Clinicopathological information: MSI status,
age, and tumor stage. Considering the heterogeneity of GEO
datasets across different platforms, a total of six GPL570 platform-
based datasets (GSE39582, GSE39084, GSE9348, GSE170999,
GSE18088, and GSE75316) were enrolled in this study (Supple-
mentary Fig. 3), among which GSE39582 and GSE9348 contained
corresponding normal samples, and GSE39582 and GSE39084
provided survival information. The clinical data of those datasets
were downloaded from the corresponding GEO website or
published literature, and the details are shown in Supplementary
Table 7. Only CRC patients with MSS were recruited to exclude the
known genetic effects of inherited cancer syndrome. Nearest

neighbor matching based on tumor stage and gender was
performed to match MSS-EO-CRC patients with MSS-LO-CRC ones
for genetic and survival analysis in the ratio of 1:1 using the
MatchIt R package55. The standard mean difference evaluated the
matching quality before and after matching for each covariate,
depicted in Supplementary Fig. 4a–c. 176 CRC patients and 31
normal controls were selected from these six GEO datasets in this
study. The robust multichip average algorithm was conducted to
uniformly merge the raw CEL files of the above-enrolled subjects
for background correction and normalization. The combat
function of the sva R package and the normalizeBetweenArrays
function of the limma R package was sequentially applied to
remove the batch effects and perform quantile normalization on
the merged GEO dataset (Supplementary Fig. 5). The probes were
annotated into gene symbols based on the GPL570 annotation
files. When multiple probes matched one gene, we regarded the
median of these probes as its expression value. In total, 15,620
protein-coding genes were annotated in the merged dataset.
Therefore, this final GEO dataset was considered the normalized
expression profiles of CRC patients and normal controls.
The Cancer Genome Atlas (TCGA) somatic mutation data were

obtained using TCGAbiolinks R package56. As for gene expression
profiles from the TCGA-COAD and READ cohort, the FPKM
(fragment per kilobase per million) and counts data, as well as
the corresponding clinical data, were downloaded from the
Genomic Data Commons (GDC) data portal. Moreover, the
immunohistochemistry staining determined the MSI status of
these patients according to the expression of mismatch repair
proteins. 33 MSS-EO-CRC patients with MSS were selected from
the TCGA cohort.
Anti-PD-L1 treatment cohort derived from a multicenter, single-

arm clinical trial (IMvigor210) provided the transcriptional profiles
and clinical follow-up data of patients with metastatic urothelial
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cancer, which was used as the dataset for predicting drug
responses for PD-L1 inhibitors57.

Immune estimation of the TME
CIBERSORT was utilized to estimate the infiltrating level of 22
immune cells consisting of innate and adaptive immune subsets
in the TME58. Furthermore, the ESTIMATE algorithm was applied to
evaluate the enrichment score of immune and stromal compo-
nents in the TME, including the immune score, stromal score, and
estimate score59.

CMS subtypes
The consensus molecular subtype (CMS) of the merged GEO
dataset was determined using the single sample predictor
implemented in the R package CMSclassifier15.

Prediction of immunotherapy response
The Tumor Immune Dysfunction and Exclusion (TIDE) score of
each sample was calculated to predict drug response to immune
checkpoint (ICP) blockade by applying the TIDE algorithm to the
expression profiles60. Also, the subclass mapping (SubMap)
algorithm was utilized to predict the immunotherapy responses
by identifying the common subtypes between our expression
profiles and one published transcriptional dataset consisting of 47
melanoma patients who received the anti-PD1 or anti-CTLA-4
treatment61,62.

Estimation of drug sensitivity
Drug sensitivity was evaluated by the predicted half maximal
inhibitory concentration (IC50) based on the analysis of gene
expression profiles using the R package pRRophetic63.

Differential expression analysis
Differential expression analysis was performed to identify the
DEGs in MSS-EO-CRC patients versus normal controls and MSS-EO-
CRC patients versus MSS-LO-CRC ones of merged GEO datasets via
the limma R package64. Any gene with a P value of <0.05 and |log2
(Fold change)| > 0.2 was considered the DEGs. Furthermore, DEGs
consistently changed in the above comparisons were identified as
the genes that were specifically dysregulated in MSS-EO-CRC
patients.

Gene set variation analysis
GSVA was conducted to estimate the enrichment scores of
signaling pathways and hall marker gene sets using GSVA R
package65. Then, differential analysis was performed to acquire
the significantly enriched pathways and hall markers in each
patient’s cohort. The gene sets were derived from the MSigDB
database (https://www.gsea-msigdb.org)66,67.

Gene Ontology analysis and Gene set enrichment analysis
GO analysis and GSEA were conducted to determine the potential
biological function related to genes or prognostic model using
ClusterProfiler R package with the P-value corrected by
Benjamini–Hochberg method68. The following parameters were
used for GSEA: nPerm = 1000, minGSSize = 10, and maxGSSize =
500. Adjusted P-value < 0.05 was regarded as significant.

Construction of the prognostic model
To predict the OS of MSS-EO-CRC patients, we constructed a
prognostic model based on the genes dysregulated in these
patients. At first, univariate Cox regression of the above genes was
performed to identify the prognostic genes with p-values less
than 0.2.

Secondly, LASSO Cox regression was performed to reduce
dimensionality and select the optimal parameters from the above
prognostic genes. We applied ten-fold cross-validation to deter-
mine the lambda values and select the best one with the least
partial likelihood of deviance. Next, the optimal genes were
identified according to the selected lambda.
Thirdly, stepwise Cox regression was conducted to determine

the best model choice from the above optimal genes with the
bidirectional algorithm and the Akaike information criterion. Each
parameter would be assigned a regression coefficient, and a risk
score was generated using the following formula:

Risk score ¼
XNum

n¼1

ðExpressionn � RCnÞ

Where Num refers to the number of genes, Expressionn represents
the expression level of genen, and RCn is the regression coefficient
of genen.
Furthermore, univariate and multivariate cox regression were

sequentially used to identify the independent prognostic factors
with a p-value < 0.05 from four variables: age, gender, tumor
stage, and risk score. Then, the nomogram model was constructed
by integrating the above factors to predict the one-year and three
years OS for MSS-EO-CRC patients. Moreover, the calibration curve
was conducted to evaluate the goodness-of-fit of the nomogram
model. DCA was performed to assess the model’s reliability by
calculating the clinical net benefit for patients at each threshold
probability. Besides, Harrell’s C-index were calculated to evaluate
the prediction capability of our nomogram model.
Survival and glmnet R packages were used to perform the Cox

regression and LASSO Cox regression analysis, respectively. We
applied Survminer R package to select the best cut-off point for
distinguishing high and low-risk score groups in this study.

MutSigCV
The MutSigCV (version 1.4.1) algorithm was performed to
determine SMGs in specified cohorts of patients69. Default settings
were used to select the SMGs with a p-value < 0.001.

Statistics and reproducibility
Correlation analysis was performed using the non-parametric
Spearman method. The two-sided unpaired Wilcoxon rank-sum
test or two-sided Kruskal–Wallis test were conducted to assess the
statistical difference of continuous variables. We applied the
Benjamini–Hochberg method to correct the p-values of multiple
testing. The statistical difference among categorical variables was
calculated using a chi-squared test. The survival difference
between groups was evaluated by a log-rank test in the
Kaplan–Meier plot. All analyses were done using R software
(version 4.1.0) and MATLAB R2021b. P-value < 0.05 was regarded
as statistically significant.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
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