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Latent class analysis-derived classification improves the
cancer-specific death stratification of molecular subtyping
in colorectal cancer
Wen Zhou 1,2,3,4, Ming-Ming He1,2,4, Feng Wang1,2, Rui-Hua Xu 1,2, Fang Wang 1,3✉ and Qi Zhao 1,2✉

The molecular subtypes of colorectal cancer (CRC) represent a comprehensive dissection of CRC heterogeneity. However, molecular
feature-based classification systems have limitations in accurately prognosticating stratification due to the inability to distinguish
cancer-specific deaths. This study aims to establish a classification system that bridges clinical characteristics, cause-specific deaths,
and molecular features. We adopted latent class analysis (LCA) on 491,107 first primary CRC patients from the Surveillance,
Epidemiology, and End Results (SEER) database to reveal hidden profiles of CRC. The LCA-derived classification scheme was further
applied to The Cancer Genome Atlas (TCGA) to assess its effectiveness in improving the accurate stratification of molecular-based
subtypes of CRC. Four classes were identified based on latent class analysis integrating demographic and clinicopathological
information of CRC patients. The LCA-derived Class 1 (LCAC1) and the LCAC2 showed a high risk of dying from non-CRC, while
patients in LCAC3 had a risk of dying from CRC 1.41 times that of LCAC1 (95% confidence interval [CI] = 1.39–1.43). LCAC4 had the
lowest probability to die from non-CRC (hazard ratio [HR] = 0.22, 95% CI= 0.21–0.24) compared with LCAC1. Since the LCA-derived
classification can identify patients susceptible to CRC-specific death, adjusting for this classification allows molecular-based
subtypes to achieve more accurate survival stratification. We provided a classification system capable of distinguish CRC-specific
death, which will improve the accuracy of consensus molecular subtypes for CRC patients’ survival stratification. Further studies are
warranted to confirm the molecular features of LCA-derived classification to inform potential therapeutic strategies and treatment
recommendations.
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INTRODUCTION
As one of the most common cancers worldwide1,2, colorectal
cancer (CRC) is characterized by high heterogeneity concerning
clinical and biological features, resulting in diverse treatment
responses and prognoses3,4. Patients with CRC mainly exhibit three
distinct phenotypes: microsatellite instability (MSI)5, chromosomal
instability (CIN)6, and CpG island methylator phenotype (CIMP)7.
These phenotypes interpreted the progression of colorectal
carcinogenesis and demonstrated prognostic and predictive
values8–10. Accurate classification of tumors is essential to inform
treatment and predict prognosis11. In recent years, substantial
efforts have been dedicated to CRC subtyping, but a more accurate
classification is warranted to achieve an ideal stratification12–14.
The consensus molecular subtypes (CMS)15 of CRC represent the

current best description of tumor heterogeneity at the gene-
expression level16 and provide insight into predicting prognosis
and treatment benefit17–21. For example, patients in CMS1 had the
poorest overall survival (OS) and the combination of bevacizumab
with Folinic acid, fluorouracil and oxaliplatin (FOLFOX) appeared
more effective than cetuximab plus FOLFOX for both OS and
progression-free survival (PFS)22. The first-line irinotecan (FIRE)-3
trial also showed that CMS was a strong independent prognostic
factor for objective response rates (ORR), PFS, and OS23.
Additionally, fluorouracil, folinic acid and irinotecan (FOLFIRI) plus
bevacizumab was associated with inferior outcomes compared

with FOLFIRI plus cetuximab for OS in CMS4 patients23. Recently, a
study revealed two epithelial subtypes (intrinsic-consensus mole-
cular subtype 2 [iCMS2] and iCMS3) based on single-cell
transcriptomes and further proposed a refined “IMF” classification,
which combines intrinsic epithelial subtype (I), microsatellite
instability status (M), and fibrosis (F)24. The IMF classification
represents the core epithelial intrinsic components of bulk CMS,
refining the clinical stratification of CMS. Although these subtyping
systems could effectively classify CRC patients with their expression
patterns representing different molecular mechanisms of tumor
genesis, they have an inadequate performance for patients’ risk
stratification when competing risk events are present.
Competing risk events should be considered for accurate

estimates of cancer survival in the frail population, who may die
from other causes prior to the occurrence of cancer-caused
death25–27. Non-cancer causes of death were high in patients with
colorectal cancer28. The most common non-CRC causes of death
(CODs) in CRC patients included heart disease, other types of
malignancies, cerebrovascular disease, and chronic obstructive
pulmonary disease (COPD)29. The probability of death from CRC
will be overestimated since the competing CODs can lead to
death before patients die from CRC30. Therefore, cause-specific
survival is critical in guiding the treatment of CRC patients
regarding future risk of death31–33. However, as COD information,
which is essential for calculating cause-specific survival, is not
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always available, an alternative approach is needed to estimate
survival in the presence of competing risks.
Latent class analysis (LCA)34 is a probabilistic modeling

algorithm that allows clustering of data and statistical inference.
LCA models work on the assumption that the observed
distribution of the variables is the result of a finite latent
(unobserved) mixture of underlying distributions35. To infer the
latent groups, observed indicators were used in LCA models to
identify the best patterns36. LCA-derived phenotyping has shown
broad promise in identifying homogeneous subgroups within
large heterogeneous populations recently37,38, such as acute
respiratory distress syndrome (ARDS)39,40, asthma41, acute kidney
injury42, and metastatic cancer43.
To address the issue of inaccurate survival prediction due to the

presence of competing risk events, we performed latent class
analysis to refine CRC patients with factors that may affect cancer-
specific survival (age, sex, race, tumor site, and stage)44 as
indicator variables. The LCA-derived classification was subse-
quently assessed for cancer-specific survival stratification,
enabling more accurate prognosis prediction in the absence of
cause-of-death information (Fig. 1). In the current study, we
proposed a four-part classification system for colorectal cancer
using latent class analysis based on data from the Surveillance,
Epidemiology and End Results (SEER) database. Additionally, we
used the classification to distinguish CRC-specific death and to
adjust the prediction of CRC prognosis by CMS. Molecular features
were further investigated to provide evidence on treatment
strategy and prognosis prediction.

RESULTS
Patient population
A total of 491,107 first primary CRC patients were included
(Supplementary Table 1, Supplementary Fig. 1). Throughout the
entire follow-up period, a total of 268,034 patients died, with
43.72% of them attributed to non-CRC causes, especially
cardiovascular disease. The range of follow-up period was
0–20.9 years, with a median follow-up of 3.9 years. Characteristics
of most of the patients included were male (52.24%), age at
diagnosis between 45–69 years (51.84%), non-Hispanic White
(68.51%), married (56.71%), residing in metropolitan areas with a
population greater than one million (57.16%), income between
$50,000–$74,999 (48.19%), right-sided colon tumor (41.17%), stage
III (28.40%), grade G2 (70.74%), and adenocarcinoma (72.53%).

Characteristics of LCA-derived classification
Patients’ hidden subgroups were identified using LCA model fit
assessment (Fig. 2a, Supplementary Table 2). The best model fit
selected was a four-class solution that had a low Bayesian
information criterion (BIC) (4858200.0) and sample size-adjusted
BIC (SABIC) (4858050.7), an entropy of 4.946, which indicating a
clear separation of classes. The classes were named LCA-derived
classes (LCACs), and their demographic and clinicopathological
features were identified (Table 1).
The contribution of indicator variables to latent classes was

demonstrated in Fig. 2b. Specifically, LCAC1 (47.63% of patients)
had a highest conditional probability of being 45–69 years old at
diagnosis (72.96%), a high likelihood of being male (68.49%), and a
tumor localized distally (left-sided colon and rectum, 96.69%).
Patients in this group were less likely to die from CRC but more
likely to die from non-CRC (Fig. 2c, d). Patients in LCAC2 (30.76% of
patients) had the highest conditional probabilities of being
diagnosed at 70+ years old (100%), female (65.12%), having a
tumor localized in the colon (96.99%), and at staged I/II (62.42%).
Patients in this group were more likely to die from non-CRC (Fig.
2c, d). Patients in LCAC3 (15.94% of patients) had the highest
conditional probabilities of being diagnosed between 45–69 years

old (87.18%), non-Hispanic Black (24.95%), and with a tumor
localized proximally (right-sided colon, 98.45%). Patients in this
group were more likely to die from CRC (Fig. 2c, d). Patients in
LCAC4 (5.67% of patients) had the highest conditional probability
of being diagnosed between 18–44 years old (91.39%), Hispanic
(all races, 27.02%), having a tumor localized distally (left-sided
colon and rectum, 99.86%), and at staged III/IV (65.18%). Most
patients in this group died from CRC (Fig. 2c, d).
To confirm whether the LCA-derived classification was better

than using the indicator variables alone, we analyzed the survival
of patients aged 70+, as well as stage III/IV CRC patients and
found significant differences in prognosis among different LCAC
subgroups (Supplementary Fig. 2a, b). This indicated that the
latent classes identified by the LCA can not only identify known
effects but also recognize the potential interactions between
indicator variables, resulting in more heterogeneity between
classes and more homogeneity within classes. The features of
each group remained consistent across subgroups, stratifying by
age, tumor site, and tumor stage (Supplementary Fig. 2c). The
trend in the proportion of causes of death suggested that as
disease severity increases (from stage I to stage IV), the proportion
of deaths from CRC increases and the proportion of deaths from
non-CRC decreases (Supplementary Fig. 3).
The LCA-derived classification was associated with cause-

specific survival. Compared with LCAC1, which had the lowest
probability of dying from CRC, the risk of dying from CRC was
increased in LCAC2 (hazard ratio [HR] = 1.20, 95% confidence
interval [CI] = 1.18–1.22, P= 1.89 × 10–170), LCAC3 (HR= 1.41, 95%
CI= 1.39–1.43, P < 0.001), and LCAC4 (HR= 1.12, 95%
CI= 1.10–1.15, P= 1.46 × 10–22). Meanwhile, the risk of death
from non-CRC was higher in LCAC2 (HR= 2.82, 95%
CI= 2.79–2.86, P < 0.001), and lower in LCAC3 (HR= 0.72, 95%
CI= 0.70–0.74, P= 1.52×10–174) and LCAC4 (HR= 0.22, 95%
CI= 0.21–0.24, P < 0.001) compared with LCAC1 (Fig. 2e).

Comparison of LCA-derived classification
In the presence of competing risk events, the Aalen-Johansen
method accounts for the mutual exclusivity of competing events
and the event of interest, providing an unbiased estimate of the
cumulative incidence of the event of interest45. To assess whether
the bias in survival prediction due to the presence of competing
risk events (non-CRC death) can be reduced by adjusting the LCA-
derived classification, we compared the cumulative incidence
function (CIF) of death estimated by adjusting LCA-derived
classification with the Aalen-Johansen estimator, the Kaplan-
Meier estimator, and by adjusting indicator variables. We found
that the estimator with adjusted LCA-derived classification
provided a closer estimate to the Aalen-Johansen method in four
subgroups, especially in the subgroup of individuals aged 45–69
years at diagnosis, suggesting that age was a stronger predictor of
non-CRC death than other predictors (Fig. 3a).

Clinical utility of LCA-derived classification
Notably, we observed worse survival for patients who received
radiation therapy with resected, stage III right-sided colon cancer
in the LCAC2 (HR= 1.21, 95% CI= 1.04–1.41, P= 0.014) and
LCAC3 groups (HR= 1.94, 95% CI= 1.68–2.25, P= 3.65 × 10–19), as
well as for left-sided colon cancer in the LCAC1 (HR= 1.16, 95%
CI= 1.06–1.28, P= 1.35 × 10–3) and LCAC4 groups (HR= 1.76, 95%
CI= 1.37–2.27, P= 9.08 × 10–6) (Fig. 3b). Conversely, better
survival for patients who received radiation therapy in resected,
advanced (stage IV) cases was observed for right-sided colon
cancer in the LCAC2 group (HR= 0.77, 95% CI= 0.66–0.89,
P= 2.97 × 10–4) and left-sided colon cancer in the LCAC1
(HR= 0.85, 95% CI= 0.75–0.96, P= 9.16 × 10–3) and LCAC2
groups (HR= 0.68, 95% CI= 0.52–0.87, P= 2.70 × 10–3) (Fig. 3c).
These findings provided evidence that radiation therapy may not
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a. Competing risks affect the accuracy of survival prediction

b. Latent class analysis identifies patients susceptible to competing risks

Unclassified population

latent class analysis

Classified population

c. LCA-derived classification improves colorectal cancer stratification

Improved C-index Improved robust score More accurate stratification

a. Competing risks affect the accuracy of survival prediction
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b. Latent class analysis identifies patients susceptible to competing risks

Unclassified population

latent class analysis
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c. LCA-derived classification improves colorectal cancer stratification

Improved C-index Improved robust score More accurate stratification

Fig. 1 Overview of this study. a Competing risks affect the accuracy of survival prediction. b Latent class analysis identifies patients
susceptible to competing risks. c LCA-derived classification improves colorectal cancer stratification.
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a. Model fit assessment b. Probabilities of indicator variables

c. Sankey diagram

d. CIF for CRC and non-CRC e. Forest plots

Fig. 2 LCA-derived classification based on the SEER database. a Model fit assessment for latent class analysis. BIC, Bayesian information
criterion. b Probabilities of indicator variables in each identified class. c Sankey diagram shows the proportion of causes of death in each class.
d Cumulative incidence function (CIF) for colorectal cancer (CRC)-specific death and non-CRC death in each class. e Forest plots for CRC and
non-CRC multi-state model. ***P < 0.001, **P < 0.01, *P < 0.05.

W Zhou et al.

4

npj Precision Oncology (2023) 60 Published in partnership with The Hormel Institute, University of Minnesota



benefit colon cancer patients, particularly in non-advanced cases.
The benefit of radiation therapy in patients with advanced colon
cancer appeared to be limited to specific populations, such as
right-sided colon cancer in the LCAC2 group (37.61% of stage IV
right-sided colon cancer), and left-sided colon cancer in the LCAC1
and LCAC2 groups (66.12% and 16.55% of stage IV left-sided colon
cancer, respectively). Similar results were also observed in patients
with stage I and II (Supplementary Fig. 4).

Validation of LCA-derived classification in the TCGA database
To verify the consistency of the classification, we conducted latent
class analysis in The Cancer Genome Atlas (TCGA) data. A total of
350 patients were included in the analysis, and a four-class model
was found to be best fit the TCGA cohort (Supplementary Tables 3,
4, Supplementary Fig. 5). In TCGA, LCAC1 (LCAC1TCGA) corre-
sponded to LCAC3 in SEER (LCAC3SEER, for the sake of brevity, in
the rest of the article, those without subscripts refer to LCACSEER),
LCAC2TCGA corresponded to LCAC2SEER, LCAC3TCGA corresponded
to LCAC4SEER, LCAC4TCGA corresponded to LCAC1SEER. It is worth
noting that 63 subjects who were unclassified by CMS were
successfully assigned using the LCA-derived classification (Fig. 4a).
After adjusting the LCA-derived classification, although we only
observed statistically significant differences between survival
curves of CMS1 and CMS4 in OS (HR= 2.83, 95% CI= 1.07–7.47,
P= 0.036), we found improved performance of predicting the
prognosis of CRC patients: the C-index and the robust score
increased in the overall population and in each paired group

(Fig. 4b–g). Since the LCA-derived classification can distinguish
cause-specific survival, adjusting the LCA classification can
improve the clinical applicability of CMS in prognosis prediction.
Similar correction effects were observed in other classification
systems as well (Supplementary Figs. 6, 7). The cumulative survival
probabilities of different CRC molecular subtypes in each of the
four LCA classes are shown in Supplementary Figs. 8–11.
To further refine the molecular characteristics of the LCA-

derived classification, we compared mutation frequencies
between LCAC subgroups (Supplementary Fig. 12a). LCAC2TCGA
(LCAC2SEER) and LCAC4TCGA (LCAC1SEER) exhibited higher mutation
burdens in BRAF, CCDC168, USH2A, and KMT2D. Additionally,
LCAC4TCGA (LCAC1SEER) showed higher mutation rates for FAT3,
SACS, TRPS1, PCDH15, VPS13B, DNAH10, GLI3, LRRK2, and RELN.
LCAC3TCGA (LCAC4SEER) demonstrated a higher mutation burden in
APC, TP53, and FLG, while a lower mutation rate for PIK3CA, OBSCN,
and KMT2B. Furthermore, LCAC3TCGA (LCAC4SEER) exhibited rela-
tively lower overall mutation density than LCAC1TCGA (LCAC3SEER,
P < 0.01) and LCAC2TCGA (LCAC2SEER, P < 0.0001), but higher clonal
deletion score (CDS) and copy-neutral loss of heterozygosity (LOH)
fraction than LCAC1TCGA (LCAC3SEER, P < 0.001) and LCAC2TCGA
(LCAC2SEER, P < 0.01) (Supplementary Fig. 12b–d).

DISCUSSION
We developed a classifier using latent class analysis on SEER
colorectal cancer patients. This LCA-derived classification inte-
grated with demographic and clinicopathological information can
identify subgroups in the CRC population. These subgroups
consisted of individuals at high risk of death from CRC, thereby
improving the clinical applicability of the consensus molecular
subtype for CRC. The molecular characteristics of LCA-derived
classification provided potential therapeutic targets/strategies and
may help guide treatment and prognosis if validated in future
studies.
Previous studies have highlighted the high probability of non-

cancer-related mortality in patients with colorectal cancer28,29.
Hence, it becomes crucial to provide appropriate treatment
strategies for these patients, including measures to maintain
general health46–49. Identifying individuals who are more likely to
die from non-CRC among colorectal cancer patients can guide
personalized treatment recommendations. Patients in the LCAC2
group had a high probability of being diagnosed at 70+ years old
and were more likely to have chronic conditions, necessitating
comprehensive supportive care for these patients. Conversely,
patients in the LCAC3 and LCAC4 groups were more likely to be
affected by CRC and may derive greater benefit from advance-
ments in treatment.
In clinical practice, radiotherapy is generally considered

beneficial for rectal cancer. However, in this study, we did not
observe a significant benefit of radiotherapy in the LCAC4 group
with stage III rectal cancer. This lack of benefit could be attributed
to the higher proportion of T4b patients in the LCAC4 group
(5.16% vs. 4.18% in LCAC1, P= 0.002). T4b CRC patients often
present with symptoms such as partial obstruction and have a
lower probability of achieving R0 resection with radiotherapy,
which limits the potential survival benefit. Moreover, the
LCAC4SEER (corresponding to LCAC3TCGA) subgroup demonstrated
a higher mutation burden in TP53, which has been associated with
a decreased response to chemoradiation therapy50, indicating a
potential reduced benefit from radiotherapy in this subgroup.
Additionally, since early-onset colorectal cancer (EOCRC) patients
have more aggressive tumor characteristics51, and the genetic
background can influence the response to radiotherapy52, the
different effects of radiotherapy among the LCAC groups may be
attributed to the higher proportion of individuals in the LCAC3
and LCAC4 groups who are 18–44 years old at diagnosis (91.39%

Table 1. Latent class analysis of colorectal cancer patients in the SEER
database (N= 491,107).

Characteristics LCAC1
(47.63%)
N= 208,615

LCAC2
(30.76%)
N= 134,734

LCAC3
(15.94%)
N= 69,806

LCAC4
(5.67%)
N= 24,841

Age at diagnosis

18–44 years 0 0 11.74 91.39

45–69 years 72.96 0 87.18 8.61

70+ years 27.04 100 1.09 0

Sex

Female 31.51 65.12 53.84 52.57

Male 68.49 34.88 46.16 47.43

Race/ethnicity

Non-Hispanic
White

72.01 83.33 56.45 51.32

Non-Hispanic
Black

7.43 5.12 24.95 10.32

Hispanic (All
Races)

8.45 6.22 14.19 27.02

Other 12.11 5.32 4.41 11.34

Tumor site

Right-sided
colon

3.31 77.52 98.45 0.14

Left-sided
colon

37.20 19.47 1.55 40.70

Rectum 59.49 3.01 0 59.16

Stage

I 36.58 21.43 5.20 18.38

II 18.40 40.99 37.45 16.44

III 26.59 24.70 24.70 37.33

IV 18.43 12.88 32.65 27.85

Individuals that were not assigned to any class are not shown.
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in LCAC4), non-Hispanic Black (24.95% in LCAC3), and Hispanic
(27.02% in LCAC4).
The CMS classification of colorectal cancer holds promising

potential for predicting prognosis and response to systemic
therapy17. However, approximately 13% of patients with mixed
features cannot be classified using CMS15. The LCA-derived
classification based on demographic and clinicopathological
information can serve as a supplement to the CMS system for
classifying these unclassifiable patients to achieve accurate
prognosis estimation and stratification. Furthermore, since the
LCA-derived classification considered the cause of death, it can
provide a correction to improve the prediction accuracy of CMS for
CRC prognosis, thereby enhancing the clinical value of CMS in CRC.
Deciphering the molecular characteristics of cancers is crucial

for understanding the underlying biological mechanisms and
developing effective therapeutic strategies53,54. In our study, we
observed that the LCAC4TCGA subgroup had a higher proportion of
young patients, and the proportion of LCAC4TCGA was the highest
in the MSI-H subgroup. This finding aligned with the association
between early-onset colorectal cancers and Lynch syndrome55,
which involves gene mutations in the mismatch repair pathway.
Furthermore, patients in the LCAC4TCGA subgroup exhibited
significantly higher mutation rates in genes such as FAT3, SACS,
TRPS1, PCDH15, VPS13B, GLI3, LRRK2, and RELN. Conversely,
patients in the LCAC3TCGA subgroup had lower mutation burdens
in most genes but had the highest mutation burdens in APC and
TP53. This suggested that mutant APC and TP53 may serve as key
driver genes in the carcinogenesis of this group, which exclusively
consisted of patients with rectal cancer. Additionally, copy-neutral
LOHs mutations have been reported to play a significant role in
the early stages of tumor evolution56. Consistent with this, the
LCAC4TCGA subgroup had the lowest LOH fraction, as there was no
stage I CRC patients included in this group. When comparing the
features among the LCA-derived subgroups, we found that
patients in the LCAC2TCGA subgroup had a higher mutation

density, indicating a high tumor mutation burden (TMB). These
patients may potentially benefit from treatments targeting this
feature. Recent studies have also identified somatic mutations as
risk factors for the development of cardiovascular disease (CVD),
with some mutations having a substantial impact on CVD
development and severity57. Interestingly, patients in the
LCAC3TCGA subgroup had a higher clonal deletion score and loss
of heterozygosity fraction, suggesting a higher likelihood of
chromosomal instability in this subgroup.
This study presents a classification system that aims to address

the impact of non-cancer-specific causes of death on prognostic
prediction. However, there are several limitations that need to be
acknowledged. Firstly, the lack of cause of death information in
the TCGA database prevents direct validation of the adjustment
effect of LCA-derived classification on cancer-specific cause of
death. Secondly, although this classification system suggests
potential therapeutic strategies, the underlying biological
mechanisms and clinical value still require further confirmation.
Thirdly, despite the large sample size, the generalizability of the
results to other populations, such as Asians, may be limited as the
SEER database primarily consists of data from White individuals.
Fourthly, the prognosis of CRC is closely tied to treatment choice,
particularly in the era of immunotherapy. However, both the SEER
and TCGA database lack of comprehensive information on the
results and severe adverse effects of immunotherapy for CRC.
Further studies are warranted to validate the value of LCA-derived
classification in the context of immunotherapy. Despite these
limitations, the findings of this study provide a correction method
for prognostic prediction in the presence of competing events
when cause of death information is not available.
In conclusion, our analyses suggest that LCA-derived classifica-

tion has the potential to aid in distinguishing cancer-specific
death and improve the clinical utility of the consensus molecular
subtype in colorectal cancer. The molecular characteristics
identified through LCA-derived classification provide insights to

Fig. 3 Application of LCA-derived classification. a Comparison of cumulative incidence estimators in patients aged 45–69 years, female, with
right-sided colon cancer, and rectum cancer based on the SEER database. The color purple represents the Aalen-Johansen estimator, brown
represents the Kaplan-Meier estimator, orange represents the adjustment of indicator variables (age at diagnosis, sex, race, tumor site, and
stage), and green represents the adjustment of LCA-derived classification. Forest plot of radiation therapy in (b) stage III and (c) stage IV based
on the SEER database. R.Colon, right-sided colon cancer; L.Colon, left-sided colon cancer; Rectum, rectum cancer.
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a. Proportion of LCA-derived classification

b. C-index

c. Robust score

d. OS

e. PFI

f. DSS

g. DFI

Fig. 4 Adjustment performance of LCA-derived classification on consensus molecular subtypes (CMS) in the TCGA database. a Proportion
of LCA-derived classification in each CMS subtype. b C-index for models distinguishing survival of CMS subtypes without and with adjustment
of LCA-derived classification. c Robust score for comparison of survival between CMS subtypes without and with adjustment of LCA-derived
classification. Cumulative survival probability (or survival function, survival rate) of CMS subtypes without (left panel) or with (right panel)
adjustment of LCA-derived classification, for OS (d), PFI (e), DSS (f), and DFI (g), respectively.
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potential therapeutic strategies and treatment recommendations.
Prospective studies are warranted to validate the implementation
of LCA-derived classification in clinical practice.

METHODS
Ethical statements
The Sun Yat-sen University Cancer Center (SYSUCC) Institutional
Review Board (IRB) waived the requirement for a Research Data
Agreement and informed consent, in accordance with the
principles of the Declaration of Helsinki.

Patient population
We conducted a population-based retrospective study using data
from the SEER Program, which collects and publishes cancer
incidence and survival data from population-based cancer
registries covering approximately 48% of the U.S. population.
The collected data includes patient demographics, primary tumor
site, tumor morphology and stage at diagnosis, the first course of
treatment, and follow-up for vital status58.
We extracted data on all first primary colorectal cancers

diagnosed between 2000 and 2020 from the SEER Research Data
1759 using SEER*Stat 8.4.1 (RRID: SCR_003293)60. Diagnosis was
based on coding in the International Classification of Diseases for
Oncology 3rd edition [ICD-O-3] codes, 8000–8982. Subjects were
excluded if their diagnoses were not confirmed by positive
histology. We also excluded subjects diagnosed before 18 years
old, with staged carcinoma in situ, with tumors located in the
appendix, or those with unknown age at diagnosis, race/ethnicity,
stage, tumor sites, cause of death, and/or date of death
(Supplementary Fig. 1).

Definitions
Available demographic characteristics included age at diagnosis,
sex, race, marital status, residential area (rural or urban), and
household income. Clinicopathological information for colorectal
cancer included the year of diagnosis, American Joint Committee
on Cancer (AJCC) TNM stage, tumor site, grade, histology, vital
status at last follow-up, and cause of death. The TNM stage was
based on AJCC 3rd stage codes for patients diagnosed between
2000 and 2003, AJCC 6th stage codes for patients diagnosed
between 2004 and 2009, AJCC 7th stage codes for patients
diagnosed between 2010 and 2015, SEER combined stage for
patients diagnosed in 2016 and 2017, and AJCC 8th stage codes
for patients diagnosed in 2018 and 202061. Right-sided colon
cancer was defined based on tumor site as those occurring from
the cecum up to but not including the splenic flexure. Left-sided
colon cancer was defined as those occurring from the splenic
flexure to the sigmoid colon.
Follow-up from diagnosis was defined as the interval between

cancer diagnosis and death from any cause, the last follow-up, or
the end of the study on December 31, 2022, whichever came first.
SEER Cause-specific Death Classification was classified into two
groups: death from CRC and death from non-CRC. CODs were
defined by the SEER Cause of Death Recode variable from death
certificates62. Non-cancer causes were categorized into 26 groups,
and we further consolidated them into nine categories: infection,
CVD, respiratory disease, gastrointestinal and liver disease, renal
disease, diabetes mellitus (DM), Alzheimer’s, external causes, and
other causes. Besides, non-CRC causes also included other cancers
and deaths from in situ, benign or unknown behavior neoplasms.

Latent class analysis
The LCA is one of the finite mixture modeling techniques that
allow investigators to determine if unobserved groups exist within
a population. LCA models work on the assumption that there are

underlying unobserved variables that divide a population into
mutually exclusive and collectively exhaustive latent classes63.
These models identify solutions that best describe these latent
classes by utilizing a set of observed indicators and estimate the
parameters by maximizing likelihood or employing the Bayesian
method. In simple terms, LCA is a probabilistic method of
unsupervised clustering. Once the model has been fitted, the
probability of class membership is estimated for each observation
in the cohort, and these probabilities can be used to assign a class.
We performed LCA on the SEER data to identify hidden

subgroups in colorectal cancer. The observed indicators used in
LCA included patient demographic characteristics and clinico-
pathological information such as age at diagnosis, sex, race, tumor
site, and stage. Age at diagnosis was categorized into three
groups: 18–44 years, 45–69 years, and 70+ years. Sex was
assessed as a dichotomous variable (male and female), and race
was classified as non-Hispanic White, non-Hispanic Black, Hispanic
(All Races), and other. Tumor site was categorized as right-sided
colon, left-sided colon, and rectum. Stage was categorized as I, II,
III, or IV.
We created multiple models based on the number of classes

(i.e., 1-, 2-, 3-, 4-, 5-, 6-class solutions), compared their model fit,
and selected the model that met the following criteria: (i) lower
values of BIC64 and SABIC65; if the sample size was less than 500,
the Akaike information criteria (AIC)66 was used instead. (ii)
Entropy not less than 0.8, which indicates an acceptable quality of
classification and a good indication for class separation36. (iii) A
statistically significant test of the probability that a model with k
classes fits better than a model with k-1 classes using the Lo-
Mendel-Rubin likelihood ratio test (LMR)67. (iv) Average posterior
probabilities of subgroup membership greater than or equal to 0.5
for each subgroup36. (v) The smallest class has more than 5% of
the individuals in the entire population68. For each participant, a
posterior probability, which predicts the likelihood of belonging to
each of the identified classes, was estimated. A probability cutoff
of greater than or equal to 0.5 was used to assign a class to each
participant. The class with the largest posterior probability was
assigned to that participant. All LCAs were conducted using
poLCA in R version 4.0.3 (RRID: SCR_003005). The poLCAParallel69,
a reimplementation of poLCA, was used to speed up the running.
The latent class models were estimated with the default
parameters (graphs=FALSE, tol=1e-10, na.rm=TRUE, calc.se=-
TRUE), except for nclass=1–6, maxiter=1000, and nrep=30.
Additionally, as the numerical order of the estimated latent
classes in the model output is determined solely by the start
values of the expectation-maximization (EM) algorithm, the
poLCA.reorder command was used to ensure consistency in the
category labels assigned to each latent class in each run.

Application and validation of LCA-derived classification
In the presence of competing events, the CIF was preferred to
calculate. The Aalen-Johansen method, which is based on a multi-
state model and provides unbiased estimates of CIF, was
considered the gold standard for estimating CIF in the presence
of censored competing events70,71. In addition, we compared the
correction effect of LCA-derived classification on CIF with CIF
estimated by Kaplan-Meier and CIF adjusted by indicator variables
(age at diagnosis, sex, race, tumor site, and stage).
To further assess the LCA-derived classification, we calculated

the probabilities of class assignment for individuals in the TCGA
(RRID: SCR_003193) using the LCA model with the optimal number
of classes. Patients were assigned to a class based on their highest
probability. We then compared the survival of the four CMS
subtypes with adjustment of LCA-derived classification to explore
whether it could improve the clinical utility of CMS in colorectal
cancer by considering non-CRC causes of death.
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Assessment of molecular characteristics
To investigate the molecular characteristics of the LCA-derived
classes, we compared the mutation profiles between classes for
patients in TCGA. Somatic mutation calling data was obtained
using the GDC Data Transfer Tool and the UCSC Xena platform
(RRID: SCR_018938)72. Several quality-control filters were applied
to the mutations: (i) sequencing depth ≥ 20; (ii) sequence reads in
support of the variant call ≥ 5; (iii) variant allele frequency
(VAF) ≥ 0.02; and (iv) identified in at least two of the four callers
(MuSE, MuTect2, SomaticSniper [RRID: SCR_005108], and VarScan2
[RRID: SCR_006849]). Other molecular features such as micro-
satellite instability, somatic copy number alterations, tumor ploidy,
CDS, mutational signatures, and stemness index were obtained
from previous studies73.

Statistical analysis
Characteristics of subjects were compared among subgroups of
colorectal cancer using χ2 tests or Fisher’s exact tests where
appropriate. Survival analysis was performed using Kaplan-Meier,
and survival curves were compared using the log-rank test. The
CIF was estimated for CRC-related deaths and non-CRC-related
deaths. The multi-state model was used to assess cancer-specific
survival (CSS) in CRC70. To improve the prognostic stratification of
molecular subtypes, including CMS, the LCA-derived classification
was used to adjust the survival curves. Details of the approaches
for adjusting survival curves have been described elsewhere74–76.
Briefly, two main approaches were used for adjusting survival
curves: marginal analysis and conditional approach. The marginal
analysis involves reweighting the database to obtain balanced
subgroups and then analyzing survival using the reformulated
data. On the contrary, the conditional approach predicts the
curves first and then averages the predictions for each subgroup.
In this study, the survival curves were adjusted using rescaled
weights76, which belongs to the marginal method. The robust
score test from coxph, corresponds to a log-rank test corrected for
weighting, was used to compare the adjusted survival curves. In
addition, to visualize the correction effect of the LCA-derived
classification on the survival curve, we compared the C-index and
robust score before and after adjustment. All statistical analyses
were performed in R version 4.0.3. A P-value less than 0.05 was
considered statistically significant.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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