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Optimizing cancer immunotherapy response prediction
by tumor aneuploidy score and fraction of copy number
alterations
Tian-Gen Chang 1✉, Yingying Cao1, Eldad D. Shulman 1, Uri Ben-David 2, Alejandro A. Schäffer 1 and Eytan Ruppin1✉

Identifying patients that are likely to respond to cancer immunotherapy is an important, yet highly challenging clinical need. Using
3139 patients across 17 different cancer types, we comprehensively studied the ability of two common copy-number alteration
(CNA) scores—the tumor aneuploidy score (AS) and the fraction of genome single nucleotide polymorphism encompassed by
copy-number alterations (FGA)—to predict survival following immunotherapy in both pan-cancer and individual cancer types. First,
we show that choice of cutoff during CNA calling significantly influences the predictive power of AS and FGA for patient survival
following immunotherapy. Remarkably, by using proper cutoff during CNA calling, AS and FGA can predict pan-cancer survival
following immunotherapy for both high-TMB and low-TMB patients. However, at the individual cancer level, our data suggest that
the use of AS and FGA for predicting immunotherapy response is currently limited to only a few cancer types. Therefore, larger
sample sizes are needed to evaluate the clinical utility of these measures for patient stratification in other cancer types. Finally, we
propose a simple, non-parameterized, elbow-point-based method to help determine the cutoff used for calling CNAs.
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INTRODUCTION
Although various studies have shown that high tumor mutation
burden (TMB) may predict immunotherapy response, at least in
some cancer types1,2, more precise identification of patients that
are likely to respond to cancer immunotherapy is still a
challenging unmet clinical need. One promising approach to
identify responders of immunotherapy has been to study the
predictive ability of other measures of genomic alterations in
cancer in these patients. Two natural candidates are scores based
on copy-number alterations (CNAs): (a) tumor aneuploidy, which
measures chromosome-level CNAs, and (b) global genomic CNAs,
which quantifies the extents of both chromosomal and focal copy-
number events3. Both tumor aneuploidy and genomic CNAs have
been shown to play a role in cancer progression and to be
predictive for cancer prognosis3–5.
Recently, Spurr et al. reported that the tumor aneuploidy score

(AS), defined as the fraction of chromosome arms with arm-level
CNAs in a sample, which was called using a loose cutoff of |log2
copy ratio| > 0.1, is significantly predictive of survival following
immunotherapy in low-TMB patients, but not in high-TMB
patients, in a pan-cancer analysis6. In addition, they reported that
AS had stronger predictive power than another metric concep-
tually related to the AS, the fraction of genome encompassed by
copy-number alterations (FGA) which quantifies the extent of both
chromosomal and focal copy-number events6. As FGA combines
both chromosomal and focal CNAs, if the association between
CNAs and immunotherapy response is driven by the overall
genomic instability, one would expect FGA to perform at least as
well as AS in predicting immunotherapy response. Therefore, the
conclusion in ref. 6 that AS is a better predictor than FGA in low-
TMB patients is non-intuitive. Intrigued by these potentially
clinically impactful findings, we set out to explore several related
fundamental questions: (1) Does the choice of cutoff during CNA

calling influence the predictive power? (2) Are AS and FGA also
predictive of survival for high-TMB patients? (3) Are AS and FGA
predictive of survival of patients following immunotherapy in
individual cancer types?

RESULTS
The choice of cutoff during CNA calling markedly influences
the predictive power of AS and FGA for patient survival
following immunotherapy
We first re-analyzed the same data used in ref. 6, i.e., the Samstein
et al.’s cohort1 from MSK-IMPACT. This study analyzed a published
cohort of 1660 advanced cancer patients from ten different cancer
types treated with immune checkpoint blockade (ICB). Their
results show that, at the pan-cancer level, a higher AS was
associated with worse survival following immunotherapy among
patients with low TMB (defined as the bottom 80% of TMB in each
cancer type). However, their study did not explicitly identify the
individual cancer types in which AS is predictive. As a pan-cancer
Kaplan–Meier survival analysis (as performed in ref. 6) may be
confounded by the cancer-type composition of the overall
dataset, and as most clinical trials usually focus on individual
cancer types, we first set out to compare the Kaplan–Meier
survival curves of low-TMB patients with high versus low AS for
each of the ten cancer types individually.
The initial cancer-type-specific analysis was performed by using

the AS values provided in ref. 6 (which calls chromosome-level
CNAs using the cutoff of |log2 copy ratio| > 0.1; denoted as AS0.1).
Unexpectedly, a Kaplan–Meier survival analysis of low-TMB
patients identified a statistically significantly worse survival
following immunotherapy in a single individual cancer type, i.e.,
cancer of unknown primary, which refers to a group of cancers with
unknown origin, often due to metastasis making it difficult to
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locate the primary site (n= 70, hazard ratio HR= 2.27, P= 0.031;
Supplementary Fig. 1). Here, the HR denotes the relative risk of the
AS0.1-high individuals compared to the AS0.1-low set as the
reference.
Aiming to improve on these results, we observed that while the

cutoff used to determine a CNA event in ref. 6 was |log2 copy
ratio| > 0.1, the cutoff of |log2 copy ratio| > 0.2 in calculating AS
and/or FGA was more frequently used (e.g., refs. 7–9). Our first
hypothesis tested whether the choice of cutoff during CNA calling
affects the predictive power of AS and FGA for survival following
immunotherapy. To this end, we re-calculated AS and FGA for
each sample using the CNA calling cutoff of |log2 copy ratio| > 0.2.
We then compared the HRs of AS and FGA in individual cancer
types using AS and FGA, respectively, in a multivariable Cox
proportional hazards regression of overall survival with TMB and
ICB drug class, as had been done in ref. 6. Remarkably, HRs were
significantly increased for both AS (P= 0.019) and FGA (P= 0.032)
by using the CNA calling cutoff of |log2 copy ratio| > 0.2 (denoted
by AS0.2 and FGA0.2, respectively) compared to that calculated by
using a cutoff of 0.1 in ref. 6 (denoted by AS0.1 and FGA0.1

respectively; Fig. 1).

AS0.2 and FGA0.2 predict pan-cancer survival following
immunotherapy for both high-TMB and low-TMB patients
Although AS0.2 and FGA0.2 are continuous variables, a binary score
(based on high or low scores) is preferred in clinical decision-
making. Following ref. 6, we determined the percentile to partition
the AS0.2 scores into low and high so that they are optimally
synergized with TMB to risk-stratify patients following immu-
notherapy by testing every tenth quantile within each cancer type,
moving in increments from the 20th to 80th percentile, using a
multivariate model with TMB (binned at 80th percentile) and ICB
drug class. We identified the 60th percentile in each cancer type
as the optimal binarization threshold to classify patients into high
AS0.2 and low AS0.2 groups because it yielded highest multivariate
HR with significant Bonferroni-corrected P value (Fig. 2a). Similarly,
the optimal percentiles to binarize the AS0.1, FGA0.1, and FGA0.2

scores are 50th, 40th, and 50th, respectively (Fig. 2a).
Then, we tested our second hypothesis, examining whether

AS0.2 and FGA0.2 can predict survival outcomes for both high-TMB
patients and low-TMB patients. Strikingly, both AS0.2 and FGA0.2

had similar effect size in predicting survival in high-TMB patients

compared with that in low-TMB patients, respectively. Specifically,
the HRs between high and low AS0.2 groups were 1.23 and 1.34,
respectively, among high-TMB versus low-TMB patients (Fig. 2b);
Similarly, the HRs between high and low FGA0.2 groups were 1.32
and 1.35, respectively, among high-TMB versus low-TMB patients
(Fig. 2c). Overall, by using TMB and AS0.2 (or FGA0.2) together, we
can classify patient survival following immunotherapy into four
groups: high TMB & low AS0.2 (or FGA0.2) > high TMB & high AS0.2
(or FGA0.2) > low TMB & low AS0.2 (or FGA0.2) > low TMB & high
AS0.2 (or FGA0.2). In addition, FGA0.2 was found to have consistently
slightly higher HRs and lower P values than AS0.2 (Fig. 2a–c), which
suggests that FGA0.2 is better or performs at least as well as AS0.2
in predicting pan-cancer ICB response.
To further test this finding in other datasets, we analyzed

another MSK-IMPACT cohort published recently by Chowell et al.8.
In the Chowell et al.’s cohort, there are in total 15 cancer types, 8
of them are in common with the above-used Samstein et al.’s
cohort (we merged gastric and esophageal cancers in the Chowell
et al.’s cohort into esophagogastric cancer to keep in line with the
tumor type classification in the Samstein et al.’s cohort). We note
that we could not use the Chowell et al. data to validate the AS
analysis because these data do not include AS values and it is not
possible to calculate the AS values based on the publicly available
information. Consistently, FGA0.2 was found to predict survival
following immunotherapy for both high-TMB and low-TMB
patients. Specifically, the HRs between high and low FGA0.2

groups were 1.63 and 1.18, respectively, among high-TMB versus
low-TMB patients (Fig. 2d).
We hypothesized that CNA calling cutoff |log2 copy ratio| > 0.1

is a too low cutoff, which introduced noise in calculating patient
AS, and thus dampened its predictive power of survival following
immunotherapy. To test this hypothesis, we divided patients in
the Samstein et al.’s cohort into four groups by their high/low
AS0.1/AS0.2 scores and compared the Kaplan–Meier survival curves
(Fig. 2e). We found that, among high AS0.2 or among low AS0.2
patients, there was no significant survival difference between
patients that had high or low AS0.1 values. In contrast, among high
AS0.1 patients, a subset of patients, i.e., the low AS0.2 patients, had
much better survival rates than high AS0.2 patients (HR= 1/
1.33= 0.75, P value= 0.009); they actually achieved similar
survival rates as the low AS0.1/low AS0.2 patients (HR= 1, P
value= 0.9). On the other hand, among low AS0.1 patients, a
subset of patients, i.e., the high AS0.2 patients, had significantly
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Fig. 1 The choice of cutoff during CNA calling markedly influences the predictive power of AS and FGA for patient survival following
immunotherapy. Comparison of HRs using AS0.1 or AS0.2 or FGA0.1 or FGA0.2 in a multivariate Cox model with TMB and ICB drug class. Paired
Wilcoxon test P values are displayed. In the plot, the upper and lower boundaries signify the first and third quartiles, correspondingly, the
central line denotes the median, and the whiskers stretch to the most distant data points not classified as outliers (within 1.5 times the
interquartile range). The data are from the Samstein et al.’s cohort1.
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worse survival rates than low AS0.2 patients (HR= 1.34, P
value= 0.06); they actually had similar survival rates as the high
AS0.1/high AS0.2 patients (HR= 1, P value= 0.9). This result testifies
that the AS0.1 indeed mis-classifies a number of patients as a result
of the loose CNA calling cutoff used. Further investigation into the

patients that were misclassified by AS0.1 showed that the “low
AS0.2, high AS0.1” patients had significantly lower tumor purity
than the “high AS0.2, high AS0.1” patients; and similarly, the “high
AS0.2, low AS0.1” patients had significantly higher tumor purity
than the “low AS0.2, low AS0.1” patients (Supplementary Fig. 2).

Fig. 2 AS0.2 and FGA0.2 predict pan-cancer survival following immunotherapy for both high-TMB and low-TMB patients. a The x axis
shows candidate binarization proportions 0.1 through 0.9 corresponding to 10th through 90th percentiles to partition patient scores into high
score versus low score at each percentile. In total, 1660 multivariate Cox models as part of the leave-one-out cross-validation analysis are
constructed with AS0.1 or AS0.2 or FGA0.1 or FGA0.2 (binned at the candidate binarization percentile), TMB (binned at the 80th percentile), and
ICB drug class. The Wald P values and multivariate HRs with 95% confidence intervals are displayed, respectively. Black arrows indicate Wald P
values and multivariable HRs at the optimal percentiles, respectively. Dashed line denotes the Bonferroni-corrected P= 0.05. b Pan-cancer
Kaplan–Meier analysis of AS0.2 binned at the 60th percentile and TMB binned at the 80th percentile in the Samstein et al.’s cohort. c, d Pan-
cancer Kaplan–Meier analysis of FGA0.2 binned at the 50th percentile and TMB binned at the 80th percentile in the Samstein et al.’s cohort (c)
and in the Chowell et al.’s cohort (d). e Pan-cancer Kaplan–Meier analysis of AS0.2 binned at the 60th percentile and AS0.1 binned at the 50th
percentile in the Samstein et al.’s cohort. HR and P values of pairwise comparisons between different groups are shown. H high, L low.
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These findings suggest that tumor purity may, at least partially,
explain the switch of some samples from high/low AS0.1 to low/
high AS0.2. However, further studies are needed to fully under-
stand the relationship between AS and tumor purity and to
determine the optimal cutoff for AS in predicting patient response
to immunotherapy when such data are available.

AS0.2FGA0.2 predict survival following immunotherapy in
certain individual cancers
Having demonstrated that AS0.2 and FGA0.2 predict survival
following immunotherapy for both high-TMB and low-TMB
patients at the pan-cancer level, we next asked whether these
scores could also predict survival in individual cancer types. As a
result, in the Samstein et al.’s cohort, FGA0.2 had significant HRs for
pan-cancer (HR= 1.36, P < 0.0001) and in three individual cancer
types in Kaplan–Meier survival analysis, i.e., renal cell carcinoma
(HR= 2.03, P= 0.01), melanoma (HR= 1.78, P= 0.002), and
bladder cancer (HR= 1.73, P= 0.009; Fig. 3a). In comparison,
AS0.2 yielded significant Kaplan–Meier univariable HRs in bladder
cancer and renal cell carcinoma, and marginally significant

multivariate HRs in melanoma (Supplementary Fig. 3). Comparison
of HRs using AS0.2 or FGA0.2 in a multivariable Cox model with TMB
(binned at the 80th percentile) and ICB drug class yielded very
similar result (Fig. 3a and Supplementary Fig. 3). Overall, we
conclude that FGA performs comparable to or better than AS in
predicting immunotherapy response in individual cancers, sug-
gesting that it is the overall genome affected by CNAs (rather than
the individual CNA length or mechanism of formation) that drives
the observed CNA-immunotherapy response associations.
We further tested the robustness of FGA0.2 in predicting survival

following immunotherapy in the other dataset, i.e., the Chowell et
al.’s cohort. As a result, FGA0.2 had significant Kaplan–Meier
univariable HRs for pan-cancer (HR= 1.22, P= 0.003) and in renal
cell carcinoma (HR= 2.07, P= 0.019) and melanoma (HR= 1.75,
P= 0.018). Again, multivariable Cox model with adjustment of
TMB (binned at the 80th percentile) and ICB drug class yielded
similar result (Fig. 3b). However, FGA0.2 did not predict worse
survival for high FGA0.2 in bladder cancer in this cohort as what in
the Samstein et al.’s cohort (HR= 0.79, P= 0.39; Fig. 3b), which
might be due to the small sample size in the Chowell et al.’s
cohort (n= 82; Fig. 3b), and/or, due to tumor heterogeneity. For

Fig. 3 FGA0.2 predicts survival following immunotherapy in certain individual cancers. Univariable Kaplan–Meier survival analysis and
multivariable survival analysis using Cox proportional hazards regression of overall survival with FGA0.2 (binned at the 50th percentile), TMB
(binned at the 80th percentile), and ICB drug class in the Samstein et al.’s cohort (a) and in the Chowell et al.’s cohort (b). In the plot, squares
positioned at midpoints symbolize point estimates of HRs, and the accompanying bars indicate 95% confidence intervals. Wald P values are
displayed.
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example, further comparison analysis showed that bladder cancer
samples in the Samstein et al.’s cohort had slightly lower mean
FGA0.2 value (0.19 versus 0.23, P= 0.14) and better survival
(HR= 0.75, P= 0.098) than that in the Chowell et al.’s cohort
(Supplementary Fig. 4).
Interestingly, FGA0.2 predicted significant HRs for one more

cancer type, non-small cell lung cancer, although with modest HR
values (HR= 1.25, P= 0.05; Fig. 3b). Given that the HR values in the
Samstein et al.’s cohort show a similar trend but are non-significant
(HR= 1.19, P= 0.19; Fig. 3a), we wondered whether the difference
in statistical significance might be due to the difference of sample
size. Therefore, we performed a power analysis to estimate the
sample size needed for achieving statistical significance P value less
than 0.05. The estimated sample size for non-small cell lung cancer
in the Samstein et al.’s cohort to achieve P < 0.05 is about 1600
(Supplementary Table 1). Similarly, it was found that colorectal
cancer might also achieve significant HR > 1 with a sample size
of ~600 patients in both cohorts (Supplementary Table 1). Our data
analysis revealed that significant Kaplan–Meier survival analysis
always corresponded to significant multivariate analysis in indivi-
dual cancer types and vice versa. Therefore, it is unlikely that the
limited efficacy of AS/FGA in certain cancer types is due to the
choice of univariate or multivariate analysis. Instead, sample size
limitation may be a critical factor for specific cancer types, as
suggested by our power analysis. In contrast, in some cancer types,
extremely large estimated sample size is needed for achieving
statistical significance, .e.g., esophagogastric cancer (Supplementary
Table 1). It is more plausible that AS/FGA may not work in those
cancer types due to specific underlying biological factors.
In addition, to investigate whether mutation of specific genes

may contribute to the survival difference following immunother-
apy, we performed a differential gene mutation frequency analysis
among high FGA0.2 (or AS0.2) group versus low FGA0.2 (or AS0.2)
group in the two cancer types in the Samstein et al.’s cohort with
the largest sample size, i.e., melanoma and non-small cell lung
cancer. We found that none of the genes had significantly
differential mutation frequencies between the high FGA0.2 (or
AS0.2) versus low FGA0.2 (or AS0.2) patients after multiple testing
correction (Supplementary Table 2).

The elbow-point-based method offers one systematic way to
determine the cutoff used for calling CNAs
Finally, as shown above, the cutoff used for calling CNAs is critical
for calculating AS0.2 and FGA0.2. A low cutoff of |log2 copy ratio| in
calling CNA events might introduce noise (false positives),
whereas a high cutoff might result in missing true events (false
negatives). There are a number of parameters that may affect the
optimal cutoff, e.g., cancer type, tumor purity, and the platform
used for CNA calling (e.g., whole-exome sequencing, single
nucleotide polymorphism arrays, and shallow whole genome
sequencing)10–14. The variance of these parameters in different
cancer types is likely to explain why AS and FGA scores have very
different predictive power in distinct cancer types. We hence
reasoned that an arbitrary threshold could never be optimal for all
datasets and searched for an unbiased approach for threshold
calling. We used the elbow method, which was developed to
identify a cutoff point that optimally distinguishes between two
qualitative, discrete states15. This method has been found to be
effective in determining optimal parameter thresholds in a variety
of data-driven optimization tasks including the determination of
the number of clusters, determination of the number of principal
components, and with relevance to our goal, determination of the
threshold on a receiver operating characteristic curve16–18.
We calculated the elbow points of CNA calling cutoff |log2 copy

ratio| for AS for all ten individual cancer types (exemplified as in
Fig. 4a), which are in the range of 0.14–0.22 with 95% confidence
interval in the range of 0.12–0.27 (Fig. 4b). Therefore, the cutoff of

0.1 used in ref. 6 is well-below the elbow points for all individual
cancer types. However, on the other hand, the average values of
elbow points across different cancer types of both AS and FGA are
0.17, which is very close to the cutoff of 0.2 used above. These
facts may explain why the 0.2 cutoff performs much better than
the 0.1 cutoff. We further re-evaluated the predictive power of AS
by calculating AS using the elbow points as the CNA calling cutoff
per cancer types (denoted as ASEP). We identified the 30th
percentile as the optimal binarization threshold to classify patients
into high ASEP and low ASEP groups (Supplementary Fig. 5). The
multivariable HRs of binarized ASEP (with adjustment of TMB and
ICB drug class) in individual cancer types were, on average, greater
than those obtained using AS0.1 (Δ mean HR= 0.21, P= 0.08;
Fig. 4c). Furthermore, ASEP predicted significant HR in melanoma
and marginally significant HRs in two other cancer types, i.e., non-
small cell lung cancer and renal cell carcinoma, tested by both
Kaplan–Meier univariable survival analysis and multivariable Cox
model with adjustment for TMB and ICB drug (Fig. 4c, d). The
elbow-point-based method to determine the cutoff used for
calling CNAs yielded similar result in FGA (Supplementary Figs. 5
and 6). To test if differential tumor purity across different cancer
types may contribute to the variation of elbow points in individual
cancer types, we investigated the relationship between elbow
points and average tumor purity. A weak negative but statistically
non-significant correlation was found (Supplementary Fig. 7).
In addition, we also tested using another method to determine

the cutoff, testing a Gaussian mixture model. However, the
Gaussian mixture model gave unrealistically high cutoff values
ranging from 0.35 to 0.39 for individual cancer types (Supple-
mentary Fig. 8a), which resulted in AS= 0 for nearly half of the
samples (Supplementary Fig. 8b).
Taken together, these results suggest that the elbow method, a

simple and non-parametric method, is robust and superior to
some arbitrarily chosen cutoffs (e.g., the 0.1 cutoff used in ref. 6).
However, it was not possible to further test the elbow method in
the Chowell et al.’s cohort due to the inaccessibility of some of the
data. In the future, the elbow-point-based method needs to be
tested in more cohorts to further validate it. Moreover, as tumor
purity and ploidy information of samples per tumor type are
important factors in detecting CNAs, more sophisticated methods
(e.g., iChorCNA12, Accurity14) are needed to take this information
into consideration before determining the cutoff for CNA calling
when such data are available.

DISCUSSION
In summary, we have comparatively assessed the power of AS and
FGA in predicting patient survival following immunotherapy in
pan-cancer and individual cancer types. Addressing our research
questions, we first show that choice of cutoff during CNA calling
greatly influences the predictive power of AS and FGA for patient
survival following immunotherapy. Specifically, the AS measure
defined in ref. 6 (AS0.1) cannot significantly predict survival benefit
following immunotherapy in low-TMB patients in any single
cancer type (Supplementary Fig. 1). AS0.2 and FGA0.2, re-calculated
using a more appropriate pan-cancer CNA calling cutoff of |log2
copy ratio| > 0.2, have a considerably stronger predictive power of
survival following immunotherapy (Fig. 1). Second, we show that
AS0.2 and FGA0.2 predict pan-cancer survival following immu-
notherapy for both high-TMB and low-TMB patients, rather than in
low-TMB patients only, as was claimed in ref. 6; as evidence, the
arbitrary cutoff of |log2 copy ratio| > 0.1 used in ref. 6 is found to
misclassify many patients (Fig. 2). Finally, from a translational
standpoint, the currently available data suggest that both AS and
FGA can significantly predict survival following immunotherapy in
only a few cancer types (Figs. 3 and 4). Therefore, larger sample
sizes are required to evaluate, and ultimately use these measures
within individual cancer types.
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METHODS
Patient samples
Data for the Samstein et al.1 cohort (MSK-IMPACT) were down-
loaded from cBioPortal at http://www.cbioportal.org/study?id=
tmb_mskcc_2018. Segmented copy-number data were down-
loaded from AACR Project GENIE v.7.1. Note that one sample of
skin cancer-nonmelanoma was excluded from the analyses as it
was the only sample representing this specific histology. Data for
the Chowell et al.’s cohort were obtained from the Supplementary
Table of ref. 8.

Copy-number alteration and tumor aneuploidy assessment
AS were calculated using ASCETS v.1.1 at https://github.com/
beroukhim-lab/ascets with the following command line:

script run ascets:R -i genie msk cna hg19:seg -c genomic

arm coordinates hg19:txt -o :=output=output -t x

where x is the CNA calling cutoff, defined as the threshold at
which a CNA event is counted if |log2 copy ratio | > x.
FGA was calculated as the ratio between the sum of the lengths

of the genomic segments with |log2 copy ratio| > x, and the sum

of the lengths of all measured segments:

FGA ¼ sumðseg length½absðseg:meanÞ> ¼ x�Þ =sumðseg lengthÞ

CNA calling cutoff point determination
The elbow-point-based method. CNA events, which were used to
calculate AS and FGA, were first called using |log2 copy ratio|
cutoffs ranging from 0.01 to 0.5 with a step size of 0.01. Then, to
calculate the cancer-type-specific elbow points of cutoffs, mean
values of AS/FGA across samples in individual cancer types were
calculated under each cutoff to generate the AS/FGA-cutoff
curves. Finally, the cancer-type-specific elbow point in each
bootstrap replication was calculated using Python package kneed
v.0.8.1; and 95% confidence intervals of elbow points were
determined from 1000-replicate bootstrapping.

The Gaussian mixture model. |log2 copy ratio| cutoffs were
calculated in a similar way as the elbow method, except that in
the final step, the cutoff point was determined by the Gaussian
mixture model with two components using the GaussianMixture()
function in the Python package sklearn v.1.2.1. This model
assumes that the data is generated from two Gaussian

Fig. 4 The elbow-point-based method offers one systematic way to determine the cutoff used for calling CNAs. a The elbow method for
determining the cutoff of |log2 copy ratio| was used in calling AS for individual cancer types (exemplified by esophagogastric cancer here).
The AS for each patient with different calling cutoffs are shown in black curves. The mean value of all patients is shown in the red curve. The
mean elbow point is shown with 95% confidence intervals, which are calculated using 1000-replicate bootstrapping. b The elbow-point values
of the cutoff of |log2 copy ratio| in calculating AS in individual cancer types. The bars represent 95% confidence intervals of the elbow-point
values calculated using a 1000-replicate bootstrapping. c Comparison of HRs using AS0.1 or ASEP in a multivariate Cox model with TMB (binned
at the 80th percentile) and ICB drug class. The difference of mean HRs of AS0.1 and ASEP and paired Wilcoxon test P value are displayed. Wald P
values for HRs of ASEP in individual cancer types are displayed at the right side of the plot. The upper and lower boundaries signify the first
and third quartiles, correspondingly, while the central line denotes the median. Whiskers stretch to the most distant data points not classified
as outliers (within 1.5 times the interquartile range), and outliers are illustrated as points above and below the box-and-whisker diagram.
d Univariable Kaplan–Meier survival analysis and multivariable survival analysis using Cox proportional hazards regression of overall survival
with AS calculated using cancer-type-specific elbow-point-based CNA calling cutoff (ASEP; binned at the 30th percentile), TMB (binned at the
80th percentile), and ICB drug class. Wald P values are displayed. Squares positioned at midpoints symbolize point estimates of HRs, and the
accompanying bars indicate 95% confidence intervals. The data are from the Samstein et al.’s cohort1.
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distributions with different means and variances, and that each
data point belongs to one of the two distributions with a certain
probability.

Binarization of TMB, AS, and FGA
The patient TMB, AS, and FGA values were binarized into score-
high versus score-low groups in a cancer-type-specific manner.
Specifically, in each cancer type, the patients who had the top
20% of the TMB values were classified into high-TMB group, while
others were classified into low-TMB group following1. To
determine the optimal binarization of AS and FGA that effectively
synergized with TMB for risk stratification of patients undergoing
immunotherapy, we performed a comprehensive analysis. This
involved testing every tenth quantile within each cancer type,
ranging from the 20th to 80th percentile, using a multivariate
model that incorporated TMB (binned at the 80th percentile) and
ICB drug class following6. Leave-one-out cross-validation was
conducted to identify the optimal threshold for defining high
versus low AS (or FGA). In detail, for each threshold, we
constructed a Cox proportional hazards survival model incorpor-
ating binarized AS (or FGA), TMB, and drug class. This process was
repeated iteratively for the cohort size (n= 1660), with one unique
patient left out in each iteration. The goal was to identify the
threshold that yielded the highest multivariate HR in synergy with
TMB, while maintaining a significant Bonferroni-corrected P value
(see Fig. 2a).

Statistical analysis
Survival analysis. Kaplan–Meier survival analysis was performed
using the R packages survminer v.0.4.9 and survival v.3.3.1, and HR
and P values were calculated with univariable Cox proportional
hazard regression using the coxph() function19. Multivariable
analysis was performed with Cox proportional hazard regression
in individual cancer types, with inclusion of covariates including
FGA (or AS), TMB and ICB drug class.

Power analysis. The power analysis of minimum sample size
estimation for achieving statistically significant survival difference
(Kaplan–Meier HR > 1, P < 0.05) in individual cancer types in the
Samstein et al.’s cohort was performed using the R package
powerSurvEpi v.0.1.3 with parameter “power= 0.8”, which means
that there is an 80% chance of correctly detecting a statistically
significant effect if one exists.

Gene mutation frequency analysis. We defined the gene mutation
frequency in a group of patients as the fraction of patients with
mutations in the gene of interest. To identify genes with
significantly different mutation frequencies between AS (or FGA)
high and low groups, we compared the gene mutation
frequencies in the two groups using the chi-squared test. We
used the chi2_contingency() function from the Python package
scipy v.1.10.1 to perform the chi-squared test. To correct for
multiple testing, we applied the Bonferroni correction.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Data for the Samstein et al.’s cohort are available at https://www.cbioportal.org/
study/summary?id=tmb_mskcc_2018 and the GENIE20 v.7.1 release: https://
www.synapse.org/#!Synapse:syn7222066/wiki/405659. Data for the Chowell et al.’s
cohort are available from the Supplementary Table of ref. 8 at https://static-
content.springer.com/esm/art%3A10.1038%2Fs41587-021-01070-8/MediaObjects/
41587_2021_1070_MOESM3_ESM.xlsx, where FGA, TMB, ICB drug class, and overall
survival information are provided. Aneuploidy scores were called using ASCETS at

https://github.com/beroukhim-lab/ascets and values for each sample are provided in
the GitHub repository at https://github.com/rootchang/Aneuploidy-FGA-ICB.

CODE AVAILABILITY
All code necessary to replicate these analyses is provided in the following GitHub
repository: https://github.com/rootchang/Aneuploidy-FGA-ICB.

Received: 1 March 2023; Accepted: 25 May 2023;

REFERENCES
1. Samstein, R. M. et al. Tumor mutational load predicts survival after immu-

notherapy across multiple cancer types. Nat. Genet. 51, 202–206 (2019).
2. McGrail, D. J. et al. High tumor mutation burden fails to predict immune check-

point blockade response across all cancer types. Ann. Oncol. 32, 661–672 (2021).
3. Ben-David, U. & Amon, A. Context is everything: aneuploidy in cancer. Nat. Rev.

Genet. 21, 44–62 (2020).
4. Hieronymus, H. et al. Tumor copy number alteration burden is a pan-cancer

prognostic factor associated with recurrence and death. eLife 7, https://doi.org/
10.7554/eLife.37294 (2018).

5. Sansregret, L. & Swanton, C. The role of aneuploidy in cancer evolution. Cold
Spring Harb. Perspect. Med. 7, https://doi.org/10.1101/cshperspect.a028373 (2017).

6. Spurr, L. F., Weichselbaum, R. R. & Pitroda, S. P. Tumor aneuploidy predicts sur-
vival following immunotherapy across multiple cancers. Nat. Genet. 54,
1782–1785 (2022).

7. Spurr, L. F. et al. Quantification of aneuploidy in targeted sequencing data using
ASCETS. Bioinformatics 37, 2461–2463 (2021).

8. Chowell, D. et al. Improved prediction of immune checkpoint blockade efficacy
across multiple cancer types. Nat. Biotechnol. 40, 499–506 (2022).

9. Rizvi, H. et al. Molecular determinants of response to anti–programmed cell death
(PD)-1 and anti–programmed death-ligand 1 (PD-L1) blockade in patients with
non–small-cell lung cancer profiled with targeted next-generation sequencing. J.
Clin. Oncol. 36, 633–641 (2018).

10. Woo, X. Y. et al. Conservation of copy number profiles during engraftment and
passaging of patient-derived cancer xenografts (vol 53, pg 86, 2021). Nat. Genet.
53, 761–761 (2021).

11. Beroukhim, R. et al. The landscape of somatic copy-number alteration across
human cancers. Nature 463, 899–905 (2010).

12. Adalsteinsson, V. A. et al. Scalable whole-exome sequencing of cell-free DNA
reveals high concordance with metastatic tumors. Nat. Commun. 8, https://
doi.org/10.1038/s41467-017-00965-y (2017).

13. Hoge, A. C. H. et al. DNA-based copy number analysis confirms genomic evolu-
tion of PDX models. NPJ Precis. Onc. 6, https://doi.org/10.1038/s41698-022-00268-
6 (2022).

14. Luo, Z. H., Fan, X. P., Su, Y. & Huang, Y. S. Accurity: accurate tumor purity and
ploidy inference from tumor-normal WGS data by jointly modelling somatic copy
number alterations and heterozygous germline single-nucleotide-variants.
Bioinformatics 34, 2004–2011 (2018).

15. Satopaa, V., Albrecht, J., Irwin, D. & Raghavan, B. Finding a “kneedle” in a haystack:
detecting knee points in system behavior. in 2011 31st International Conference
on Distributed Computing Systems Workshops 166–171 (IEEE, 2011).

16. Syakur, M. A., Khotimah, B. K., Rochman, E. M. S. & Satoto, B. D. Integration
k-means clustering method and elbow method for identification of the best
customer profile cluster. IOP Conf. Ser.: Mater. Sci. Eng. 336, 012017 (2018).

17. Linting, M., Meulman, J. J., Groenen, P. J. F. & van der Kooij, A. J. Nonlinear
principal components analysis: Introduction and application. Psychol. Methods 12,
336–358 (2007).

18. Oh, J. H., Hong, J. Y. & Baek, J. G. Oversampling method using outlier detectable
generative adversarial network. Expert Syst. Appl. 133, 1–8 (2019).

19. Therneau, T. M. A package for survival analysis in R. R package version 4.2-0,
https://CRAN.R-project.org/package=survival (2020).

20. Andre, F. et al. AACR Project GENIE: powering precision medicine through an
International Consortium. Cancer Discov. 7, 818–831 (2017).

ACKNOWLEDGEMENTS
This research was supported in part by the NIH Intramural Research Program,
National Cancer Institute. This work utilized the computational resources of the NIH
HPC Biowulf cluster (http://hpc.nih.gov). The authors would like to acknowledge the
American Association for Cancer Research and its financial and material support in

T.-G. Chang et al.

7

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2023)    54 

https://www.cbioportal.org/study/summary?id=tmb_mskcc_2018
https://www.cbioportal.org/study/summary?id=tmb_mskcc_2018
https://www.synapse.org/#!Synapse:syn7222066/wiki/405659
https://www.synapse.org/#!Synapse:syn7222066/wiki/405659
https://static-content.springer.com/esm/art%3A10.1038%2Fs41587-021-01070-8/MediaObjects/41587_2021_1070_MOESM3_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41587-021-01070-8/MediaObjects/41587_2021_1070_MOESM3_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fs41587-021-01070-8/MediaObjects/41587_2021_1070_MOESM3_ESM.xlsx
https://github.com/beroukhim-lab/ascets
https://github.com/rootchang/Aneuploidy-FGA-ICB
https://github.com/rootchang/Aneuploidy-FGA-ICB
https://doi.org/10.7554/eLife.37294
https://doi.org/10.7554/eLife.37294
https://doi.org/10.1101/cshperspect.a028373
https://doi.org/10.1038/s41467-017-00965-y
https://doi.org/10.1038/s41467-017-00965-y
https://doi.org/10.1038/s41698-022-00268-6
https://doi.org/10.1038/s41698-022-00268-6
https://CRAN.R-project.org/package=survival
http://hpc.nih.gov/


the development of the AACR Project GENIE registry, as well as members of the
consortium for their commitment to data sharing. Interpretations are the
responsibility of the study authors.

AUTHOR CONTRIBUTIONS
T.-G.C. and E.R. conceived and designed the study. T.-G.C. and Y.C. collected and
managed the data. T.-G.C., Y.C., and E.D.S. performed the statistical analyses. U.B.-D.
and A.A.S. provided statistical advice. All authors critically revised the manuscript for
important intellectual content.

FUNDING
Open Access funding provided by the National Institutes of Health (NIH).

COMPETING INTERESTS
E.R. is a co-founder of MedAware, Metabomed and Pangea Biomed (divested), and an
unpaid member of Pangea Biomed’s scientific advisory board. U.B.-D. receives grant
funding from Novocure. The remaining authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41698-023-00408-6.

Correspondence and requests for materials should be addressed to Tian-Gen Chang
or Eytan Ruppin.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

This is a U.S. Government work and not under copyright protection in the US; foreign
copyright protection may apply 2023

T.-G. Chang et al.

8

npj Precision Oncology (2023)    54 Published in partnership with The Hormel Institute, University of Minnesota

https://doi.org/10.1038/s41698-023-00408-6
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Optimizing cancer immunotherapy response prediction by�tumor aneuploidy score and fraction of copy number alterations
	Introduction
	Results
	The choice of cutoff during CNA calling markedly influences the predictive power of AS and FGA for patient survival following immunotherapy
	AS0.2 and FGA0.2 predict pan-cancer survival following immunotherapy for both high-TMB and low-TMB patients
	AS0.2FGA0.2 predict survival following immunotherapy in certain individual cancers
	The elbow-point-based method offers one systematic way to determine the cutoff used for calling CNAs

	Discussion
	Methods
	Patient samples
	Copy-number alteration and tumor aneuploidy assessment
	CNA calling cutoff point determination
	The elbow-point-based method
	The Gaussian mixture model

	Binarization of TMB, AS, and FGA
	Statistical analysis
	Survival analysis
	Power analysis
	Gene mutation frequency analysis

	Reporting summary

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	ADDITIONAL INFORMATION




