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Targeting CDK1 in cancer: mechanisms and implications
Qiushi Wang1, Ann M. Bode1✉ and Tianshun Zhang 1✉

Cyclin dependent kinases (CDKs) are serine/threonine kinases that are proposed as promising candidate targets for cancer
treatment. These proteins complexed with cyclins play a critical role in cell cycle progression. Most CDKs demonstrate substantially
higher expression in cancer tissues compared with normal tissues and, according to the TCGA database, correlate with survival rate
in multiple cancer types. Deregulation of CDK1 has been shown to be closely associated with tumorigenesis. CDK1 activation plays
a critical role in a wide range of cancer types; and CDK1 phosphorylation of its many substrates greatly influences their function in
tumorigenesis. Enrichment of CDK1 interacting proteins with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis
was conducted to demonstrate that the associated proteins participate in multiple oncogenic pathways. This abundance of
evidence clearly supports CDK1 as a promising target for cancer therapy. A number of small molecules targeting CDK1 or multiple
CDKs have been developed and evaluated in preclinical studies. Notably, some of these small molecules have also been subjected
to human clinical trials. This review evaluates the mechanisms and implications of targeting CDK1 in tumorigenesis and cancer
therapy.

npj Precision Oncology            (2023) 7:58 ; https://doi.org/10.1038/s41698-023-00407-7

INTRODUCTION
Cyclin dependent kinases (CDKs) are serine/threonine kinases that
form a complex with cyclin proteins, a process that is essential for
full activation of their kinase activity. CDKs play critical roles in the
control of cell division and modulation of transcription in response
to extracellular and intracellular stimuli1. CDKs are involved in many
crucial processes and are associated with several disease conditions,
such as Alzheimer’s disease2, Parkinson’s disease3, stroke4, HIV5, and
cancer6,7. The CDK protein family comprises twenty kinases (CDK1-
20). CDK1-6 and CDK14-18 are involved in cell cycle and CDK7-13
and CDK19-20 are associated with the function of transcription in
gene control8,9. CDK1 is the only CDK in mammals that is essential
for cell cycle progression10. It promotes the G2/M and G1/S
transitions, as well as G1 progression11. Unrestricted cell prolifera-
tion, an indicator of malignancy, is normally driven by alterations in
CDK1 activity. The expression of CDKs fluctuates cyclically through-
out the cell cycle12. Cancer is a disease of abnormal cell proliferation
and occurs when cells evade normal growth or division restrictions.
Oncogenic transformation often entails derangement of the
mechanisms that ensure the stable inheritance of genes and
chromosomes during mitotic cell division13. CDKs play important
roles in both the commitment to cell division and the quality control
mechanisms that safeguard genome integrity. They represent
obvious, but potentially risky, therapeutic targets in treating human
cancers14. In addition to presenting the frequency of overexpression
in different cancer types, CDKs have been shown to function as
oncogenes or were identified as frequently overexpressed second-
ary oncogenes in several types of cancer, including melanoma and
lung cancer. In these cancers, CDKs are not the primary drivers of
cancer but are overexpressed in conjunction with other onco-
genes15–17. For instance, CDKs are highly expressed in non-small cell
lung cancer with EGFR mutations16. CDK/cyclin activity is mediated
by physiological CDK inhibitors or CKIs. Over the last decade,
substantial progress has been made in discovering and developing
novel small molecule CKIs18–22. This area of drug discovery has
adopted novel research strategies that are different from the classic
reversible ATP competitive or non-competitive action modes.

Traditional kinase inhibitory molecules include irreversible ATP
competitive drugs, reversible and irreversible structural inhibitors,
CDK degrading drugs, and inhibitory CDK binding antibodies. Newer
drugs have opened an avenue to interrogate, for example, new and
more challenging transcriptional CDK targets22. A number of
selective inhibitors or pan-inhibitors of CDK1 have been produced
over past decades. Inhibition of the expression and activation of
CDK1 effectively suppresses oncogenic cell function in many cancer
types. Notably, some small molecules targeting CDK1 have already
been studied in clinical trials. In this review, we evaluate the critical
role and mechanisms of CDK1 in tumorigenesis. Additionally, we
examine the current CDK1 inhibitors that have been evaluated in
preclinical and clinical studies for cancer therapy.

CDK EXPRESSION IN CANCER
According to The Cancer Genome Atlas (TCGA) UALCAN
database23,24, CDKs are significantly upregulated in many
cancerous tissues compared to normal tissues, indicating a
widespread increase in their expression. (Fig. 1, Supplementary
Table 1, Supplementary Fig. 1). Based on these results, CDK1,
CDK2, CDK4, CDK5, and CDK7 are the top 5 CDKs that are highly
expressed in cancer tissues compared to normal tissues. Overall,
compared with normal tissues, the expression of CDK4 and CDK5
are higher in 18 out of 24 or 75% of the cancers listed. CDK1 is
significantly higher in 17 out of 24 or 70.8% of the cancers listed
and CDK2 and CDK7 are higher in 16 out of 24 or 67% of the
cancers listed.
In addition, information from the database indicates that high

expression of CDKs is closely correlated with the overall survival
rate in 32 different cancer types (Supplementary Table 1, Fig. 2).
Overall, the data indicate that the top 5 CDKs, CDK1 (11/32 or
34.4%), CDK2 (10 /32 or 31.3%), CDK6 (8/32 or 25%), CDK7 (9/32 or
28.1%), and CDK19 (8/32 or 25%), are closely associated with
survival probability in various cancers.
CDKs are highly expressed in cancer tissues and closely

associated with survival probability in multiple cancer types.
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Collectively, these results indicate that targeting CDKs, and
especially CDK1, could be a critical strategy for cancer treatment.
The remainder of this review focuses on mediators, substrates, and
inhibitors of CDK1 in cancer.

UPSTREAM MEDIATORS OF CDK1
The upstream modulators of CDK1 (Supplementary Table 2) in
cancer include various molecular factors that can positively or
negatively influence CDK1 activation, amplification, transcription,
and expression.

Positive upstream modulators of CDK1
Activators of CDK1. CDK1 is essential for cell division during
mitosis. It helps form the spindle and aligns chromosomes by
recruiting and activating key proteins involved in kinetochore
formation. CDK1 activity ensures proper chromosome orientation
and segregation and is critical for the successful assembly of the
mitotic apparatus and chromosome alignment. The activation of
CDK1 requires phosphorylation on Thr161 or dephosphorylation
on Thr14 and Tyr1525,26. CDK7 mediates G1 cell cycle arrest and
extrinsic apoptosis by increasing phosphorylation of CDK1 at
Thr16127. Protein tyrosine phosphatase receptor type F (LAR) also
increases focal adhesion by enhancing CDK1 activation at
Thr16128. Nucleolar protein 11 (NOL11) and CDK5 regulatory
subunit associated protein 3 (C53) delay cell entry into mitotic
phase though dephosphorylation of CDK1 on Tyr1529,30. Cell
division cycle 25 (CDC25) is a dual-specificity phosphatase, which
counteracts G2/M checkpoint activation by removing inhibitory
phosphate groups (Thr14 or Tyr15) from CDK1 and are themselves
negatively modulated by checkpoint kinase 1 (CHK1)31. CDC25
proteins include CDC25A, CDC 25B, and CDC 25C. They mediate
meiosis through activation of CDK1 by dephosphorylation on
Thr14 and Tyr1527,32–35. Associated with CDC25 mediation of
activation of CDK1 are several molecules, including CDK2, beclin 1
(BECN1), tetramerization domain containing 12 (KCTD12), nucleo-
phosmin (NPM), and minichromosome maintenance 10 replication
initiation factor (MCM10), each of which facilitates activation of
CDK1 by mediating CDC25 activity36–43. For example, BECN1
translocases into the nucleus, where it interacts with CDC25C and
CHK2, resulting in promotion of radiation-induced G2/M arrest
through promotion of CDK1 activity40. Additionally, other

Fig. 1 Expression levels of CDK1 in various cancers. Comparison of
the expression of CDK1 between tumor (red) and normal (blue)
tissues. For the boxplots, the center line of the box indicates the
median. The upper boundary of the box represents the upper
quantile, while the bottom boundary of the box represents the
lower quartile. The top and bottom ends of the whiskers indicate
the maximum and minimum values, respectively. (*p < 0.05,
**p < 0.01, ***p < 0.001, NS: no significant difference).

Fig. 2 Correlation between CDK expression and patient overall survival. The survival data derived from the ULCAN database are
categorized into two groups for analysis. Groups include high CDKs expression (values above upper quartile) and low/medium CDKs
expression (values below upper quartile). The differences (p value) between groups are demonstrated by heatmap (*p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001).
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molecules, such as Aurora A kinase (AURKA)44, 6-phosphofructo-2-
kinase (PFKFB3)45, ubiquitin C-terminal hydrolase L1 (UCH-L1)46,
microtubule-associated serine/threonine kinase-like (MASTL)47,
testis-specific protein Y-encoded (TSPY)48, karyopherin subunit
beta 1 (KPNB1)49, and STIL centriolar assembly protein (SIL), all
promote CDK1 activity (Supplementary Table 2)50.

Transcriptional modulation of CDK1 and upregulation of CDK1
expression (Supplementary Table 2). E2F transcription factor (E2F)-
dependent transcription controls both G1/S- and G2/M-associated
genes. Specifically, E2F1, E2F2, and E2F3 enhance CDK1 transcription
by binding to the positive-acting E2F site in the CDK1 promoter,
which results in increased CDK1 expression51. Mortality factor 4 like
1 (MRG15), a chromatin modulator, is a highly conserved protein
present in complexes containing histone acetyltransferases (HATs),
as well as histone deacetylases (HDACs). MRG15 acts in the HAT
complex through its acetylation of histone H4 at the CDK1 promoter
to activate transcription52. The cysteine-rich CXC domain of Lin-54
DREAM MuvB core complex component (LIN54) is a novel DNA-
binding domain that binds to the CDK1 promoter in a sequence-
specific manner53. Besides directly binding with the CDK1 promoter,
several molecules also modulate CDK1 transcriptional activation. For
example, CDK1 is a direct transcriptional target of centromere-
associated protein E (CENPE) in primary pulmonary artery smooth
muscle cells. The overexpression of CENPE significantly increases
CDK1 promoter activity, whereas the deletion of CENPE markedly
decreases promotor activity54, which attenuates CDK expression.
Sp1 transcription factor (SP1), initially identified as a transcription
factor, plays a crucial role in normal biological processes, neoplastic
development, and tumor migration55. Dual-luciferase reporter assay
results showed the direct effect of SP1 on the transcriptional
activation of CDK156. Knockdown of ribosomal protein S9 (RPS9)
inhibits the growth of human colon cancer cells at the G2/M phase
by downregulating CDK1 expression at the promoter level57.
Several molecules enhance tumor cell growth, migration, or

invasion by upregulating the expression of CDK1 in different ways.
Among them, chondroitin polymerizing factor (CHPF), co-
stimulatory molecule (CD276), and papillomavirus E6 (E6) enhance
CDK1 expression by increasing the expression of transcription factor
E2F1. Knocking down expression of CHPF or CD276 maintains
proliferation or modulates differentiation by mediating E2F1/CDK1
expression in malignant melanoma and endothelial progenitor cells,
respectively58,59. NOP2/sun RNA methyltransferase 2 (NSUN2) and
death-associated protein 5 (DAP5) promote CDK1 expression by
enhancing CDK1 translation60–62. NSUN2 methylates CDK1 mRNA in
vitro and in cells, and that methylation by NSUN2 enhances CDK1
translation influencing cell growth and survival during mitosis60,61.
Oncogenic action of RNA binding motif protein 7 (RBM7) and
histone deacetylase 6 (HDAC3) controls cell progression by
stabilizing CDK1 mRNA and protein levels, respectively. RBM7
directly binds to the AU-rich elements (AREs) in the 3’-UTR of
CDK1 mRNA, which contributes to the stability of CDK1 mRNA by
lengthening CDK1 half-life in breast cancer63. HDAC3 mediates G2/
M phase progression mainly through post translational stabilization
of the CDK1 protein by controlling CDK1 ubiquitination64. Somatic
mutations in DNA methyltransferase 3 alpha (DNMT3A) have been
identified in approximately 25% of patients with LAML DNMT3A
mutation that occurs in the early stages of LAML and is regarded as
a pre-leukemic gene mutation65. DNMT3A mutation can induce
CDK1 overexpression and promote leukemogenesis66. Additionally,
several other molecules also mediate cell proliferation, metastasis, or
survival by enhancing CDK1 expression (Supplementary Table 2).

Negative upstream modulators of CDK1
Mediators that decrease activation of CDK1. Many molecules
markedly upregulate the activity of CDK1 in tumorigenesis,
whereas negative upstream mediators of CDK1 also widely exist.

These negative modulators are usually tumor suppressors that
inhibit CDK1 activation in tumor progression. As indicated earlier,
dephosphorylation on Thr14 and Tyr15 or phosphorylation at
Thr161 is required for the full activation of CDK125. Wee1-like
protein kinase 1 (WEE1)67–69 and membrane associated tyrosine/
threonine 1 (MYT1) kinase70–72 inhibit CDK1 activation by
phosphorylation at Thr14 and Tyr15, and this modification plays
a crucial role in the G2–M cell-cycle checkpoint arrest for DNA
repair before mitotic entry73. Besides these two important kinases,
many other key molecules also inhibit CDK1 activation by
phosphorylation of Thr14 and Tyr15 or dephosphorylation of
Thr161 (Supplementary Table 2). For example, phosphatase and
tensin homolog (PTEN) is one of the most important and well-
studied tumor suppressor proteins. Downregulation of PTEN by
siRNA in cells increases phospho-WEE1 (Ser642), but decreases
phospho-CDK1 (Tyr15), resulting in decreased G2/M cell cycle
arrest74. Dual specificity tyrosine phosphorylation regulated kinase
1A (DYRK1A) demonstrates its tumor suppressive function by
mediating phosphorylation of Tyr15 and Thr161 in glioblastoma
cells75. CDC25 is known to activate CDK1 by dephosphorylating
residues Thr14 and Tyr1531. Checkpoint kinase 1 (CHEK1), one of
the critical transducers in DNA damage/replication checkpoints,
prevents entry into mitosis through its inhibition of CDC25 and
CDK1 activity76,77. Fibroblast growth factor 1 (FGF1) also causes
dephosphorylation of the CDC25C phosphatase inducing inactiva-
tion of the cyclin B1/CDK1 complex. Kinesin family member 22
(KIF22) is a microtubule-dependent molecular motor protein with
DNA-binding capacity. CDC25C is a direct transcriptional target of
KIF22 and inhibition of KIF22 increases CDC25C expression and
cyclin-dependent kinase 1 (CDK1) activity, resulting in delayed
mitotic exit78. Other proteins can also affect CDK1 activity but with
no effect on phosphorylation of Thr14 and Tyr15 or depho-
sphorylation of Thr161. For example, death effector domain
containing (DEDD) protein participates in apoptosis signaling,
which inhibits activation of CDK1 but does not affect the
phosphorylation status at Thr14, Tyr15, or Thr16179,80. Apart from
these proteins, several other molecules can also inhibit CDK1
activation (Supplementary Table 2).

Mediators that decrease CDK1 expression and nuclear translocation.
In addition to CDK1 activation, CDK1 expression is also tightly
modulated. Eukaryotic cells utilize two major routes to effectively
target a wide range of proteins for degradation, including the
ubiquitin/proteasome system and the autophagy/lysosome path-
way81. Double-stranded RNA-activated protein kinase (PKR) is a
serine/threonine interferon (IFN)-inducible kinase that plays an
important role in the regulation of gene expression at both
transcriptional and translational levels. PKR-mediated Tyr4-phos-
phorylation facilitates CDK1 ubiquitination and proteasomal
degradation82. CDK1 accumulation in patients’ tumors shows a
negative correlation with beta-transducing repeat containing E3
ubiquitin protein ligase (BTRC) and exhibits a positive correlation
with the degree of tumor malignancy. BTRC controls the
lysosome-mediated degradation of CDK1, the accumulation of
which correlates with tumor malignancy83. Histone deacetylase 6
(HDAC6) plays a dual role in the autophagy/lysosome pathway. It
controls the fusion of autophagosomes to lysosomes by promot-
ing F-actin remodeling in a cortactin-dependent manner84. In
contrast, upon proteasome inhibition, HDAC6 is recruited and
relocates to polyubiquitin-positive aggresomes85. Ubiquitin-
binding protein P62 (P62) is a key protein in the autophagic
clearance of polyubiquitinated proteins86. CDK1 degradation
reportedly involves p62/HDAC6-mediated selective autophagy87.
Additionally, the TNF-like WEAK inducer of apoptosis (TWEAK)88,
human enhancer of invasion, clone 10 (HEI10)89, and sialophorin
(SPN)90 also mediate CDK1 expression by inducing CDK1
degradation, inhibiting CDK1 expression or nuclear translocation
(Supplementary Table 2).
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DOWNSTREAM SUBSTRATES OF CDK1
As a serine/threonine protein kinase, CDK1 is reported to
phosphorylate a number of substrates, including both tumor
promotors and tumor suppressors (Supplementary Table 3).

CDK1 tumor promotor substrates
Increasing evidence suggests that CDK1 phosphorylates down-
stream substrates that play critical roles in cancer progression
signaling pathways. The B-Raf proto-oncogene, serine/threonine
kinase (BRAF), as a critical activator of the mitogen-activated
protein kinase (MAPK) cascade during mitosis. CDK1/cyclin B
directly phosphorylates BRAF at Ser144, which is required for
mitotic activation and subsequent activation of the MAPK
cascade91. Extracellular signal regulated kinase 3 (ERK3) is an
atypical MAPK that is suggested to play a role in cell cycle
progression and cellular differentiation. CDK1 can also phosphor-
ylate ERK3 at Thr698, which acts in a cell-cycle-dependent
manner92. Androgen receptor (AR) is the principal molecule in
prostate cancer etiology and therapy and its re-activation remains
a major challenge during treatment of prostate tumors that
relapse after castration therapies. CDK1 phosphorylates the AR at
Ser81 or Ser515 promoting prostate tumor progression93–95.
Hypoxia-inducible factor 1α (HIF1A) is a major mediator of tumor
physiology, and its activation is correlated with tumor progression,
metastasis, and therapeutic resistance96,97. CDK1 stabilizes HIF1A
through direct phosphorylation of Ser668 to promote tumor
growth98. YAP is a downstream effector of the Hippo pathway of
cell-cycle control that plays important roles in tumorigenesis.
CDK1 phosphorylates YAP promoting mitotic defects and cell
motility and is essential for neoplastic transformation99. TAZ is also
a downstream effector of the Hippo pathway, which plays
important roles in cancer and stem cell biology. CDK1 phosphor-
ylation of TAZ in mitosis inhibits its oncogenic activity100.
Additionally, the adaptor protein, ajuba LIM protein (AJUBA), is a
positive mediator of YAP oncogenic activity. CDK1 phosphorylates
AJUBA at Ser119 and Ser175 during the G2/M phase of the cell
cycle promoting proliferation and tumorigenesis101. Besides these,
other downstream oncoprotein substrates of CDK1 (Supplemen-
tary Table 3) participate in multiple signaling pathways mediating
tumor progression.
Several CDK1 substrates are oncogenic transcription factors. For

example, forkhead box M1B (FOXM1B) transcriptional activity
requires binding of either S or M phase CDK/cyclin complexes to
mediate efficient CDK1 phosphorylation of the FoxM1B Thr596
residue, which is essential for recruitment of CREB binding protein
coactivator proteins102. Phosphorylation of islet-1 (ISL1) at Ser269
by CDK1 increases its transcriptional activity and promotes cell
proliferation in gastric cancer103. Mammalian target of rapamycin
(mTOR)-directed eukaryotic translation initiation factor 4E-binding
protein 1 (4E-BP1) phosphorylation promotes cap-dependent
translation and tumorigenesis. CDK1-directed phosphorylation of
4E-BP1 may yield a gain of function activity, distinct from
translational regulation, which may be important in tumorigenesis
and mitotic centrosome function104. The activating transcription
factors (ATFs) belong to the activator protein 1 (AP-1) family of
transcription factors105. Phosphorylation of ATF7 by CDK1 at Thr51
or Thr53 in M phase is required for G2/M progression106.
Additionally, RUNX family transcription factor 1 (RUNX1)107,
RUNX2108, retinoid X receptor alpha (RXRA)109, CCAAT enhancer
binding protein alpha (CEBPA)110, transcription factor CP2 like 1
(TFCP2L1)111, and octamer-binding transcription factor 4
(OCT4)112,113 are also oncogenic transcription factors mediated
by CDK1 (Supplementary Table 3).
Apart from these CDK1 substrates, BCL2 apoptosis regulator

(BCL2), BCL2 apoptosis regulator like 1 (BCL2L1), and dynamin 1
Like (DRP1) are phosphorylated by CDK1, mediating mitochondrial
fusion and apoptosis in human cancer cells114–121. F-box protein

28 (FBXO28) and carboxypeptidase D (CPD) are phosphorylated by
CDK1 increasing ubiquitylation promoting tumorigenesis. FBXO28
ubiquitin ligases act as one of the master regulators of cellular
homeostasis by targeting key proteins for ubiquitylation. FBXO28
activity and stability are regulated during the cell cycle by CDK1/2
phosphorylation, which is required for its efficient ubiquitylation
of MYC and downstream enhancement of the MYC pathway.
CDK1-mediates activation of the FBXO28 ubiquitin ligase pro-
motes MYC-driven transcription and tumorigenesis and predicts
poor survival in breast cancer122. A GATA family transcription
factor, GATA-binding protein 2 (GATA2), participates in cell growth
and differentiation of various cells. GATA2 contains CPD, a
consensus motif for ubiquitylation that includes Thr176. CDK1
phosphorylates CPD at Thr176, which increases GATA2 expression
levels123. Moreover, several additional molecules also demonstrate
ontogenetic function mediated by CDK1 (Supplementary Table 3).

CDK1 tumor suppressor substrates
The tumor suppressor p53, an important CDK1 substrate, plays
critical roles in a diversity of physiologic functions by increasing
genomic stability, inhibiting cell transformation, and initiating
apoptosis when DNA damage repair is defective124. Cyclin B1/
CDK1-mediated Ser315 phosphorylation in p53-wild-type tumor
cells may provide insights for improving the efficacy of anti-cancer
therapy125. Moreover, the tumor protein p73 transcription factor is
a member of the p53 family and participates in developmental
processes and the DNA damage response. CDK1-dependent Thr86
phosphorylation represses the ability of p73 to induce endogen-
ous p21 expression126. The forkhead box O (FOXO) transcription
factor FOXO1 functions as a tumor suppressor by mediating
apoptosis, cell cycle arrest, and oxidative detoxification. CDK1 may
contribute to tumorigenesis by promoting cell proliferation and
survival through phosphorylation and inhibition of FOXO1127,128.
Additionally, tumor suppressors caspase 8 (CASP8) and caspase 9
(CASP9) are phosphorylated by CDK1 facilitating apoptosis in
cancer cells129,130. Some other CDK1 substrates act as tumor
suppressors, including discs large MAGUK scaffold protein 1
(DLG1)131, F-box protein 5 (EMI1)132, sequestosome 1 (P62)133, EPH
receptor A2 (EPHA2)134,135, and vestigial like family member 4
(VGLL4)136. They influence tumor progression through multiple
signaling pathways, including the APC, Ras/MAPK, and Hippo
pathways. Besides these tumor suppressors, receptor-associated
protein 80 (RAP80), inhibitor of growth family member 1 (ING1),
and EMAP Like 2 (EML2) are also phosphorylated by CDK1
mediating DNA damage, cell proliferation, and migration137,138

(Supplementary Table 3).

CDK1 cell cycle substrates
The cell cycle consists of the mitotic (M) phase and interphases,
G1, S, and G2. CDK1 functions during the entire cell cycle by
phosphorylating its various substrates. CDK1 is the major protein
kinase that drives cells into mitosis139. CDK1 phosphorylates
multiple substrates including aurora kinase activator (BORA)140,
mixed lineage leukemia-5 (MLL5)141, and greatwall (GWL)142,
which all have a critical role in mitotic entry. CDK1 also acts as a
mediator in mitotic exit by phosphorylation of cell division cycle
associated 5 (CDCA5)143, and centromere protein A (CENPA)144. M
phase consists of four basic phases including prophase, meta-
phase, anaphase, and telophase. CDK1 phosphorylates non-SMC
condensin II complex subunit D3 (CAPD3) at Thr1415, which is
required for timely chromosome condensation during pro-
phase145. Checkpoint kinase 2 (CHK2) is an essential protein
kinase governing DNA damage and replication stress checkpoints.
CDK1 phosphorylates CHK2 kinase in metaphase, influencing
cellular morphogenesis146. The spindle and kinetochore asso-
ciated complex subunit 3 (SKA3) protein complex is required for
accurate chromosome segregation during mitosis147. SKA3 is
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phosphorylated by CDK1 in mitosis to promote the onset of
anaphase148. CDK1 phosphorylates 4E-BP1 at Ser83, which
accumulates at centrosomes during prophase, peaks at meta-
phase, and decreases through telophase104. Besides these, CDK1
also phosphorylates several other substrates during M phase by
mediating multiple functions including spindle assembly, micro-
tubule dynamics, and completion of cytokinesis (Supplementary
Table 3). Overall, the substrates of CDK1 are critical in M phase for
efficient cell division.
Following M phase, CDK1 substrates also function in the

interphases of cell cycle. Fatty acyl-CoA reductase 1 (FAR1)
transcription is maximal between mitosis and early G1 phase.
Phosphorylation (Ser87) by CDK1 primes FAR1 for ubiquitin-
mediated proteolysis149. At entry into S phase, CDK1 phosphor-
ylates WRN recQ like helicase (WRN)150, cell division cycle 7
(CDC7)151, BRCA1 DNA repair associated (BRCA1)152, and RAD9
checkpoint clamp component A (RAD9)153, influencing DNA
replication and checkpoint control. In particular, CDK1-mediated
phosphorylation of BRACA1 participates in BRCA1-dependent S
phase checkpoint control in response to DNA damage152.
Telomeric repeat factor 1 (TRF1), a duplex telomeric DNA-
binding protein, plays an important role in telomere metabolism.
CDK1 phosphorites TRF1, which is recruited to sites of DNA
damage to facilitate homologous recombination and checkpoint
activation at the S/G2 phase154. Additionally, CDK1 phosphorylates
ELAV like RNA binding protein 1 (ELAVL1) during G2, thereby
helping to retain it in the nucleus hindering its post-transcriptional
function and anti-apoptotic influence155. Besides these, several
other molecules also play important roles in cell cycle progression
(Supplementary Table 3).

CDK1 INTERACTOME AND RELATED SIGNALING PATHWAYS
CDK1 participates in tumorigenesis by interacting with many
proteins (Supplementary Tables 2 and 3) that have functions in
multiple signal pathways. We performed Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analyses of
potential signaling pathways associated with CDK1 interacting
proteins. We used the KEGG rest API (https://www.kegg.jp/kegg/
rest/keggapi.html) to obtain the latest gene annotations of the
KEGG pathway. The enrichment analysis was performed using the
R software package, clusterProfiler (v3.14.3), to obtain results of
gene set enrichment. An FDR of <0.05 was considered statistically
significant. The results indicate that CDK1 integrating proteins are
involved in signaling pathways in cancer, cell cycle, and
microRNAs. Ten top pathways (Fig. 3A, B) were identified. Using
Metascape, we then selected a subset of representative terms and
converted them into a network layout156. More specifically, each
term is represented by a circle node, where its size is proportional
to the number of input genes falling under that term, and its color
represents its cluster identity (i.e., nodes of the same color belong
to the same cluster). Terms with a similarity score > 0.3 are linked
by an edge and the thickness of the edge represents the similarity
score. The network is visualized with Cytoscape (v3.1.2) with
“force-directed” layout and with edge bundled for clarity. One
term from each cluster is selected to have its term description
shown as a label (Fig. 3C). The same enrichment network has its
nodes colored by the p value, as shown in the legend. The darker
the color, the more statistically significant the node is (see legend
for p value ranges, Fig. 3D). Based on the metanalysis results,
signal pathways in cancer, cell cycle, and microRNAs in cancer are
the top 3 pathways associated with CDK1 interacting proteins.
Using the STRING database, we then obtained the interacting
network of CDK1 and its interacting proteins in pathways in cancer
(Fig. 3E). Collectively, CDK1 is clearly involved in multiple cancer-
related pathways, suggesting the significance of CDK1 in various
cancer processes.

TARGETING CDK1 PROVIDES A POTENTIAL STRATEGY FOR
ATTENUATING CANCER DEVELOPMENT
This review thus far has examined the critical role of CDK1 in
cancer. The accumulated findings demonstrate that CDK1 could
be a potential target for cancer prevention and therapy. In recent
years, several small molecules with anticancer activity that target
CDK1 and other CDKs have been identified in preclinical and
clinical studies focusing on multiple cancer types. The effects of
various CDK1 associated CKIs in cancer are summarized in
Supplementary Tables 4 and 5.

Targeting CDK1 in preclinical studies
RO-3306157–159 and CGP-74514A160,161 are specific CDK1 inhibitors
that effectively suppress the growth of cancer cells and patient
derived xenografts (PDX). Additionally, the pan-CDK inhibitors
have shown anticancer activity in preclinical studies (Supplemen-
tary Table 4).

Targeting CDK1 in clinical studies
CDKs are attractive targets against cancer and CDK inhibitors have
been studied since the 1990s. Also, various clinical trials have
investigated the use of CDK inhibitors in order to improve
treatment of patients with virous cancer types (Supplementary
Table 5). Some of the more notable inhibitors are discussed below.

BEY1107. BEY1107 (avotaciclib) is an orally active CDK1 inhibitor.
A phase 1/2 clinical trial has assessed the maximum tolerated
dose, safety, and efficacy of BEY1107. It is proposed to be used as
a monotherapy and in combination with gemcitabine in patients
with locally advanced or metastatic pancreatic cancer162.

Flavopiridol. Flavopiridol (alvocidib) is a pan-CDK inhibitor that
suppresses CDK1, CDK2, CDK4, CDK6, CDK7, and CDK9 with IC50s

of 30, 170, 100, 60, 300, and 10 nM, respectively. Several clinical
trials have been conducted for the treatment of leukemia163,
multiple myeloma164, sarcoma, gastrointestinal stromal tumor,
and other solid tumors. Flavopiridol has received “orphan drug”
designation from the FDA for LAML165. Previous preclinical
studies suggested that flavopiridol can inhibit cancer develop-
ment166,167. Unfortunately, it showed less efficacy in human
clinical studies. In particular, flavopiridol at this dose and
schedule does not have single-agent activity in patients with
colorectal cancer. Trials that evaluate flavopiridol in combina-
tion with active cytotoxic drugs should help to define the role
of this novel agent in colorectal cancer168. Additionally,
flavopiridol also exhibited certain side effects in the clinical
trial. Flavopiridol as a single agent given by bolus and then
infusion caused significant diarrhea, cytopenias, and transami-
nase elevation, but only achieved marginal responses in
relapsed myeloma164. To decrease the side effects, the
combination of flavopiridol with other anticancer drugs might
be an effective way to enhance its efficacy169.

Roniciclib. Roniciclib (BAY1000394) is an orally bioavailable pan-
cyclin dependent kinase (CDK) inhibitor, with IC50s of 5–25 nM for
CDK1, CDK2, CDK3, CDK4, CDK7, and CDK9. Roniciclib has been
used in several clinical trials of various neoplasms and lung cancer.
Based on a Phase 1 dose-escalation study of roniciclib in advanced
malignancies, Roniciclib demonstrated an acceptable safety profile
and moderate disease control rate in 3 days on/4 days off
schedule170. Roniciclib co-administered with chemotherapy in
patients with extensive-disease small-cell lung cancer (ED-SCLC)
demonstrated tolerability, acceptable pharmacokinetics, and
promising efficacy. Unfortunately, an observed safety signal in a
related phase 2 study resulted in discontinuation of the present
study and termination of further development of roniciclib171,172.
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P276-00. P276-00 (Riviciclib) is a potent CDK inhibitor and
suppresses CDK1, CDK4, CDK9 activity with IC50s of 79, 63, and
20 nM, respectively. A phase 1 study was designed to determine
the maximum tolerated dose, toxicity profile, pharmacokinetics,
and anti-cancer activity of P276–00 given intravenously to patients
with advanced refractory neoplasms13,173. Additional clinical
studies evaluated efficacy of P276-00 in subjects with advanced
malignant melanoma positive for cyclin D1 expression, advanced
triple negative breast cancer, and advanced head and neck

cancer13,174. Notably, a Phase 2, single-arm, open-label, multi-
center study evaluated the efficacy and safety of P276-00 in
patients with relapsed or refractory mantle cell lymphoma. Of the
13 patients, 11 experienced disease progression, 1 patient was
withdrawn because of an adverse event, and 1 patient died. Given
the results observed in the present study, if evaluation of CDK
inhibition in MCL continues, it should be considered earlier in the
disease course or as a part of combination strategies for relapsed
or refractory disease175. These results suggest the anticancer

Fig. 3 Signaling pathways associated with CDK interacting proteins. A Signaling pathways involving CDK1-interacting proteins are
identified by KEGG pathway enrichment analyses. Pathways in cancer, cell cycle, and microRNAs and ten top pathways are shown by bubble
chart. An FDR of <0.05 was considered statistically significant. B KEGG pathway enrichment analyses cluster plot showing a chord dendrogram
of the clustering of the expression spectrum of the proteins involve in ten top pathways. C The network is visualized by using Cytoscape with
“force-directed” layout and with edge bundled for clarity. One term from each cluster is selected to have its description shown as the label.
D The same enrichment network has its nodes colored by p value, as shown in the legend. The darker the color, the more statistically
significant is the node (see legend for p value ranges). E The interacting network of CDK1 and its interacting proteins in Pathways in cancer are
demonstrated by using the STRING (https://string-db.org/).
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efficacy of P276-00; however, further investigations are still
needed to confirm the anticancer effects and safety.

Dinaciclib. Dinaciclib (SCH727965) is a broad spectrum and
competitive inhibitor of CDKs. It can inhibit CDK1, CDK2, CDK5,
and CDK9 with IC50s of 3, 1, 1, and 4 nM, respectively. Dinaciclib has
been used in several clinical trials to treat multiple cancer types such
as pancreatic cancer, non-small-cell lung cancer, neoplasms,
leukemia, breast cancer, myeloma, lymphoma and melanoma.
Dinaciclib has demonstrated inhibitory effects in several clinical
studies and showed significant clinical activity against relapsed and
refractory chronic lymphocytic leukemia. Positive responses
occurred in 28 (54%) of patients with a median progression-free
survival of 481 days176. Another study demonstrated single agent
activity of dinaciclib against relapsed myeloma177. The same study
also showed that dinaciclib treatment demonstrated antitumor
activity in 2 of 7 patients with estrogen receptor-positive and human
epidermal growth factor receptor 2-negative metastatic breast
cancer (1 confirmed and 1 unconfirmed partial response), as well as
acceptable safety and tolerability178. All these results suggested that
dinaciclib is a promising CDK1-associated inhibitor for clinical
treatment of cancer.

AT7519. AT7519 (AT7519M) is a potent inhibitor of CDKs, with IC50s
of 210, 47, 100, 13, 170, and 10 nM for CDK1, CDK2, CDK4 to CDK6,
and CDK9, respectively. AT7519 shows encouraging anticancer
activity against multiple cancer cell lines and tumor xenografts179,180.

AT7519 has also been evaluated in several clinical trials, including
lymphoma and unspecified adult solid tumors, multiple myeloma,
and leukemia. A phase 1 study of AT7519 was conducted to
evaluate the safety and tolerability. The preliminary anticancer
activity was observed with AT7519 at 27.0mg/m2181. Additionally,
promising preliminary clinical activity was observed when AT7519
was combined with the HSP90 inhibitor onalespib182. Collectively,
AT7519 is also another promising CDK1-associated inhibitor for
cancer treatment in the clinic.

Other CDK1 inhibitors. Seliciclib (Roscovitine), AG-024322, PHA-
793887, R547, RGB-286638, AZD-5438, and Indirubin (Couroupitine
B) exhibited potential for clinical application (Supplementary Table
5). However, assessment of the safety and antitumor activity is still
needed in future studies.

LIMITATION AND POTENTIAL OF TARGETING CDK1
CDK1-associated inhibitors might replace traditional endocrine
therapies in many situations. However, adverse side effects183,184

and less efficacy185–187 are still limitations for clinical application.
Because CDKs play important roles in normal cellular processes,
targeting them can lead to unintended consequences, such as
toxicity and other adverse effects. Comprehensively understand-
ing the mechanisms by which CDKs contribute to cancer and
normal cell functions is crucial to balance the potential benefits of
CDK inhibitors with their risks and toxicities. Designing CDK

Fig. 4 Schematic diagram illustrating the CDK1-associated mediators in cancer. CDK1 expression is regulated at either transcriptional or
post-transcriptional levels and CDK1 activity is tightly controlled by numerous molecules. Once activated, CDK1 interacts with and
phosphorylates a wide variety of proteins serving as oncogenes, tumor suppressors, or substrates in cell cycle. Selective CKIs and pan-CDK1
have been developed and studied in preclinical or clinical evaluation.
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inhibitors that selectively target cancer cells while minimizing
toxicity to normal cells requires intricate knowledge of CDK
regulation. To address the limitations of CDK inhibitors, combina-
tion treatment with other anti-cancer agents might be best use in
cancer treatment. Highlighting the distinct regulatory mechanisms
of CDK1 activity in different cancer types can enhance precision
oncology and enable successful combinatorial treatment with
CDK1 inhibitors188–190. For instance, CDK1 inhibition can be a
potential therapy for MYC-dependent breast cancer188. In the
clinical application, the toxicities are manageable and clinical
activity was observed when flavopiridol in combination with
paclitaxel in patients with esophagus, lung, and prostate
cancer169. The pan-CDK1 inhibitor dinaciclib in combination with
rituximab, an anti-CD20 monoclonal antibody, was well tolerated
and revealed encouraging clinical activity in relapsed/refractory
chronic lymphocytic leukemia patients191. In addition, promising
preliminary clinical activity has been observed in a Phase 1 study
of the HSP90 inhibitor onalespib in combination with AT7519, a
pan-CDK inhibitor, in patients with advanced solid tumors182.
Furthermore, several clinical trials of CDK1 associated inhibitors
combining with other anti-cancer agents are ongoing to evaluate
the combination treatment in cancer (NCT03579836;
NCT03484520; NCT01434316; NCT01676753). These clinical stu-
dies will provide more information for the combination of CDK1
associated inhibitors with other anti-cancer agents for cancer
treatment.
Besides side effects, several clinical trials indicated that CDK1-

associated inhibitors failed to demonstrate sufficient efficacy in
cancer patients185–187. The preclinical data suggest that the lack of
efficacy of CDK1 associated inhibitors might be associated with
poor pharmacokinetics of the drugs192,193. In addition, clinical
trials performed on some cancer patients failed to respond to
treatment because of low expression levels of CDK1. Another
possible reason for the lack of efficacy could be related to
advanced stage of tumor progression enabling more resistance to
therapy in general. To improve these issues, screening of patients
with high CDK1 expression is important for recruiting patients.
Additionally, combination therapy should also be an effective
approach to enhance the efficacy of CDK1-associated inhibitors in
clinical trials.

SUMMARY
In this review, we focused on the role the CDK1 in cancer and
examined the potential application of targeting CDK1 for cancer
treatment. We demonstrated the expression level and associated
survival rate of CDKs in multiple cancer types. The results suggest
that CDK1 is a promising target protein in various cancers. We also
examined proteins that interact and mediate CDK1 or are
mediated by CDK1. Our analysis demonstrated that CDK1-
associated proteins play a critical role in multiple cancer signaling
pathways. These results provide evidence of clinical benefits of
CKIs. A series of preclinical studies have shown that CKIs mediate
various cancer cell processes including proliferation, apoptosis,
invasion, and metastasis. Importantly, several preclinical animal
studies and clinical studies demonstrated the efficacy of CKIs in
cancer treatment. These results are summarized in Fig. 4 and
suggest potential opportunities for targeting CDK1 as a cancer
treatment.
Overall, this review summarized the function and mechanism of

CDK1 in cancer. Targeting CDK1 might provide opportunities for
cancer prevention and therapy. The combined CDK1 associated
inhibitors with other anticancer agents might improve the
chemotherapeutic benefits and improve clinical outcome in
cancer development. Future studies are required to determine
these issues194–336.
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