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Bayesian risk prediction model for colorectal cancer mortality
through integration of clinicopathologic and genomic data
Melissa Zhao 1✉, Mai Chan Lau1, Koichiro Haruki1, Juha P. Väyrynen 1,2,3, Carino Gurjao1,4, Sara A. Väyrynen1,2,
Andressa Dias Costa 2, Jennifer Borowsky1,5, Kenji Fujiyoshi1, Kota Arima1, Tsuyoshi Hamada1, Jochen K. Lennerz 5,
Charles S. Fuchs6, Reiko Nishihara1,7,8, Andrew T. Chan9,10,11,12, Kimmie Ng 2, Xuehong Zhang 11, Jeffrey A. Meyerhardt2,
Mingyang Song8,9,10, Molin Wang7,13, Marios Giannakis 2,4,14, Jonathan A. Nowak1,17, Kun-Hsing Yu 15,17, Tomotaka Ugai1,17 and
Shuji Ogino 1,4,7,16,17✉

Routine tumor-node-metastasis (TNM) staging of colorectal cancer is imperfect in predicting survival due to tumor pathobiological
heterogeneity and imprecise assessment of tumor spread. We leveraged Bayesian additive regression trees (BART), a statistical
learning technique, to comprehensively analyze patient-specific tumor characteristics for the improvement of prognostic
prediction. Of 75 clinicopathologic, immune, microbial, and genomic variables in 815 stage II–III patients within two U.S.-wide
prospective cohort studies, the BART risk model identified seven stable survival predictors. Risk stratifications (low risk, intermediate
risk, and high risk) based on model-predicted survival were statistically significant (hazard ratios 0.19–0.45, vs. higher risk;
P < 0.0001) and could be externally validated using The Cancer Genome Atlas (TCGA) data (P= 0.0004). BART demonstrated model
flexibility, interpretability, and comparable or superior performance to other machine-learning models. Integrated bioinformatic
analyses using BART with tumor-specific factors can robustly stratify colorectal cancer patients into prognostic groups and be
readily applied to clinical oncology practice.
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INTRODUCTION
Colorectal cancer develops in the context of a complex interplay
between the host, microbes, and neoplastic cells in the local
intestinal microenvironment1. Survival prediction based solely on
tumor-node-metastasis (TNM) staging is imperfect due to tumor
heterogeneity as well as inaccurate assessment of tumor spread.
Within stage II/III patients, risk assessment has crucial implications
on the use of adjuvant chemotherapy, as well as treatment
intensity and duration2,3. Hence, large-scale multivariable analyses
of factors that contribute to tumor progression are necessary to
better predict outcomes of individual patients. Accumulating
evidence indicates that factors such as tumor microsatellite
instability (MSI) status, BRAF mutation, the amount of Fusobacter-
ium nucleatum, and T-cell infiltrates are relevant prognostic
biomarkers in colorectal cancer4–6. Considering these findings,
we hypothesized that the integration of tumor and immune
characteristics with TNM classification could improve a prognostic
prediction model in colorectal cancer.
To utilize available clinicopathological variables in survival

prediction, we implemented an ensemble sum-of-trees classifica-
tion model, Bayesian additive regression trees (BART). Ensemble
methods enable flexible modeling of nonlinear and interactive

relationships between predictors and outcome variables while
maintaining model interpretability through variable importance
measures7, and have yielded promising results in tumor molecular
subtype classification, therapy response, and survival prediction
across multiple cancer types8–10. BART extends the classical
ensemble tree paradigm by introducing an underlying probabil-
istic distribution to a sum-of-trees model, allowing for inherent
regularization. BART has demonstrated favorable performance and
superior variable selection capabilities compared to other
machine-learning methods, including random forest (RF), gradient
boosting (GB), least absolute shrinkage and selection operator
(LASSO), multivariate adaptive regression spline, and artificial
neural networks (ANN)11, and has delivered promising results in
prior studies in proteomic profiling, gene regulatory network
analysis, and nonparametric survival analysis12–14.
In this study, we constructed a BART model that incorporated

TNM stage components with other factors to improve mortality
risk stratification in stage II/III patients, utilizing a colorectal
cancer patient database in two large prospective cohort studies,
namely the Nurses’ Health Study (NHS) and the Health Profes-
sionals Follow-up Study (HPFS). We confirmed good BART model
performance, indicated by the receiver operating characteristics
(ROC) curve in comparison to RF, GB, and other statistical learning
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methods, and externally validated by using The Tumor Genome
Atlas (TCGA) dataset. We examined variables that contribute to
the BART models in terms of stability of significance by
permutation test across fivefold cross-validation, as well as partial
dependency of outcome on important variables. Our study has
demonstrated that Bayesian ensemble models can integrate a
variety of tumor and patient-specific factors to improve survival
prediction and can serve as clinical tools to assess individual’s risk
for cancer mortality, thereby adding precision to optimal patient
management.

RESULTS
BART model stability
To construct a Bayesian additive regression trees (BART) model for
mortality risk prediction, we included 815 patients with stage II–III
colorectal adenocarcinoma derived from a database in the Nurses’
Health Study (NHS) and the Health Professionals Follow-up Study
(HPFS) (Fig. 1). Table 1 summarizes patient characteristics. A test of
BART model stability by the number of trees set across fivefold
cross-validation demonstrated that BART reached performance
stability prior to 500 trees (Fig. 2a). Thus, 500 was set as the default
number of trees for the remainder of the study to ensure stability
and consistency across models.

Comparison across machine-learning models
A comparison of the BART model to other machine-learning
algorithms using multiple random validation on a dataset with
imputation of missing values yielded BART as a competitive model
across the majority of 100 random runs. BART performance was
amongst the top two of eight tested models in terms of mean
AUC (area under ROC curve) across runs [mean AUC 0.681,
standard deviation (SD) 0.048], following LASSO regression (mean

AUC 0.693, SD 0.047) (Fig. 2b). Amongst ensemble models, BART
demonstrated the best performance, followed by random forest
(mean AUC 0.673, SD 0.054).

Important variables for survival prediction for stage II–III
colorectal cancer
BART stage II–III survival prediction model revealed several
statistically significant variables by permutation test at P value
threshold of 0.05, which was used in this selection procedure
(Fig. 2c). Out of the 75 examined variables, 7 variables passed the
significance threshold on average at least once within a fivefold
cross-validation across 10 random runs (i.e., ≥10 of 50 runs). The
most frequently observed were, in descending order, positive
lymph node count, negative lymph node count, the depth of
tumor invasion (pT stage), MSI status, tumor site, the extent of
extraglandular necrosis, and age.
BART model using these seven significant and stable variables

achieved AUCs of 0.67–0.83 (median 0.74) across fivefolds of cross-
validation (Fig. 3a). The majority of folds (3/5) demonstrated
goodness-of-fit by Hosmer–Lemeshow test. Partial dependence
plots of these variables showed that negative lymph node count
and MSI status were positively associated with 5-year colorectal
cancer-specific survival, whereas positive lymph node count, pT
stage, age, extraglandular necrosis, and more proximal tumor site
(estimated distance from anal verge) were negatively associated
with survival (Fig. 3b, c).
BART model using overall stage, pT stage, or pN stage alone as a

predictor achieved median AUCs of 0.47–0.62 across fivefolds of
cross-validation, consistently lower than median AUC of 0.74 from
BART model using seven significant variables (Supplementary
Table 2).
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Fig. 1 Overview of study. External validation of the BART model was conducted using 106 of 371 stage II–III patients in TCGA dataset as
5-year overall survival information was missing in 265 patients. Overall survival analyses were conducted using all 371 patients with predicted
probabilities of 5-year survival status based on the covariates. AdaBoost adaptive boosting, ANN artificial neural network, BART Bayesian
additive regression trees, COADREAD colorectal adenocarcinoma, CV cross-validation, GB gradient boosting, HPFS Health Professionals
Follow-up Study, LASSO least absolute shrinkage and selection operator, NHS Nurses’ Health Study, RF random forest, ROC receiver operating
characteristics, SVM support vector machine, TCGA The Cancer Genome Atlas.
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Table 1. Patient characteristics.

TNM stage

Characteristica All cases
(N= 815)

Stage II
(N= 453)

Stage III
(N= 362)

P valueb

Sex 0.036

Female (NHS) 502 (62%) 294 (65%) 208 (57%)

Male (HPFS) 313 (38%) 159 (35%) 154 (43%)

Mean age ± SD (years) 68.6 ± 8.9 68.9 ± 8.7 68.1 ± 9.1 0.22

Family history of
colorectal cancer in any
first-degree relative

0.73

No 660 (81%) 365 (81%) 295 (82%)

Yes 152 (19%) 87 (19%) 65 (18%)

Pack-years of smoking at
diagnosis

0.24

0 328 (42%) 174 (40%) 154 (44%)

1–19 178 (23%) 94 (22%) 84 (24%)

20–39 137 (18%) 80 (18%) 57 (16%)

≥40 137 (18%) 85 (20%) 52 (15%)

Tumor location 0.23

Cecum 136 (17%) 76 (17%) 60 (17%)

Ascending to
transverse colon

288 (36%) 173 (38%) 115 (32%)

Descending to
sigmoid colon

277 (34%) 146 (32%) 131 (36%)

Rectum 108 (13%) 55 (12%) 53 (15%)

Tumor differentiation 0.077

Well to moderate 709 (87%) 403 (89%) 306 (85%)

Poor 106 (13%) 50 (11%) 56 (15%)

Tumor depth of invasion
(pT stage)

<0.0001

pT1 13 (2%) 0 (0%) 13 (4%)

pT2 45 (5%) 0 (0 %) 47 (13%)

pT3 704 (87%) 423 (93%) 281 (78%)

pT4 49 (6%) 30 (7%) 19 (5%)

Positive lymph node
count

<0.0001

0 (pN0) 416 (56%) 416
(100%)

0 (0%)

1–3 (pN1) 228 (30%) 0 (0%) 228 (69%)

≥4 (pN2) 103 (14%) 0 (0%) 103 (31%)

Negative lymph node
count

<0.0001

0–5 144 (21%) 55 (15%) 89 (28%)

6–11 243 (35%) 125 (34%) 118 (37%)

12–17 137 (20%) 77 (21%) 60 (19%)

≥18 170 (24%) 114 (31%) 56 (17%)

Extent of extraglandular
necrosis

0.29

0% 509 (62%) 285 (63%) 224 (62%)

1–19% 167 (20%) 85 (19%) 82 (23%)

≥20% 139 (17%) 83 (18%) 56 (15%)

Lymphovascular invasion 0.003

None 538 (90%) 320 (94%) 218 (86%)

Mild 35 (6%) 13 (4%) 22 (9%)

Moderate/extensive 21 (4%) 7 (2%) 14 (6%)

Table 1 continued

TNM stage

Characteristica All cases
(N= 815)

Stage II
(N= 453)

Stage III
(N= 362)

P valueb

Perineural invasion 0.009

None 575 (98%) 333 (99%) 242 (96%)

Mild 8 (1%) 3 (0.9%) 5 (2%)

Moderate/extensive 5 (0.9%) 0 (0%) 5 (2%)

Extracellular mucinous
component

0.004

0% 448 (57%) 232 (53%) 216 (62%)

1–49% 193 (25%) 107 (25%) 86 (25%)

≥50% 143 (18%) 97 (22%) 46 (13%)

Signet ring cell
component

0.24

0% 677 (87%) 383 (88%) 294 (84%)

1–9% 75 (10%) 35 (8%) 40 (11%)

≥10% 29 (4%) 15 (3%) 14 (4%)

Tumor-infiltrating
lymphocytes (TILs)

0.003

Absent/minimal 558 (72%) 294 (68%) 264 (76%)

Mild 123 (16%) 69 (16%) 54 (16%)

Moderate/severe 96 (12%) 68 (16%) 28 (8%)

MSI status <0.0001

Non-MSI-high 556 (80%) 279 (73%) 277 (88%)

MSI-high 143 (20%) 104 (27%) 39 (12%)

CIMP status 0.0004

Low/negative 520 (75%) 268 (70%) 252 (82%)

High 174 (25%) 117 (30%) 57 (18%)

Mean LINE-1 methylation
level ± SD (%)

63.7
± 10.2

64.3
± 10.0

62.9
± 10.3

0.069

KRAS mutation 0.10

Wild-type 390 (58%) 224 (61%) 166 (55%)

Mutant 278 (42%) 141 (39%) 137 (45%)

BRAF mutation 0.15

Wild-type 584 (83%) 314 (81%) 270 (85%)

Mutant 122 (17%) 75 (19%) 47 (15%)

PIK3CA mutation 0.38

Wild-type 550 (84%) 293 (83%) 257 (85%)

Mutant 106 (16%) 62 (17%) 44 (15%)

Memory cytotoxic T-cell
(CD3+CD8+CD45RO+

cell) densityc

0.014

Q0 (0, lowest) 244 (48%) 115 (42%) 139 (56%)

Q1 88 (17%) 56 (20%) 32 (14%)

Q2 88 (17%) 53 (19%) 35 (15%)

Q3 (highest) 88 (17%) 53 (19%) 35 (15%)

Memory helper T-cell
(CD3+CD4+CD45RO+

cell) densityc

0.51

Q0 (0, lowest) 176 (34%) 89 (32%) 87 (37%)

Q1 111 (22%) 64 (23%) 47 (20%)

Q2 111 (22%) 65 (23%) 46 (20%)

Q3 (highest) 110 (22%) 59 (21%) 51 (22%)

Fusobacterium nucleatum
in tumor

0.34

Negative 572 (85%) 309 (83%) 263 (86%)
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Risk prediction model demonstrates risk stratification within
stage II–III colorectal cancer
Using BART leave-one-out analysis, as detailed in Methods, stage
II–III colorectal cancer patients were separated into three risk
quantiles based on predicted probabilities of 5-year survival (low
risk if ≥0.884, intermediate risk if ≥0.758 and <0.884, high risk if
<0.758). Survival analysis using Cox proportional hazards regres-
sion model demonstrated significant survival differences between
the risk tertile categories, i.e., low risk vs high risk [hazard ratio (HR)
0.19, 95% confidence interval (CI) 0.13–0.29, P value < 0.0001], low
risk vs intermediate risk (HR 0.43, 95% CI 0.28–0.65, P value <
0.0001), and intermediate risk vs high risk (HR 0.45, 95% CI
0.34–0.61, P value < 0.0001), with overall log-rank test P value of
<0.0001 (Fig. 4a). Risk groups remained significant in a multi-
variate Cox proportional hazards model adjusting for stage (P
value < 0.0001, Table 2) as well as a multivariate Cox proportional
hazards model adjusting for all independent predictors included
in the model (P value 0.0008, Table 3).
Exploratory analyses using stratification by both risk quantiles

and stage demonstrated decreasing HR compared to high-risk
stage III (reference) in the following order: high-risk stage II (P value
0.26), intermediate-risk stage III, intermediate-risk stage II, low-risk
stage III, and low-risk stage II (P values < 0.0001) (Supplementary
Fig. 1). Stage-specific analyses demonstrated that mortality risk
differences were significant for low risk vs high risk and low risk vs
intermediate risk in stage II patients and for low risk vs high risk
and intermediate risk vs high risk in stage III patients (P
values < 0.005), and suggestive for intermediate risk vs high risk
in stage II patients (P values between 0.005 and 0.05) (Fig. 5).

External validation with TCGA
An external validation with TCGA data showed that the BART risk
prediction model achieved an AUC of 0.68 based on 106 of 371
stage II–III patients with 5-year overall survival information (i.e.,

Table 1 continued

TNM stage

Characteristica All cases
(N= 815)

Stage II
(N= 453)

Stage III
(N= 362)

P valueb

Positive 104 (15%) 62 (17%) 42 (14%)

Bifidobacterium species in
tumor

0.46

Negative 485 (70%) 269 (71%) 216 (68%)

Positive 211 (30%) 110 (29%) 101 (32%)

Five-year colorectal
cancer-specific survival
status

<0.0001

Survival 661 (81%) 392 (87%) 269 (74%)

Death 154 (19%) 61 (13%) 93 (26%)

AJCC American Joint Committee on Cancer, CIMP CpG island methylator
phenotype, HPFS Health Professionals Follow-up Study, LINE-1 long-
interspersed nucleotide element-1, MSI microsatellite instability, NHS
Nurses’ Health Study, SD standard deviation, TNM tumor-node-metastasis.
aPercentage indicates the proportion of patients with a specific clinical,
pathologic, or molecular characteristic among all patients or in strata of the
stage, excluding missing data.
bTo compare categorical data between stages, the Chi-square test was
performed. To compare continuous variables, analysis of variance (ANOVA)
was performed for variables exhibiting normality. For variables that did not
follow a normal distribution, values were separated into ordinal categories
prior to the Chi-square test. For lymphovascular invasion and perineural
invasion, Fisher’s exact tests were performed.
cTumor tissue CD3+CD8+CD45RO+ and CD3+CD4+CD45RO+ cell density
measures (cells/mm2) were categorized into 0 value (the lowest category,
Q0) and positive values divided equally into tertiles (Q1 to Q3).
Clinical, pathologic, molecular, and immune characteristics of patients with
colorectal cancer according to AJCC TNM staging.

C-Statistics by number of trees in the BART modela

Model performance across 100 random runsb

Significant variables across 10 random runs of five-fold cross validationc
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Fig. 2 BART model characteristics and performance metrics. a Model performances in terms of receiver operating characteristics (ROC)
C-statistics for stage II–III 5-year survival models across fivefold cross-validation, with variable number of trees parameter. b Model
performances across 100 random runs in terms of area under the ROC curve (AUC). Blue dots represent mean AUC values across the runs by
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patients who died within 5 years or survived for at least 5 years)
(Supplementary Fig. 2). Five-year overall survival was used as a
surrogate endpoint and censoring was set at 5 years (see
“Methods”) as colorectal cancer-specific survival information was
not available. The full TCGA dataset of 371 stage II–III colorectal
cancer patients was separated into three risk quantiles based on
predicted probabilities of 5-year survival status (low risk if ≥0.662,
intermediate risk if ≥0.517 and <0.662, high risk if <0.517) and
incorporated into a Cox proportional hazards model. The model
yielded a significant difference between low-risk and high-risk
quantiles (HR 0.26, 95% CI 0.12–0.53, P value 0.0002) and
suggestive evidence of the difference between low-risk and
intermediate-risk quantiles (HR 0.42, 95% CI 0.20–0.89, P value
0.02), with a log-rank test P value of 0.0004 across the quantiles
(Fig. 4b). Risk groups remained significant at level of suggestive
evidence in a multivariate Cox proportional hazards model
adjusting for stage (P value 0.005, Table 2) as well as a multivariate
Cox proportional hazards model adjusting for all independent
predictors included in the model (P value 0.03, Table 3).
Separate analysis based on stage II or stage III only data

demonstrated that 5-year overall survival suggestively differed
between low-risk and high-risk groups in stage III patients (P value
0.008); however, they did not demonstrate any level of
significance for stage II patients (Fig. 6).

Experimental risk prediction calculator based on BART risk
model
A risk prediction calculator interface is shown in Supplementary
Fig. 3, which takes as input the seven significant and stable

variables, allows for missing values, and outputs the survival
probability and risk group (low risk, intermediate risk, or high risk)
for each patient in question. An experimental version of the BART
risk prediction model is available for download at https://
github.com/mm-zhao/BART.

DISCUSSION
In this multivariable study on the colorectal cancer survival
prediction, BART demonstrated comparable model performance
across multiple random runs compared to other nonlinear
learning models and LASSO linear regression. Within BART models,
the most stable predictors for 5-year colorectal cancer-specific
survival in stage II–III were positive lymph node count, negative
node count, depth tumor of invasion, MSI status, tumor site, age,
and extent of extraglandular necrosis. All variables can be
available in routine clinical assessment of colorectal cancer if a
pathologist (or artificial intelligence algorithm/digital image
analysis) can record the extent of extraglandular necrosis, which
is the least contributor among the seven variables. A risk
prediction model based on these variables was constructed to
categorize patients into low-, intermediate-, and high-risk groups.
Rapid developments in colorectal cancer research have

prompted the inclusion of molecular factors, such as MSI status
and mutations in KRAS and BRAF, as important features for guiding
cancer treatment in stage II–IV patients in the most recent edition
of the AJCC (American Joint Committee on Cancer) Cancer Staging
Manual15. While staging in colorectal cancer is currently based
entirely on anatomical features, alternative classification schemes,
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Fig. 3 BART stage II–III survival prediction model. The BART prediction model was constructed based on seven significant and stable
variables, namely positive and negative lymph node counts, depth of tumor invasion, microsatellite instability (MSI) status, tumor site,
extraglandular necrosis, and age. a ROC curves and Hosmer–Lemeshow P values across fivefolds of cross-validation (CV). b Average variable
importance across fivefolds of cross-validation, displayed in order of highest average importance. Black bars represent variables with positive
trend with survival and white bars represent variables with negative trend with survival. c Partial dependence plots of significant variables
across cross-validation folds. Each transparent block represents the 95% credible interval of one cross-validation fold based on 1000 posterior
samples. Partial effects are plotted in terms of probability of survival on Probit scale. Darker lines and points represent the expected value of
partial dependence for each variable across 1000 posterior samples. Green vertical hash marks on the X axis indicate observed data points
used to generate the model. AUC area under the ROC curve, BART Bayesian additive regression trees, CV cross-validation, H-L
Hosmer–Lemeshow, LNs lymph nodes, MSI microsatellite instability, MSS microsatellite stable, ROC receiver operating characteristics.
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such as the Immunoscore, have demonstrated good utility in
classifying patient prognosis based on T-cell density quantiles16.
Within stage II and stage III colorectal cancer, where classification
has strong implications on treatment strategies, staging is a
pivotal yet challenging matter. Thus, the addition of prognostic
factors beyond anatomical tumor spread in a standardized risk
model can help refine diagnosis and offer additional patient-
specific survival information for clinical management.
Applications of statistical learning algorithms in cancer classi-

fication and prognosis prediction have gained traction in the
recent decade due to their ability to model complex relationships
in a high-dimensional context. In recent years, ANN-based

algorithms have gained momentum in cancer research, particu-
larly in image-based studies, according to a literature survey by
Kourou et al.17. Compared to ANN-based models, ensemble
classification and regression trees, though less prevalent in the
cancer literature, have particular advantages as flexible learning
models that require few tuning parameters and allow for variable-
level model interpretations. These algorithms have demonstrated
superior performance in handling heterogeneous datasets com-
pared to deep learning methods17, with overall better perfor-
mance in a systematic review across learning models18. We tested
the performance of BART against a range of learning models in
our study dataset. We found that ensemble methods were more
favorable in ROC performance compared to SVM and ANN with a
single hidden layer, and that BART was the preferable ensemble
method across 100 random runs. LASSO linear regression
performed marginally better than BART across runs in our dataset;
however, BART is overall a more flexible and adaptable model in
comparison, as LASSO models require a priori manual addition of
interactions and lack the ability to model nonlinear relationships
or handle missing values.
Ensemble methods maintain model interpretability through

variable importance and partial dependence measures. An
extension upon variable importance measures using permutation
test, a form of which was used in this study, has demonstrated a
reduction of variable selection bias and robustness in analyses of
high-dimensional datasets19. We found that BART can be used to
identify influential variables for predictions of colorectal cancer
stage classification and colorectal cancer-specific survival in a
robust manner. Many of the chosen variables are known to be
important prognostic factors in literature, demonstrating that
BART can reliably select meaningful variables for prediction of
survival. From a set of the 75 candidate features, including clinical,
epidemiological, immunologic, microbial, and tumor molecular
factors, the BART model robustly isolated a subset of contributing
variables over fivefold cross-validation and random runs. Using
posterior sampling based on BART’s Bayesian probabilistic model,

Fig. 4 Kaplan–Meier plots for survival in patients with stage II/III colorectal cancer, based on risk quantiles from BART risk model. a NHS/
HPFS dataset survival based on risk quantiles. b TCGA external validation dataset survival based on risk quantiles. Tables show Cox
proportional hazards models using risk quantiles and overall P values by log-rank test. BART Bayesian additive regression trees, CI confidence
interval, HR hazard ratio.

Table 2. Multivariate Cox proportional hazards regression model for
risk group and TNM stage.

Cox proportional
hazards model

NHS/HPFS (primary
dataset)

TCGA (external
validation dataset)

HR (95% CI) P value HR (95% CI) P value

Risk groupa 2.17
(1.79–2.63)

<0.0001 1.64
(1.16–2.33)

0.005

TNM stage

Stage II Referent Referent

Stage III 1.19
(0.89–1.58)

0.24 1.96
(1.12–3.43)

0.02

CI confidence interval, HPFS Health Professionals Follow-up Study, HR
hazard ratio, NHS Nurses’ Health Study, TCGA The Cancer Genome Atlas,
TNM tumor-node-metastasis.
aRisk group coded as ordinal variable in order of low risk (1), intermediate
risk (2), and high risk (3). HR for risk group represents HR for one unit
increase in risk group.
Models were constructed based on NHS/HPFS data and TCGA data.
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we were able to estimate credible intervals of individual variable
influence on outcome, as illustrated through partial dependence
plots. Thus, we could capture both the trend of variable influence
and the level of certainty associated with influence within the
models.
Our analyses showed that the intermediate-risk group was

statistically significant in survival compared to low and high risk
groups in the primary dataset. However, this significance is not as
robustly reflected in external validation with TCGA data, particu-
larly within substage analyses. The external validation and
substage analyses may be underpowered, though the trend is
suggestive and consistent with the primary data. The
intermediate-risk category may warrant a more aggressive level
of clinical management than those from the low-risk category,
though this remains to be further studied in terms of treatment
implications in the clinical setting.
Partial dependence plots of important variables in the BART

models demonstrated relationships between predictor variables
and outcome consistent with those previously reported in the
literature, including MSI status and negative lymph node count as
favorable prognosticators and extraglandular necrosis as an
unfavorable prognosticator in colorectal cancer20–22. Furthermore,
the partial dependence plots highlight the nonlinear nature of
relationships between several variables and survival, such as
worse survival for tumors arising from the ascending colon
compared to other sites.
Within stage II, where high-risk factors and staging strongly

influence clinical decision for chemotherapy23, our results confirm
that variables apart from those traditionally used in TNM staging
can be used in the clinical setting to help predict and refine
prognosis. Several guidelines issued by the National Comprehen-
sive Cancer Network (NCCN) suggest that stage II tumors with
high-risk features, such as lymphovascular invasion, perineural
invasion, less than 12 lymph nodes examined, positive surgical
margins, and poor tumor differentiation, could benefit from
adjuvant chemotherapy24. However, there currently exists no
clinical standard for the identification of high-risk stage II
colorectal cancer, an issue compounded by the multitude of
variables and their interrelationships that can influence survival in
colorectal cancer. A study by Babcock et al. noted that not all high-

risk features have the same adverse effects on colorectal cancer
survival, with pT4 tumors in combination with other high-risk
features denoting the most survival benefit from adjuvant
chemotherapy25. Through variable inclusion proportions and
partial dependence plots in the BART models, we found that
selected features have variable degrees of impact on patient
survival. For instance, variables such as positive lymph node count,
negative node count, and depth of tumor invasion have more
stable and robust influences on survival than tumor site. None-
theless, a larger dataset is clearly needed to better evaluate the
prognostic role of detailed tumor location and modifying effect of
tumor pathological features26, which may further contribute to a
prognostic stratification of patients in the future. A predictive
model with intrinsic weighing of key variables may thus be used
to help standardize risk assessment, functioning as a risk calculator
to guide clinical decisions, akin to other established models for
risk prediction in colorectal cancer27,28. It remains to be
determined how various treatment modalities can be incorpo-
rated into robust mortality risk prediction models.
In recent years, the use of statistical learning models to stratify

patient risk based pathology slide-level data through deep
learning methods or the aggregation of multiple influential factors
have demonstrated success in predicting prognosis to a level of
precision beyond what was previously achievable using single key
variables, such as tumor depth, MSI status, and tumor-infiltrating
lymphocyte scoring. For example, an artificial intelligence (AI)
based immunoscore was constructed from a deep learning model
using hematoxylin and eosin (H&E) and immunohistochemical
stains of immune subtypes from patients with all stages of
colorectal cancer, and was found in a multivariate Cox propor-
tional hazards model to significantly stratify patients into
prognostic groups29. Other methods such as using random forest
or generalized linear models to aggregate multiple clinical
variables and gene expression in colorectal cancer demonstrated
AUC of around 0.7–0.8 in predicting survival30. While many
existing models aggregate patients of all stages, including local
(stage I) tumors and metastatic (stage IV) tumors, our BART risk
model concentrates on the stage II/III population of patients with
colorectal cancer to provide meaningful, fine-tuned risk stratifica-
tion for patients where treatment with adjuvant chemotherapy

Table 3. Multivariate Cox proportional hazards regression model for risk group and independent predictors included in the BART risk model.

Cox proportional hazards model NHS/HPFS (primary dataset) TCGA (external validation dataset)

HR (95% CI) P value HR (95% CI) P value

Risk groupa 1.57 (1.21–2.05) 0.0008 1.77 (1.04–3.00) 0.03

Number of positive lymph nodes 1.11 (1.06–1.16) <0.0001 0.98 (0.81–1.19) 0.83

Number of negative lymph nodes 1.00 (0.98–1.02) 0.70 0.70 (0.52–0.94) 0.02

Tumor depth 1.33 (0.93–1.89) 0.11 1.74 (1.24–2.43) 0.001

Extraglandular necrosis 1.02 (0.90–1.16) 0.73 1.00 (0.97–1.03) 0.94

Age at diagnosis 1.02 (1.00–1.04) 0.03 1.40 (1.10–1.77) 0.006

MSI status

Non-MSI-high Referent Referent

MSI-high 0.36 (0.18–0.75) 0.006 1.02 (0.33–3.18) 0.98

Tumor site 1.00 (1.00–1.00) 0.80 1.05 (0.80–1.40) 0.72

BART Bayesian additive regression trees, CI confidence interval, HPFS Health Professionals Follow-up Study, HR hazard ratio, MSI microsatellite instability, NHS
Nurses’ Health Study, TCGA The Cancer Genome Atlas, TNM tumor-node-metastasis.
Models were constructed based on NHS/HPFS data and TCGA data.
aRisk group coded as ordinal variable in order of low risk (1), intermediate risk (2), and high risk (3). HR for risk group represents HR for one unit increment in
risk group.
HRs for number of positive lymph nodes and number of negative lymph nodes represent HRs for 1 node increment. HR for tumor depth represents HR for 1 pT
stage increment. HR for extraglandular necrosis represents one unit increment in ordinal category of extraglandular necrosis (0%, <10%, <20%, <30%, <40%,
and ≥40%). HR for age at diagnosis represents HR for 1 year increment. HR for tumor site represents HR for 1 cm increment in distance from the anal verge
based on the colorectal continuum model.
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currently depends heavily on the presence of lymph node
metastasis, which is subjected to sampling error, and treatment
intensity and duration depends on risk assessment, which
currently lacks standardization3. By focusing on this group of
patients, we aimed to create a model that has clear and
immediate clinical utility in the current treatment landscape for
colorectal cancer. Furthermore, the use of slide-based information
alone using deep learning models or an ensemble of deep
learning models have demonstrated the ability to distinguish
high-risk and low-risk groups in stage II/III patients with colorectal
cancer31,32. Future developments, including the incorporation of
deep learning methods to learn specific slide-based features
rather than manual grading of slides features, such as extent of
extraglandular necrosis, would help preserve model interpret-
ability while further increasing the efficiency and consistency, and
thus utility, of the current version of the risk model described in
this study.
External validation using The Cancer Genome Atlas (TCGA)

dataset demonstrated that our Bayesian risk model may be
generalizable to other datasets with conserved utility and the
ability to separate patients into statistically significant risk groups.
However, with missing information on colorectal cancer-specific
survival and shorter follow-up times, TCGA dataset could not be
used optimally at this time as a validation set. Another existing
dataset, the Surveillance, Epidemiology, and End Results (SEER)
program, lacks detailed tumor characteristics information.
Ongoing efforts in data collection and incorporation of more
clinical, epidemiological, and molecular variables in cancer
registries can help provide valuable validation data in future
studies.
Other limitations of this study include that, though our study

attempted to incorporate several pertinent and established high-
risk features for stage II, such as lymphovascular invasion and
perineural invasion, the degree of missingness and measurement

uncertainty in the collection of these data might have impacted
their measurable influence within our models. When more data
become available, these variables would be of great interest to
examine alongside features found important in this study.
Similarly, as we have applied immune density measurements
and whole exome sequencing (WES) to a subset of colorectal
cancers in our cohort datasets, it may be interesting to incorporate
more comprehensive immune and mutational profiles as pre-
dictors in future models. Though the BART models in this study
focus on colorectal cancer-specific survival to reduce the possible
noise and confounders associated with measurements of overall
survival, other modifications and considerations can be helpful.
For example, as treatment information was not available for this
study, we had no means to ascertain the relationship between
treatments received based on staging and survival. Thus, we could
not determine if survival within stage II might have been affected
by the addition of adjuvant therapy. While the extent of
extraglandular necrosis was assessable using TCGA H&E slides,
the histopathological assessment of each case was generally
limited to one slide often with small amounts of tissue. Thus,
sampling variability might limit a representation of the degree of
necrosis. Studies using multidimensional datasets that include the
evaluation of treatment information would help elucidate the
relationship between treatment and survival in the context of risk
classification within stage II colorectal cancer.
There are notable strengths in our study. First, our molecular

pathological epidemiology research database of colorectal cancer
patients includes many possible prognosticators, allowing for
comprehensive multivariable assessments and comparisons33,34.
Second, our patient population represents colorectal cancer cases
that had occurred in well-established US-wide prospective cohort
studies. Accordingly, our subjects included patients who under-
went cancer resection and treatment in diverse regions and types
of hospitals with little evidence for selection bias35, which

Fig. 5 Stage-specific Kaplan–Meier plots for survival. Survival plots are shown for patients with stage II (left) and stage III (right) colorectal
cancer, based on risk quantiles derived from predicted probabilities generated by the BART risk model. Table shows Cox proportional hazards
model using risk quantiles and overall P value by log-rank test. BART Bayesian additive regression trees, CI confidence interval, HR hazard ratio.
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increases generalizability of findings. Furthermore, we performed
comprehensive and rigorous assessments of tested models in
terms of prediction performance and interpretability. Through this
study, we have illustrated the ability of BART models, by
employing Bayesian frameworks within an ensemble sum-of-
trees architecture, to provide insight on the degree of certainty
and reliably detect the prominent variables contributing to
survival from a comprehensive list of potential variables.
In conclusion, statistical learning models that simultaneously

integrate multiple variables with consideration for nonlinearity
have demonstrated good performance in the prediction of
colorectal cancer-specific survival. Ensemble methods such as
BART enable model flexibility along with interpretability to identify
variables that contribute to patient survival. Focused studies on
the identified variables can help elucidate mechanisms of disease
progression, and incorporation of these variables into or alongside
the current existing staging system can result in a more precise
prognostic stratification to guide treatment for patients with
colorectal cancer.

METHODS
Study population
The study was conducted using two ongoing prospective cohort
studies in the U.S., the Nurses’ Health Study (NHS), which was
initiated in 1976 and enrolled 121,701 registered female nurses
aged 30–55 years at baseline, and the Health Professionals Follow-
up Study (HPFS), which was initiated in 1986 and enrolled 51,529
male health professionals aged 40–75 at baseline36. For both
cohorts, questionnaires were sent on a biannual basis to assess
demographic, lifestyle, medical, and other pertinent health
information. Detailed diet data were collected every 4 years
through semiquantitative food frequency questionnaires. The

response rate has been more than 90% for each follow-up
questionnaire cycle in both cohort studies. Participants had been
asked to provide information on diet and lifestyle factors such as
height, weight, smoking, use of aspirin and other nonsteroidal
anti-inflammatory drugs, alcohol consumption, and red meat
consumption. In both studies, the National Death Index was used
to ascertain deaths of study participants and identify unreported
lethal colorectal cancer cases.
Based on the colorectal continuum model37, participants who

developed either colon or rectal adenocarcinomas during the
study periods were included in this study. Written informed
consent was obtained from all study participants. Participating
physicians, who were blinded to exposure data, reviewed medical
records of identified colorectal cancer cases to confirm the disease
diagnosis (i.e., colorectal adenocarcinoma) and to collect data on
clinicopathological characteristics including tumor size, tumor
anatomical location, AJCC TNM stage, the numbers of lymph
nodes positive and negative for tumor metastasis, and cause of
death (in deceased patients). Tumor site information (the cecum,
ascending colon, hepatic flexure, transverse colon, splenic flexure,
descending colon, sigmoid colon, rectosigmoid junction, and
rectum) was translated into average distance from the anal verge
based on published data on computed tomographic colonogra-
phy38,39. Archival formalin-fixed paraffin-embedded (FFPE) tumor
tissue for 1620 participants diagnosed with colorectal adenocarci-
noma could be obtained from institutions where tumor resections
were performed. We included 815 patients with stage II and III
colorectal cancer in our current analysis (Fig. 1). Written informed
consent was obtained from all study subjects. The study protocol
was approved by the institutional review boards of the Brigham
and Women’s Hospital and Harvard T.H. Chan School of Public
Health (Boston, MA, USA), and those of participating registries as
required.

Fig. 6 Stage-specific Kaplan–Meier plots for survival in TCGA dataset. Survival plots are shown for patients with stage II (left) and stage III
(right) colorectal cancer in TCGA dataset, based on risk quantiles derived from predicted probabilities generated by the BART risk model. Table
shows Cox proportional hazards model using risk quantiles and overall P value by log-rank test. BART Bayesian additive regression trees, CI
confidence interval, HR hazard ratio.
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Histopathologic analyses
A single pathologist (S.O.), blinded to other data, performed a
thorough pathological review of hematoxylin and eosin-stained
tissue sections of all colorectal carcinoma cases and recorded the
histopathologic features, including tumor differentiation, patterns
and degrees of lymphocytic reactions, lymphovascular invasion,
perineural invasion, and the extent in percentages (from 0 to
100%) of signet ring cell component, extracellular mucin, and
extraglandular necrotic area. All of these features were separately
recorded40. The proportions were further categorized based on
quantiles for signet ring cell percentage and ordinal bins (10%
increments) for mucinous percentage (up to 100%, 11 categories)
and extraglandular necrotic area (up to 40%, 6 categories). Tumor
differentiation was categorized as well to moderate (>50%
glandular area) or poor (≤50% glandular area). Four components
of histopathological lymphocytic reaction to tumor, tumor-
infiltrating lymphocytes (TIL), intratumoral periglandular reaction,
peritumoral lymphocytic reaction, and Crohn’s-like lymphoid
reaction, were recorded as previously described41. Briefly, TIL
was defined as lymphocytes on top of tumor cells, intratumoral
periglandular reaction was defined as lymphoid reaction in tumor
stroma within tumor mass, peritumoral lymphocytic reaction was
defined as discrete lymphoid reactions surrounding tumor, and
Crohn’s-like reaction was defined as transmural lymphoid reaction.
Each of the four lymphocytic reaction components was scored as
0 to 3 (absent/minimal, mild, moderate, and strong), and the
overall lymphocytic reaction score (0–12) was the sum of scores
for the above four reaction components.

Tumor molecular analyses
Genomic DNA was extracted from archival FFPE tissue sections of
colorectal carcinoma and normal tissue using the QIAamp DNA
FFPE Tissue Kit (Qiagen, Hilden, Germany). Tumor MSI status was
analyzed using polymerase chain reaction (PCR) of 10 micro-
satellite markers (D2S123, D5S346, D17S250, BAT25, BAT26,
BAT40, D18S55, D18S56, D18S67, and D18S487), and MSI-high
was defined as presence of instability in ≥30% of the markers37.
Methylation statuses of eight CpG island methylator phenotype
(CIMP)-specific promoters (CACNA1G, CDKN2A, CRABP1, IGF2,
MLH1, NEUROG1, RUNX3, and SOCS1) and long-interspersed
nucleotide element-1 (LINE-1) was determined using bisulfite-
treated DNA37. CIMP-high was defined as ≥ 5 methylated
promoters of eight promoters, and CIMP-low/negative as 0–4
methylated promoters. PCR and pyrosequencing were performed
for KRAS (codons 12, 13, 61, and 146), BRAF (codon 600), and
PIK3CA (exons 9 and 20)42. The PCR primers were 5′-
NNNGGCCTGCTGAAAATGACTGAA-3′ (for forward primer) and 5′-
[Bio TEG]TTAGCTGTATCGTCAAGGCACTCT-3’ (for reverse primer)
for amplifying KRAS codons 12 and 13, 5′-biotin-TGGA-
GAAACCTGTCTCTTGGATAT-3′ (for forward primer) and 5′-
TACTGGTCCCTCATTGCACTGTA-3′ (for reverse primer) for amplify-
ing KRAS codon 61, 5′-ATGGAATTCCTTTTATTGAAACATC-3′ (for
forward primer) and 5′-biotin-TTGCAGAAAACAGATCTGTATTTAT-3′
(for reverse primer) for KRAS codon 146, 5′-CAGTAAAAATAGGT-
GATTTTG-3′ (for forward primer) and 5′-biotin-CAACTGTTCAAACT-
GATGGG-3′ (for reverse primer) for BRAF codon 600, 5′-biotin-
AACAGCTCAAAGCAATTTCTACAC-3′ (for forward primer) and 5′-
ACCTGTGACTCCATAGAAAATCTT-3′ (for reverse primer) for PIK3CA
exon 9, and 5′-biotin-CAAGAGGCTTTGGAGTATTTCA-3′ (for for-
ward primer) and 5′-CAATCCATTTTTGTTGTCCA-3′ (for reverse
primer) for PIK3CA exon 20. The sequencing primers were 5′-
TGTGGTAGTTGGAGCTG-3′ (PF1), 5′-TGTGGTAGTTGGAGCT-3′ (PF2),
and 5′- TGGTAGTTGGAGCTGGT-3′ (PF3) for KRAS codons 12 and
13, 5′-TCATTGCACTGTACTCCTC-3′ for KRAS codon 61, 5′-
AATTCCTTTTATTGAAACATCA-3′ for KRAS codon 146, 5′-
TGATTTTGGTCTAGCTACA-3′ for BRAF codon 600, 5′-CCATA-
GAAAATCTTTCTCCT-3′ (RS1), 5′-TTCTCCTT/GCTT/CAGTGATTT-3′

(RS2), 5′-TAGAAAATCTTTCTCCTGCT-3′ (RS3) for PIK3CA exon 19,
and 5′-GTTGTCCAGCCACCA-3′ for PIK3CA exon 20.
In addition, for a subset of 720 cases, tumor mutational profile

was obtained from whole exome sequencing (WES), as previously
described, for genes of interest (115 genes, Supplementary Table
3) without pyrosequencing data43. Briefly, DNA from tumor areas
of tumor FFPE blocks were extracted along with paired normal
DNA from tumor-free areas or resection margins and underwent
hybrid capture with SureSelect v.2 Exome bait (Agilent Technol-
ogies) and sequencing with Illumina HiSeq 2000 instruments.
Frequency of single nucleotide variants were stratified by MSI
status and genes with significant mutations beyond background
mutational level were considered for analysis. Genes with less
than 5% non-silent mutation frequency in the dataset were
excluded from the analysis (see Supplementary Table 1 for the full
list of mutations included in the analysis).

Quantitative detection of Fusobacterium nucleatum and
Bifidobacterium genus in tumors
We performed a quantitative PCR assay to measure the amount of
Fusobacterium nucleatum and Bifidobacterium genus DNA in the
tumor tissue, as previous described38,44. The amount of Fusobac-
terium nucleatum and Bifidobacterium genus DNA in each tumor
specimen were calculated as a relative value normalized to levels
of human reference gene SLCO2A1 using the 2−ΔCt method45.
Cases with any detectable Bifidobacterium DNA were categorized
as low vs. high based on the median cut point amount of
Bifidobacterium, while cases without detectable Bifidobacterium
were categorized as negative. Due to a larger proportion of
absence of F. nucleatum DNA in the samples, F. nucleatum was
categorized as absent or present based on the detection of F.
nucleatum DNA.

Immunohistochemical analysis
We constructed tissue microarrays that included up to four cores
from colorectal cancer and up to two cores from normal tissue
blocks, as detailed in ref. 46. We use the standardized nomen-
clature system for proteins as recommended by the expert
panel47.
Immunohistochemical analyses of PTGS2 (HGNC:9605; cycloox-

ygenase-2), nuclear CTNNB1 (HGNC:2514; beta-catenin), CD274
(HGNC:17635; PD-L1), PDCD1 (HGNC:8760; PD-1), and PDCD1LG2
(HGNC:18731; PD-L2) were performed using an anti-PTGS2 anti-
body (1:300 dilution; Cayman Chemical, Ann Arbor, MI, USA), anti-
CTNNB1 antibody (1:400 dilution; BD Transduction Laboratories,
Franklin Lakes, NJ, USA), anti-CD274 antibody (1:50 dilution;
eBioscience, San Diego, CA), anti-PDCD1 antibody (1:1000 dilution;
Clone EH33), and anti-PDCD1LG2 antibody (1:6000 dilution; clone
366C.9E5), respectively46,48–50. Anti-PDCD1 antibody and anti-
PDCD1LG2 antibody were generated in the laboratory of G.J.
Freeman at Dana-Farber Cancer Institute51.

Multispectral immunofluorescence
Multispectral immunofluorescence, as previously described, was
performed using deparaffinized 4 µm sections from tissue
microarray blocks, and tissue microarray cores were sampled
from different areas of tumor (i.e., center and periphery)52. Up to
four tumor cores from each case were collected. Many cores also
contain microscopic invasive edges (e.g., tumor budding), and
features of those microscopic invasive edges were similar to those
in the tumor periphery53. Primary antibodies against CD3 (1:75
dilution; clone F7.2.38; Dako; Agilent Technologies, Carpenteria,
CA, USA), CD4 (1:50 dilution; clone 4B12; Dako), CD8 (1:150
dilution; clone C8/144B; Dako), CD45RO isoform of the PTPRC
products (1:50 dilution; clone UCHL1; Dako), FOXP3 (1:100 dilution;
clone 206D; Biolegend, San Diego, CA), and KRT (keratins, pan-
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cytokeratins) (combination of 1:40 dilution; clone AE1/AE3; Dako,
and 1:400 dilution; clone C11; Cell signaling, Danvers, MA, USA),
and DAPI (Catalog number FP1490, Akoya Biosciences, Marlbor-
ough, MA, USA) were detected using a tyramide signal amplifica-
tion method and Opal fluorescent dyes (Akoya Biosciences). The
stained slides were imaged using the multispectral imaging
platform (Vectra 3.0, Akoya Biosciences) at ×200 magnification.
Multispectral images of each core underwent first tissue
segmentation to characterize regions of tumor epithelium and
stroma based on KRT expression, using supervised machine-
learning algorithms within Inform 2.4.1 (Akoya Biosciences).
Following tissue segmentation, cell enumeration, and segmenta-
tion was performed using the DAPI signal to aid in identification of
nuclei. Each cell was further segmented into nuclear, cytoplasmic
and membranous compartments. A separate supervised machine-
learning algorithm was used to identify T cells based upon a
combination of cytomorphology and T-cell marker expression
patterns. These single-cell data were then used to calculate T-cell
subpopulation densities within separate regions. Aggregate
tumor-level densities were then determined by calculating the
average density (cells/mm2) for each subset across all regions from
each patient.

Statistical analysis
BART, an ensemble sum-of-trees model under a Bayesian
paradigm, is an extension to the concepts of gradient boosting,
whereby each tree g x;T jMj

� �
within an ensemble represents a

portion of the final predicted outcome Y:

Y ¼
Xm

j¼1

g x;T jMj
� �þ ε ε � Nð0; σ2Þ

Under the Bayesian paradigm, a set of prior distributions is first
determined for tree structure (T), the leaf parameters given the
tree structure (M|T), and the error variance (σ2), as detailed in
ref. 11. The prior distributions are then updated iteratively given
the observed data by employing Markov Chain Monte Carlo
(MCMC), which generates draws from the posterior distribution
PðTM

1 ; ¼ ; TM
m; σ

2jyÞ.
By setting a uniform prior on predictor variables as well as a

prior that centers on shallow tree depths of 2–3 levels, the BART
method enforces regularization with weak learners at each
iteration. Through each iteration of MCMC using Gibbs sampling,
the BART model grows, shrinks, or maintains tree structure by
choosing variables, variable split points, and terminal contribu-
tions with respect to a probability distribution based on residual
minimization. The posterior samples reflect the true underlying
posterior probability distribution. Further summary statistics can
then be performed to determine the expected values and credible
intervals of parameters of interest.
Using data from 815 study participants (Fig. 1), we performed a

random 80–20 training (n= 652) vs testing (n= 163) split for
5-year survival prediction. Overall, 75 variables were initially
considered as predictors in the models. Supplementary Table 1
shows a full list of predictor variables used in this study.
Preprocessing was performed on all continuous variables. As

T-cell densities in tumor were highly skewed, they were
transformed using Yeo-Johnson transformation for normality54.
Continuous variables and ordinal variables with more than two
levels were then centered and scaled with mean of 0 and standard
deviation of 1. BART, LASSO linear regression, GB, RF, adaptive
boosting, support vector machine (SVM), and ANN algorithms
were then performed on the training sets with parameters within
a default tuning grid set by R caret package tuned by cross-
validation, and the prediction performance on the validation sets
was measured by ROC concordance statistics (area under ROC
curve, AUC). To assess for internal stability of the predictors and

model performance in terms of AUC, we performed a fivefold
cross-validation with 80–20 training and validation split for
each fold.
For primary analysis with BART models, all variables were

considered; no imputation was performed, and missingness was
included as a node-splitting option (see Fig. 1)55. For comparisons
between learning algorithms, K-Nearest Neighbor imputation was
performed on all variables prior to downstream analysis, as not all
algorithms allow for missing data.
Important variables were determined via proportion of inclusion

and permuted significance based on local procedure permutation
methods across 1000 permutations13. In this exploratory analysis,
variables were selected based on permuted significance at P
value= 0.05 (level of suggestive evidence56) for ≥10 times across
ten random runs (i.e., average of ≥1/5 folds of cross-validation).
For important variables, partial dependence plots were generated
by plotting outcome predictions against varying single predictor
values, while holding all other variables constant in the trained
model. Credible intervals were generated by obtaining the
average and standard deviations of 1000 posterior samples of
the BART model.
A BART risk prediction model was constructed using the

selected variables, using leave-one-out training/testing split to
estimate predicted survival probabilities for each patient with
stage II or stage III colorectal cancer. Predicted survival prob-
abilities were further categorized into equally sized risk quantiles
(low risk, intermediate risk, and high risk) within all stage II–III
patients. Survival analysis was conducted on the risk quantiles via
Cox proportional hazards regression and log-rank test. Cox
proportional hazards assumption was not satisfied, and therefore,
hazards ratios (HRs) should be interpreted as weighted average
HRs over time57. Multivariate Cox proportional hazards regression
was performed with ordinal risk groups (low risk to high risk) and
TNM stage, and ordinal risk groups with predictor variables of the
BART risk model. Hazard ratios represent hazard ratios associated
with one unit increase in each predictor variable unless otherwise
coded as described above. Considering inherent multiple compar-
isons, we used the alpha level of 0.005 for significance with P value
between 0.005 and 0.05 for suggestive evidence, as recom-
mended by the expert statistical panel56. All P values represent
two-sided testing. Risk prediction model calibration adequacy was
assessed by Hosmer–Lemeshow goodness-of-fit test58.
All machine-learning algorithms were performed using the

Caret package in R59, a wrapper API for specific machine-learning
packages: bartMachine60, randomForest, gbm, nnet, and e1071.
Partial dependence plots were generated using the bartMachine
package in R. ROC plots were generated using the pROC package
in R. Survival plots were generated using the survminer package in
R. Cox proportional hazards models were generated using the
survival package in R. Model calibration was analyzed via
plotCalibration function in the PredictABLE package in R. Risk
prediction model interface was designed using Shiny in R. All
statistical analyses were performed using R 4.1.1.

External validation with The Cancer Genome Atlas (TCGA)
data
The most recent The Cancer Genome Atlas (TCGA) data (release
date January 28, 2016) was extracted from the COADREAD
(Colorectal Adenocarcinoma) project dataset using the R package
RTCGA. Patients (n= 371) with stage II–III colorectal cancer and
survival information were included in the validation set. Available
variables, including positive and negative lymph node counts,
depth of tumor invasion, age, tumor site, and microsatellite
instability status, were pulled from the server and when necessary,
reformatted to the same units as those reflected in the NHS/HPFS
dataset. A single pathologist (M.Z.), blinded to other data,
performed a pathological review of digital TCGA hematoxylin
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and eosin-stained tissue sections of all available cases and
recorded the extent of extraglandular necrosis. As no colorectal
cancer-specific survival information was available in TCGA, 5-year
overall survival was used as a surrogate outcome. In survival
analyses, censoring was set at 5 years because most colorectal
cancer-specific deaths occur within 5 years of disease diagnosis, as
observed in the NHS/HPFS cohorts.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
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collaborators/.

CODE AVAILABILITY
All code was implemented in R 4.1.1 using caret as the primary machine-learning
package. All code and scripts to reproduce the experiments of this paper are
available for noncommercial academic purposes upon reasonable written request.
According to standard controlled access procedure, applications to use NHS/NHSII/
HPFS resources will be reviewed by our External Collaborators Committee. An
experimental version of the BART risk prediction model is publicly available for
download at https://github.com/mm-zhao/BART.

Received: 25 January 2023; Accepted: 25 May 2023;

REFERENCES
1. Inamura, K. et al. Cancer as microenvironmental, systemic and environmental

diseases: opportunity for transdisciplinary microbiomics science. Gut 71,
2107–2122 (2022).

2. Marshall, J. L. et al. Adjuvant therapy for stage II and III colon cancer: consensus
report of the International Society of Gastrointestinal Oncology. Gastrointest.
Cancer Res. 1, 146–154 (2007).

3. Taieb, J. & Gallois, C. Adjuvant chemotherapy for stage III colon cancer. Cancers
12, 2679 (2020).

4. Bai, J., Chen, H. & Bai, X. Relationship between microsatellite status and immune
microenvironment of colorectal cancer and its application to diagnosis and
treatment. J. Clin. Lab. Anal. 35, e23810 (2021).

5. Mima, K. et al. Fusobacterium nucleatum in colorectal carcinoma tissue and
patient prognosis. Gut. 65, 1973–1980 (2016).

6. Borozan, I. et al. Molecular and pathology features of colorectal tumors and
patient outcomes are associated with Fusobacterium nucleatum and its sub-
species Animalis. Cancer Epidemiol., Biomark. Prev. 31, 210–220 (2022).

7. Degenhardt, F., Seifert, S. & Szymczak, S. Evaluation of variable selection
methods for random forests and omics data sets. Brief. Bioinforma. 20,
492–503 (2019).

8. Xu, G., Zhang, M., Zhu, H. & Xu, J. A 15-gene signature for prediction of colon
cancer recurrence and prognosis based on SVM. Gene. 604, 33–40 (2017).

9. Birks, J., Bankhead, C., Holt, T. A., Fuller, A. & Patnick, J. Evaluation of a prediction
model for colorectal cancer: retrospective analysis of 2.5 million patient records.
Cancer Med. 6, 2453–2460 (2017).

10. Wang, J. et al. Predicting long-term multicategory cause of death in patients with
prostate cancer: random forest versus multinomial model. Am. J. Cancer Res. 10,
1344–1355 (2020).

11. Chipman, H. A., George, E. I. & McCulloch, R. E. BART: Bayesian additive regression
trees. Ann. Appl. Stat. 4, 266–298 (2010).

12. He, S., Li, X., Viant, M. R. & Yao, X. Profiling MS proteomics data using smoothed
non-linear energy operator and Bayesian additive regression trees. Proteomics 9,
4176–4191 (2009).

13. Bleich, J., Kapelner, A., George, E. I. & Jensen, S. T. Variable selection for BART: an
application to gene regulation. Ann. Appl. Stat. 8, 1750–1781 (2014).

14. Sparapani, R., Logan, B. R., McCulloch, R. E. & Laud, P. W. Nonparametric com-
peting risks analysis using Bayesian additive regression trees. Stat. Methods Med.
Res. 29, 57–77 (2020).

15. Amin, M. B. et al. The eighth edition AJCC cancer staging manual: continuing to
build a bridge from a population-based to a more ‘personalized’ approach to
cancer staging. CA Cancer J. Clin. 67, 93–99 (2017).

16. Pagès, F. et al. International validation of the consensus Immunoscore for the
classification of colon cancer: a prognostic and accuracy study. Lancet 391,
2128–2139 (2018).

17. Kourou, K. et al. Applied machine learning in cancer research: a systematic review
for patient diagnosis, classification and prognosis. Comput. Struct. Biotechnol. J.
19, 5546–5555 (2021).

18. Caruana, R. & Niculescu-Mizil, A. An empirical comparison of supervised learning
algorithms. in Proceedings of the 23rd International Conference on Machine
Learning 161–168 (ACM, 2006).

19. Altmann, A., Toloşi, L., Sander, O. & Lengauer, T. Permutation importance: a
corrected feature importance measure. Bioinformatics 26, 1340–1347 (2010).

20. Popat, S., Hubner, R. & Houlston, R. S. Systematic review of microsatellite
instability and colorectal cancer prognosis. JCO 23, 609–618 (2005).

21. Ogino, S. et al. Negative lymph node count is associated with survival of color-
ectal cancer patients, independent of tumoral molecular alterations and lym-
phocytic reaction. Am. J. Gastroenterol. 105, 420–433 (2010).

22. Väyrynen, S. A. et al. Clinical impact and network of determinants of tumour
necrosis in colorectal cancer. Br. J. Cancer 114, 1334–1342 (2016).

23. Baxter, N. N. et al. Adjuvant therapy for stage II colon cancer: ASCO guideline
update. JCO 40, 892–910 (2022).

24. Benson, A. B. et al. NCCN guidelines insights: colon cancer, version 2.2018. J. Natl
Compr. Cancer Netw. 16, 359–369 (2018).

25. Babcock, B. D. et al. High-risk stage II colon cancer: not all risks are created equal.
Ann. Surg. Oncol. 25, 1980–1985 (2018).

26. Ugai, T. et al. Prognostic role of detailed colorectal location and tumor molecular
features: analyses of 13,101 colorectal cancer patients including 2994 early-onset
cases. J. Gastroenterol. 58, 229–245 (2023).

27. Chang, G. J., Hu, C.-Y., Eng, C., Skibber, J. M. & Rodriguez-Bigas, M. A. Practical
application of a calculator for conditional survival in colon cancer. J. Clin. Oncol.
27, 5938–5943 (2009).

28. Weiser, M. R. et al. Clinical calculator based on molecular and clinicopathologic
characteristics predicts recurrence following resection of stage I-III colon cancer.
J. Clin. Oncol. 39, 911–919 (2021).

29. Foersch, S. et al. Multistain deep learning for prediction of prognosis and therapy
response in colorectal cancer. Nat. Med. 29, 430–439 (2023).

30. Gründner, J. et al. Predicting clinical outcomes in colorectal cancer using machine
learning. Stud. Health Technol. Inf. 247, 101–105 (2018).

31. Wulczyn, E. et al. Interpretable survival prediction for colorectal cancer using
deep learning. NPJ Digit. Med. 4, 1–13 (2021).

32. Skrede, O.-J. et al. Deep learning for prediction of colorectal cancer outcome: a
discovery and validation study. Lancet 395, 350–360 (2020).

33. Ogino, S., Nowak, J. A., Hamada, T., Milner, D. A. & Nishihara, R. Insights into patho-
genic interactions among environment, host, and tumor at the crossroads of mole-
cular pathology and epidemiology. Annu. Rev. Pathol.: Mechan. Dis. 14, 83–103 (2019).

34. Mima, K. et al. The microbiome, genetics, and gastrointestinal neoplasms: the
evolving field of molecular pathological epidemiology to analyze the
tumor–immune–microbiome interaction. Hum. Genet. 140, 725–746 (2021).

35. Liu, L. et al. Utility of inverse probability weighting in molecular pathological
epidemiology. Eur. J. Epidemiol. 33, 381–392 (2018).

36. Nishihara, R. et al. Long-term colorectal-cancer incidence and mortality after
lower endoscopy. N. Engl. J. Med. 369, 1095–1105 (2013).

37. Yamauchi, M. et al. Assessment of colorectal cancer molecular features along
bowel subsites challenges the conception of distinct dichotomy of proximal
versus distal colorectum. Gut 61, 847–854 (2012).

38. Mima, K. et al. Fusobacterium nucleatum in colorectal carcinoma tissue according
to tumor location. Clin. Transl. Gastroenterol. 7, e200 (2016).

39. Khashab, M. A., Pickhardt, P. J., Kim, D. H. & Rex, D. K. Colorectal anatomy in adults
at computed tomography colonography: normal distribution and the effect of
age, sex, and body mass index. Endoscopy 41, 674–678 (2009).

40. Inamura, K. et al. Prognostic significance and molecular features of signet-ring
cell and mucinous components in colorectal carcinoma. Ann. Surg. Oncol. 22,
1226–1235 (2015).

41. Ogino, S. et al. Lymphocytic reaction to colorectal cancer is associated with
longer survival, independent of lymph node count, microsatellite instability, and
CpG island methylator phenotype. Clin. Cancer Res. 15, 6412–6420 (2009).

42. Imamura, Y. et al. Analyses of clinicopathological, molecular, and prognostic
associations of KRAS codon 61 and codon 146 mutations in colorectal cancer:
cohort study and literature review. Mol. Cancer 13, 135 (2014).

M Zhao et al.

12

npj Precision Oncology (2023)    57 Published in partnership with The Hormel Institute, University of Minnesota

https://www.nurseshealthstudy.org/researchers%20
https://sites.sph.harvard.edu/hpfs/for-collaborators/
https://sites.sph.harvard.edu/hpfs/for-collaborators/
https://github.com/mm-zhao/BART


43. Gurjao, C. et al. Discovery and features of an alkylating signature in colorectal
cancer. Cancer Discov. 11, 2446–2455 (2021).

44. Mima, K. et al. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA
Oncol. 1, 653–661 (2015).

45. Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative
C(T) method. Nat. Protoc. 3, 1101–1108 (2008).

46. Chan, A. T., Ogino, S. & Fuchs, C. S. Aspirin and the risk of colorectal cancer in
relation to the expression of COX-2. N. Engl. J. Med. 356, 2131–2142 (2007).

47. Fujiyoshi, K. et al. Standardizing gene product nomenclature—a call to action.
Proc. Natl Acad. Sci. USA 118, e2025207118 (2021).

48. Masugi, Y. et al. Tumour CD274 (PD-L1) expression and T cells in colorectal
cancer. Gut 66, 1463–1473 (2017).

49. Morikawa, T. et al. Association of CTNNB1 (beta-catenin) alterations, body mass
index, and physical activity with survival in patients with colorectal cancer. J. Am.
Med. Assoc. 305, 1685–1694 (2011).

50. Masugi, Y. et al. Tumor PDCD1LG2 (PD-L2) expression and the lymphocytic
reaction to colorectal cancer. Cancer Immunol. Res. 5, 1046–1055 (2017).

51. Ansell, S. M. et al. PD-1 blockade with nivolumab in relapsed or refractory
Hodgkin’s lymphoma. N. Engl. J. Med. 372, 311–319 (2015).

52. Borowsky, J. et al. Association of Fusobacterium nucleatum with specific T-cell
subsets in the colorectal carcinoma microenvironment. Clin. Cancer Res. 27,
2816–2826 (2021).

53. Fujiyoshi, K. et al. Tumour budding, poorly differentiated clusters, and T-cell
response in colorectal cancer. EBioMedicine 57, 102860 (2020).

54. Yeo, I.-K. & Johnson, R. A. A new family of power transformations to improve
normality or symmetry. Biometrika 87, 954–959 (2000).

55. Kapelner, A. & Bleich, J. Prediction with missing data via Bayesian additive
regression trees. Can. J. Stat. 43, 224–239 (2015).

56. Benjamin, D. J. et al. Redefine statistical significance. Nat. Hum. Behav. 2, 6–10
(2018).

57. Stensrud, M. J. & Hernán, M. A. Why test for proportional hazards? J. Am. Med.
Assoc. 323, 1401–1402 (2020).

58. Hosmer, D. W. & Lemesbow, S. Goodness of fit tests for the multiple logistic
regression model. Commun. Stat. Theory Methods 9, 1043–1069 (1980).

59. Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw.
28, 1–26 (2008).

60. Kapelner, A. & Bleich, J. bartMachine: machine learning with Bayesian additive
regression trees. J. Stat. Softw. 70, 1–40 (2016).

ACKNOWLEDGEMENTS
The authors would like to acknowledge the contribution to this study from central
cancer registries supported through the Centers for Disease Control and Prevention’s
National Program of Cancer Registries (NPCR) and/or the National Cancer Institute’s
Surveillance, Epidemiology, and End Results (SEER) Program. Central registries may
also be supported by state agencies, universities, and cancer centers. Participating
central cancer registries include the following: Alabama, Alaska, Arizona, Arkansas,
California, Colorado, Connecticut, Delaware, Florida, Georgia, Hawaii, Idaho, Indiana,
Iowa, Kentucky, Louisiana, Massachusetts, Maine, Maryland, Michigan, Mississippi,
Montana, Nebraska, Nevada, New Hampshire, New Jersey, New Mexico, New York,
North Carolina, North Dakota, Ohio, Oklahoma, Oregon, Pennsylvania, Puerto Rico,
Rhode Island, Seattle SEER Registry, South Carolina, Tennessee, Texas, Utah, Virginia,
West Virginia, Wyoming. This work was supported by U.S. National Institutes of Health
(NIH) grants (P01 CA87969; UM1 CA186107; P01 CA55075; UM1 CA167552; U01
CA167552; R01 CA137178 to A.T.C.; K24 DK098311 to A.T.C.; R35 CA197735 to S.O.;
R01 CA151993 to S.O.; R01 CA248857 to S.O.; K07 CA188126 to X.Z.; R21 CA252962 to
X.Z.; R37 CA225655 to J.K.L.; and R35 GM142879 to K.-H.Y.); by Cancer Research UK
Grand Challenge Award (UK C10674/A27140 to K.N., M.G., and S.O.); by Nodal Award
(2016–02) from the Dana-Farber Harvard Cancer Center (to S.O.); by the Stand Up to
Cancer Colorectal Cancer Dream Team Translational Research Grant (SU2C-AACR-
DT22–17 to C.S.F. and M.G.), administered by the American Association for Cancer
Research, a scientific partner of SU2C; and by grants from the Project P Fund, the
Crush Colon Cancer Fund, The Friends of the Dana-Farber Cancer Institute, Bennett
Family Fund, and the Entertainment Industry Foundation through National Colorectal
Cancer Research Alliance and SU2C. J.B. was supported by a grant from the Australia
Awards-Endeavour Scholarships and Fellowships Program. K.H. was supported by
fellowship grants from the Uehara Memorial Foundation and the Mitsukoshi Health
and Welfare Foundation. K.F. was supported by a fellowship grant from the Uehara
Memorial Foundation. K.A. was supported by a grant from Overseas Research
Fellowship (JP2018–60083) from the Japan Society for the Promotion of Science. T.U.
was supported by grants from Prevent Cancer Foundation and Harvey V. Fineberg
Fellowship in Cancer Prevention. S.A.V. was supported by the Finnish Cultural
Foundation and Orion Research Foundation. M.G. is supported by an ASCO Conquer
Cancer Foundation Career Development Award and a High Pointe Investigatorship in

Gastrointestinal Oncology. A.T.C. is a Stuart and Suzanne Steele MGH Research
Scholar. J.A.M. research is supported by the Douglas Gray Woodruff Chair Fund, the
Guo Shu Shi Fund, Anonymous Family Fund for Innovations in Colorectal Cancer, P
fund and the George Stone Family Foundation. The content is solely the
responsibility of the authors and does not necessarily represent the official views
of NIH. The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

AUTHOR CONTRIBUTIONS
Drs. M.Z., M.G., J.A.N., and S.O. conceived of the original study concept and design.
Drs. M.Z. and S.O. designed the analyses. The statistical analyses were carried out by
Dr. M.Z. and reviewed by Dr. M.C.L. Drs. M.Z., J.A.N., K.-H.Y., T.U., and S.O. were assisted
in the interpretation of results by Drs. M.C.L., K.H., J.P.V., and Mr. C.G. Drs. M.Z. and S.O.
drafted the manuscript and all authors provided critical revisions to the manuscript
for important intellectual content. Dr. J.P.V., Mr. C.G., Drs. S.A.V., A.D.C., J.B., K.F., K.A.,
T.H., J.K.L., C.S.F., R.N., A.T.C., K.N., J.A.M., M.G., J.A.N., T.U., and S.O. contributed to the
acquisition of study data. Drs. M.C.L., C.S.F., M.G., J.K.L., K.N., S.O., K.-H.Y., and X.Z.
obtained funding contributing to this manuscript. Study supervision was provided by
Drs. J.A.N., K.-H.Y., T.U., and S.O.

COMPETING INTERESTS
A.T.C. previously served as a consultant for Bayer Healthcare and Pfizer Inc. M.G.
receives research funding from Bristol-Myers Squibb, Merck, Servier and Janssen.
C.S.F. is currently employed by Genentech / Roche and previously served as a
consultant for Agios, Bain Capital, Bayer, Celgene, Dicerna, Five Prime Therapeutics,
Gilead Sciences, Eli Lilly, Entrinsic Health, Genentech, KEW, Merck, Merrimack
Pharmaceuticals, Pfizer Inc, Sanofi, Taiho, and Unum Therapeutics; C.S.F. also serves as
a Director for CytomX Therapeutics and owns unexercised stock options for CytomX
and Entrinsic Health. R.N. is currently employed by Pfizer Inc.; she contributed to this
study before she became an employee of Pfizer Inc. J.A.M. has received institutional
research funding from Boston Biomedical, has served as an advisor/consultant to
Ignyta and COTA Healthcare, and served on a grant review panel for the National
Comprehensive Cancer Network funded by Taiho Pharmaceutical. This study was not
funded by any of these commercial entities. K.-H.Y. is an inventor of U.S. Patent
10,832,406 (not related to this study). This study was not funded by any of these
companies. C.G. is, as of November 2022, a postdoctoral research scientist at
Columbia University of New York City and a part-time bioinformatician at Watershed
Informatics. No other conflicts of interest exist. The remaining authors declare no
competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41698-023-00406-8.

Correspondence and requests for materials should be addressed to Melissa Zhao or
Shuji Ogino.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

M Zhao et al.

13

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2023)    57 

https://doi.org/10.1038/s41698-023-00406-8
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Bayesian risk prediction model for colorectal cancer mortality through integration of clinicopathologic and genomic data
	Introduction
	Results
	BART model stability
	Comparison across machine-learning models
	Important variables for survival prediction for stage II–III colorectal cancer
	Risk prediction model demonstrates risk stratification within stage II–III colorectal cancer
	External validation with TCGA
	Experimental risk prediction calculator based on BART risk model

	Discussion
	Methods
	Study population
	Histopathologic analyses
	Tumor molecular analyses
	Quantitative detection of Fusobacterium nucleatum and Bifidobacterium genus in tumors
	Immunohistochemical analysis
	Multispectral immunofluorescence
	Statistical analysis
	External validation with The Cancer Genome Atlas (TCGA) data
	Reporting summary

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




