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Generating immunogenomic data-guided virtual patients using
a QSP model to predict response of advanced NSCLC to
PD-L1 inhibition
Hanwen Wang 1✉, Theinmozhi Arulraj 1, Holly Kimko 2 and Aleksander S. Popel 1,3

Generating realistic virtual patients from a limited amount of patient data is one of the major challenges for quantitative systems
pharmacology modeling in immuno-oncology. Quantitative systems pharmacology (QSP) is a mathematical modeling
methodology that integrates mechanistic knowledge of biological systems to investigate dynamics in a whole system during
disease progression and drug treatment. In the present analysis, we parameterized our previously published QSP model of the
cancer-immunity cycle to non-small cell lung cancer (NSCLC) and generated a virtual patient cohort to predict clinical response to
PD-L1 inhibition in NSCLC. The virtual patient generation was guided by immunogenomic data from iAtlas portal and population
pharmacokinetic data of durvalumab, a PD-L1 inhibitor. With virtual patients generated following the immunogenomic data
distribution, our model predicted a response rate of 18.6% (95% bootstrap confidence interval: 13.3-24.2%) and identified CD8/Treg
ratio as a potential predictive biomarker in addition to PD-L1 expression and tumor mutational burden. We demonstrated that
omics data served as a reliable resource for virtual patient generation techniques in immuno-oncology using QSP models.

npj Precision Oncology            (2023) 7:55 ; https://doi.org/10.1038/s41698-023-00405-9

INTRODUCTION
Lung cancer is the top leading cause of cancer death in the U.S.
with 130,180 estimated deaths in 20221. Non-small cell lung
cancer (NSCLC) is the most common subtype of lung cancer,
which accounts for about 84% of total lung cancer cases2. Since
2015, immune checkpoint inhibitors targeting programmed cell
death protein (death-ligand) 1 [PD-(L)1] and cytotoxic
T-lymphocyte antigen-4 (CTLA-4) have begun to receive approval
from the U.S. Food and Drug Administration (FDA) for advanced
NSCLC. For patients without actionable mutations [i.e., epidermal
growth factor receptor (EGFR) and anaplastic lymphoma kinase
(ALK)], different immune checkpoint inhibitors are recommended
in single-agent or dual immunotherapy, or in combination with
chemotherapy or bevacizumab, an anti-VEGF antibody, based on
PD-L1 expression level on tumor cells3. PD-L1 expression, as a
regulator of antitumor response, an indicator of T cell infiltration
into the tumor, and the target of immune checkpoint inhibitors,
has been widely used as a predictive biomarker for immunother-
apy in advanced NSCLC4. Although immunotherapy has signifi-
cantly improved the overall survival rate in advanced NSCLC when
compared to conventional treatments, less than half of the
patients respond (including those with >50% PD-L1 expression on
tumor cells), and the 3-year survival rate is significantly lower in
patients without actionable mutations5. Due to the low prevalence
of actionable mutations6, novel combination regimens that
involve immune checkpoint inhibitors are under investigation in
clinical trials3.
In conjunction with the clinical effort, quantitative systems

pharmacology (QSP) models have been developed in the past few
years, aiming to predict clinical benefits of treatment of interest in
complex diseases like NSCLC. QSP integrates mechanistic knowl-
edge from multiple disciplines, such as systems biology, (patho)

physiology, and pharmacology, and investigates dynamic beha-
vior of a system as a whole7. Particularly in immuno-oncology, an
increasing number of QSP models was developed to study drug
exposure-efficacy and exposure-toxicity relationships, predict
efficacy, and identify predictive biomarkers for newly discovered
drugs, including T cell engagers, immune checkpoint inhibitors
(ICIs), and chimeric antigen receptor (CAR) T cells8. The main goal
is to assist drug and clinical trial designs, such as target and dose
optimization, and to reduce the cost and time in drug develop-
ment9,10. Among these efforts, our previously developed QSP
platform, QSP-IO, has been applied to simulate tumor response to
ICIs and their combinations with other types of treatment in early-
stage NSCLC11,12, breast cancer13–15, colorectal cancer16,17, and
hepatocellular carcinoma18. Although recent QSP models provide
reliable efficacy predictions for clinical trials at the population
level, one of the major challenges remains in virtual patient
generation, which aims to generate virtual patient cohorts that
represent the interindividual variabilities observed in real-world
data while falling within the physiologically plausible ranges15.
Although methods have been proposed to guide virtual patient

generation, they have not been widely applied to large-scale
models like QSP19,20. The focus of this study is therefore to
investigate the performance of published virtual patient genera-
tion methods when integrated with our latest QSP-IO platform15.
Specifically, we applied two virtual patient generation methods:
(1) probability of inclusion21 to select virtual patients that
statistically match patient data from the Cancer Research Institute
(CRI) iAtlas, a platform storing results from immunogenomic
analyses of TCGA data22; and (2) compressed latent parameteriza-
tion23 to generate pharmacokinetic (PK) parameters based on
pseudo-patient level data from population PK analysis of
durvalumab, a PD-L1 inhibitor. For model validation, we first
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predicted the objective response rate of the generated virtual
patients to durvalumab to compare with results from Study 1108
(NCT01693562), a phase 1/2 clinical trial in advanced NSCLC24. In
addition, we validated model-predicted immune cell densities
against results from a digital pathology analysis, which is a
quantitative analysis of histological images that provides spatial
densities of immune markers of interest, such as CD4, CD8, and
FoxP3, in different tumor regions25–29.

RESULTS
Model parameterization
Figure 1 illustrates the workflow of the present analysis. We
utilized our previously developed QSP platform15 that describes
the cancer-immunity cycle30 and recalibrated the cancer-type
specific parameters using experimental and clinical data on
NSCLC. Table 1 lists the recalibrated parameters with the data
we used to estimate their values. As we aim to simulate a phase
1/2 clinical trial of durvalumab that enrolled patients with stage III
NSCLC, data on stage III NSCLC were preferentially used when
available. Overall, the model involves four main compartments:
central, peripheral, tumor, and tumor-draining lymph node. Ten
modules were incorporated to investigate dynamics of cellular
and molecular species, including cancer cells, T cells (i.e., effector,
helper, and regulatory T cells), immune checkpoints, and
durvalumab, in their corresponding compartments. Since majority
of the clinical data for virtual patient generation and model
validation (e.g., CD8 and CD4 T cell density) were collected from
tumor samples, the model was best trained to describe immune
cell dynamics in the tumor compartment, which is therefore the
focus of the following analyses. With the recalibrated model, we
first generated 30,000 plausible patients, 629 of which were
selected to form a virtual patient cohort. The selection process was
guided by immune cell subset ratios (i.e., M1/M2, CD8/Treg, and
CD8/CD4) estimated from immunogenomic analysis, as described
below in Methods.

Virtual patient generation
We first confirmed that the virtual patient cohort statistically
matched the immunogenomic data that guided the selection
process. Figure 2a shows the estimated probability densities of the
three immune subset ratios in: 1) the plausible patients, 2) the final
virtual patient cohort, and 3) the immunogenomic dataset from
iAtlas portal22. We also compared the distributions of the three
ratios between the observed data and the virtual patients in
Fig. 2b. When comparing the distributions using Kolmogorov-
Smirnov tests, the test statistics were 0.07, 0.06, and 0.06 with
p-values of 0.30, 0.51, and 0.44, indicating that the virtual patient’s
distributions were not statistically different from those of the
immunogenomic data. Also shown in Fig. 2a, the ranges of
immune subset ratios in the plausible patients were wider than
that in the immunogenomic data, which were narrowed by the
selection process to generate the virtual patient population that
better fitted to the data. Here, we use immune subset ratios
instead of the proportions of immune cells in leukocytes as
reported in iAtlas database because the proportions do not
directly correspond to our model outputs, where immune cell
densities are calculated in cells per cubic milliliter of tumor. In
addition, we only selected data on M1/M2 macrophages, CD8,
CD4, and regulatory T cells because other cellular types on the
database (e.g., natural killer cells, B cells) were not explicitly
represented in the current model.
Next, we validated the virtual patient cohort by comparing

other pre-treatment characteristics of the virtual patients with
observed data from clinical analyses. Figure 3 shows the
probability densities of the pre-treatment tumor size, tumor
doubling time, densities of CD8, CD4, Treg, and tumor-associated

macrophages (TAMs), myeloid-derived suppressor cells (MDSCs),
and PD-L1 expression in the tumor. The median tumor size is
3.7 cm with a range between 1.5 and 9.9 cm, which is consistent
with the measurement from the OAK trial for stage IIIB/IV
NSCLC31,32. The tumor volume doubling time (TVDT) of virtual
patients was calculated by TVDT ¼ δt � log2=ðlogVt2 � logVt1Þ. δt
is the time interval between two CT scans that are usually
performed at diagnosis and at the beginning of the treatment. Vt1
and Vt2 are the measured tumor volumes at the two time points.
Assuming a δt of 8 weeks, we estimated the mean TVDT to be
113 days with a median of 89 days in the virtual patients, which
aligned with clinically measured TVDT of stage III NSCLC33.
The median densities of CD8, CD4, Treg, TAMs, and MDSCs were

2.6e7, 3.2e7, 5.4e6, 3.7e6, and 4.2e4 cells/mL in the tumor, which
were in agreement with multiple digital pathology analyses34–38.
In Fig. 3 and Supplementary Fig. 1, we compared the distributions
of CD8 and CD4 density between virtual patients and clinical data
from patients with stage III NSCLC, which were obtained from
Kilvaer et al.39. The conversion from a 2-D density from digital
pathology analyses to the 3-D density was performed using
equations presented by Mi et al.26. Notably, the ranges of CD8 and
CD4 T cell densities in the virtual patients were wider than that in
the clinical data, which was due to the inherent uncertainty
resulted from model parameterization and virtual patient genera-
tion. Nonetheless, the model-predicted T cell subset densities
likely fell within the physiologically reasonable ranges, as the
proportions of CD8 and CD4 T cells ranged from 0% to 40% in
iAtlas data (zeros were removed when calculating immune subset
ratios to avoid singularities). Overall, the virtual patient cohort
shows a resemblance to real patient populations observed in
clinical analyses of NSCLC.

Variability in pharmacokinetic parameters
According to the population PK (popPK) study of durvalumab,
drug exposure can be affected by characteristics like body weight,
serum albumin, and soluble PD-L1 level40. Although most of these
clinically measured characteristics are not present in the QSP
model, the covariate effect on PK was included during the
reproduction of the PK data to be fitted with the QSP model. Since
immunogenomic data used to select virtual patients above were
not coupled with PK-related data, we independently generated PK
parameters for the virtual patients via compressed latent
parametrization23. This optimization method added an additional
term to the mean-squared-error cost function to limit deviations
from the group-average model (see Methods), and thus allowed
us to maintain the PK parameters within a physiologically
reasonable range.
Figure 4a shows the six PK parameters in the QSP model that

were randomly generated to reflect the variability in PK of
durvalumab. The median capillary filtration rate was 5.6e-6 L/s,
which is in agreement with our previous analysis of the relation-
ship between experimentally observed permeability and the
molecular size of durvalumab41. The median blood volume in
the virtual patients is 5.8 liters, which agrees with the observed
body weight distribution in the popPK study, given that the blood
volume is approximately 70 mL/kg in adult humans. Further, the
volume fraction of interstitial space in peripheral tissues available
to durvalumab ranges from 3.5 to 7.9%, consistent with the
estimation in our previous study42. The clearance rates (both linear
and non-linear) and Michaelis-Menten constant for non-linear
clearance are also consistent with the estimated values in the
popPK study40. The QSP model-predicted serum durvalumab
concentration in the virtual patients is shown with clinically
measured mean and standard deviation in Fig. 4b. Consistent with
clinical observations, durvalumab concentration reached steady
state at approximately week 1643. Model-predicted peak and
trough concentrations after the first dose and the trough
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Fig. 1 Paradigm of immunogenomic data-guided virtual patient generation and in silico clinical trial simulation using a mechanistic
quantitative systems pharmacology model. The model is comprised of four main compartments: central, peripheral, tumor, and tumor-
draining lymph node, which together describe the cancer-immunity cycle. nT naïve T cell, aT activated T cell, NO nitric oxide, Arg-I arginase I,
Treg regulatory T cell, Teff effector T cell, Th helper T cell, Mac macrophage, mAPC mature antigen presenting cell. Cytokine degradation and
cellular clearance are omitted in the figure. Created with BioRender.com.
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concentration at steady state were comparable to clinical
measurements from Study 1108 and the ATLANTIC trial (Supple-
mentary Table 1)43.

Predicting tumor dynamics during PD-L1 inhibition
With the PK parameters randomly generated from the latent
space, we simulated PD-L1 inhibition in the virtual patient cohort.
Durvalumab was administered with 750 mg flat doses every 2
weeks (Q2W) once each virtual patient reached the preset initial
tumor diameter ranging from 1.5 to 9.9 cm (Fig. 3). Tumor
response to the treatment was analyzed in two virtual patient
subgroups divided based on PD-L1 expression in the tumor with a
threshold of 25%, which corresponds to the threshold used in
Study 110824. In the clinical setting, PD-L1 expression is the
percentage of tumor cells that exhibit membrane staining by the
reagent24. According to our model prediction, the majority of the
cells that express PD-L1 in the tumor were cancer cells, and since
the PD-L1 density in the model was defined as the average PD-L1
level on cells in the tumor, we approximated the PD-L1 expression
by dividing the model-predicted PD-L1 density by a theoretical
maximum level of 1770 molecules/μm2. The maximum level was
estimated by the in vitro measurements of PD-L1 density on
mature dendritic cells44,45. Due to the lack of data on PD-L1
expression in NSCLC tumors, we estimated the average baseline
PD-L1 expression (Table 1) so that the proportion of virtual
patients that fell within each subgroup matched that reported by
Study 110824.
Figure 5 shows the percentage change of tumor size and the

best overall tumor size change in the two patient subgroups.
Although the model predicted a faster median tumor growth for
non-responders with a PD-L1-high tumor, responders in the PD-
L1-high group showed a faster median tumor size reduction
during early stage of the treatment. Specifically, 22.6% of the

responders in the PD-L1-high group responded by week 6, as
opposed to 6.1% in the PD-L1-low group. According to RECIST 1.1,
the model predicted an objective response rate (ORR) of 18.6%
with a 95% bootstrap confidence interval of (13.3, 24.2)% in the
virtual patient cohort. In PD-L1-high and -low groups, ORRs were
predicted to be 23.8 (16.3, 32.7)% and 12.0 (5.5, 20.2)%,
respectively. The increase in ORR in the PD-L1-high group was
potentially due to the positive correlation between PD-L1
expression and T cell infiltration (Supplementary Fig. 2), which
was also clinically observed36. Comparing to the model-predicted
ORRs, the clinically reported ORRs in Study 1108 (21.8% and 6.4%
for PD-L1 high vs. low) fall within the model-predicted 95%
confidence intervals, while the difference in predicted ORRs
between the two subgroups is narrower than that in the clinical
trial. Our ORR prediction may be further improved by including
new lesion formation in the model, since a large portion of the
patients with low PD-L1 expression in Study 1108, despite having
a > 30% tumor size reduction, was categorized as non-responder
due to detection of new lesion(s)24.
To further examine the performance of the virtual patient

generation method, we simulated the same dose regimen of
durvalumab in virtual patients selected by different combinations
of immunogenomic data. Supplementary Table 2 shows that
model-predicted ORRs were similar among virtual patient
populations selected by any data combinations. This is likely
because the parameter distributions that generate plausible
patients were already manually calibrated to NSCLC data (see
Methods). However, when we selected virtual patients by data on
lung adenocarcinoma (LUAD) or lung squamous cell carcinoma
(LUSD) separately, the model predicted higher ORR in LUSC with a
median CD8/Treg ratio almost twice as high as that in LUAD,
which aligned with clinical findings46. This observation suggests
that the virtual patient generation method is capable of
generating virtual patient populations that fit to particular patient

Table 1. Non-small cell lung cancer (NSCLC)-specific parameters in the quantitative systems pharmacology model.

Parameter Value Unit Description

k C1 growth 0.007 1/day Rate of cancer cell proliferation in clone C1, estimated by the clinically observed tumor volume doubling
time33.

C max 1.5e11 cell Maximal tumor carrying capacity corresponding to a maximal tumor size of 10 cm.

γT 5% dimensionless Volume fraction of vascular space in NSCLC tumor estimated by dividing pulmonary vessel volume70 by
the total lung tissue volume71 and assuming vascular space in NSCLC is about 29% of that in normal lung
tissue72.

Ve 75% dimensionless Volume fraction of intracellular space in NSCLC tumor73.

T PD1 176 molecule/µm2 Average PD-1 density on T cells in the tumor15.

C PDL1 250 molecule/µm2 Average baseline PD-L1 density on cancer cells/antigen-presenting cells in the tumor in absence of IFNγ
assuming it is 6-fold lower than the maximal density15.

C CD47 100 molecule/µm2 Average CD47 density on cancer cells in the tumor estimated based on the experimentally observed
increase of phagocytosis index when CD47-SIRPα interaction is blocked in NSCLC74.

n T1 clones 92 dimensionless Number of NSCLC-specific T cell clones11 that can recognize cancer cell clone C1.

n T0 clones 100 dimensionless Number of tumor-associated self-antigen-specific T cell clones11 that activate regulatory T cells.

k P1 d1 40 nmol/L Average binding affinity between NSCLC neoantigens and major histocompatibility complex (MHC)
molecules11.

k MDSC rec 2000 cell/(mL*day) Rate of MDSC recruitment into the tumor estimated by digital pathology analysis of NSCLC tumor
samples34.

k Mac rec 200000 cell/(mL*day) Rate of macrophage recruitment into the tumor estimated by digital pathology analysis of NSCLC tumor
samples35.

k M1 pol 0.02 1/day Rate of M2-to-M1 macrophage polarization estimated by M1/M2 ratios calculated from TCGA data
analysis22,75.

nLNs 21 dimensionless Number of tumor-draining lymph node surrounding the tumor11.

D cell 16.9 µm Diameter of a single NSCLC cell11.

initial tumour size 3.7 cm Pre-treatment tumor diameter estimated by the measured target lesion sizes at diagnosis in the OAK
trial31,32.
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subgroups while reducing the inherent uncertainty (as seen above
in Fig. 2a).
Next, we investigated the correlations between response status

and PK variables, including the peak (Cmax), trough (Cmin)
durvalumab concentration, and area under concentration curve
(AUC) at early time points and steady state (week 16), as well as
drug accumulation indices. Supplementary Fig. 3 shows that the
peak durvalumab concentration and AUC from day 0-14, as well as
the peak concentration at steady state, were significantly higher in
responders. We further divided the virtual patient into 5
subgroups with increasing level of each PK variable and calculated
the ORR of each subgroup in Supplementary Fig. 4. Interestingly,
the ORR increased as Cmax and AUC of the first dose (day 0-14)
increased, with about a 14% difference in ORR between the
2 subgroups with the highest and the lowest level of Cmax;1 or
AUC0�14. Nonetheless, a reverse trend, even though non-
significant, was observed between ORR and Cmax;1 in patients
with urothelial carcinoma from Study 110843.
To investigate the performance of potential predictive biomar-

kers in NSCLC, we compared their distributions between
responders and non-responders from the overall virtual patient
cohort. Figure 6 shows that responders have significantly higher
CD8/4T cells, PD-L1 level, CD8/Treg and CD8/CD4 ratios, number
of NSCLC-specific T cell clones (TCC), and significantly lower
MDSCs. Similar correlations between clinical response and CD8 T
cell density, CD8/Treg and CD8/CD4 ratios were observed in a
clinical trial of PD-1 inhibition in NSCLC36. In addition, the number
of NSCLC-specific T cell clones was found to be correlated with
tumor mutational burden47, which is a known predictive

biomarker for immune checkpoint inhibition in NSCLC48. Next,
we divided virtual patients into 5 subgroups with increasing level
of each biomarker and calculated the ORR of each subgroup.
Figure 7 confirmed that ORR increased as the biomarkers
identified above increased (or decreased in case of MDSC).
However, the disease control rate, which is defined as the
percentage of patients with complete/partial response and stable
disease, increases only when CD8/Treg, CD8/CD4, and TCC
increase or when MDSC decreases.
To study the combined effect of the predictive biomarkers, we

trained a random forest model using pre-treatment CD8/4T cells,
PD-L1 expression, CD8/Treg, CD8/CD4 ratios, MDSC density, and
TCC (see Methods). As a prerequisite, we calculated the correlation
matrix to make sure that the variables were not strongly
correlated (Supplementary Fig. 5A). The variable importance of
all pre-treatment biomarkers is shown in Supplementary Fig. 6A,
with CD8/Treg ratio, PD-L1 expression, CD8 density, and TCC
identified as top important variables by the random forest model.
With ROC analysis, we selected thresholds for the four predictive
biomarkers that achieved a sensitivity of 80% (Fig. 8a). The
thresholds for CD8/Treg ratio, PD-L1 expression, CD8 density, and
TCC were 4.1, 21%, 151 cells/mm2, and 72 (with specificity of 47%,
35%, 37%, and 34%), respectively. Here, we converted the CD8
density from 3-D to 2-D that corresponds to the outcome of digital
pathology analysis26. Further, we performed similar analyses on
on-treatment biomarkers. We selected CD8/Treg ratio and CD8
density at the end of first treatment cycle (day 14), which were
identified by the random forest model as the two most important
variables (Supplementary Figs. 5B, 6B). The thresholds, according

Fig. 2 Comparison of pre-treatment immune cell subset ratios between the virtual patient cohort and immunogenomic data.
a Probability density of immune subset ratios (i.e., M1/M2, CD8/Treg, and CD8/CD4) in the immunogenomic data (red lines), the randomly
generated plausible patient population (orange bars), and the selected virtual patients (blue bars). b The 25th, 50th, and 75th percentiles are
encoded by box plots with whiskers that define 1.5 times the interquartile range away from the bottom or top of the box. Natural-log
transformation was performed for the immune cell subset ratios during virtual patient generation.
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to ROC analysis in Fig. 8b, were selected to be 5.1 and 176 cells/
mm2 (with specificity of 52% and 41%). Overall, CD8/Treg ratio
showed the best performance with the highest specificity and
area under ROC curve (Fig. 8). In comparison, Kim et al. analyzed
tumor-infiltrating lymphocytes in 33 primary lung lesions from
advanced NSCLC and found that a Treg/CD8 ratio cutoff of 0.25
achieved a sensitivity and specificity of 82.6% and 65.4% in
predicting response to anti-PD-1 treatment36. In a meta-analysis, Li
et al. also identified tumor PD-L1 expression and mutational
burden as predictive biomarkers (both with specificity of about
30% when sensitivity is 80%) for anti-PD-(L)1 treatment in
NSCLC49,50.

To explore dynamics of immune cells during immunotherapy,
we visualized the time-dependent profiles of immune cells in the
central (Supplementary Fig. 7) and tumor compartment (Supple-
mentary Fig. 8). Supplementary Fig. 7 shows that all activated T
cell subsets in blood, including CD8, CD4, helper T cells, and Tregs
were increased by durvalumab in responders, while CD8/Treg and
CD8/CD4 ratios decreased over time in responders. On the
contrary, immune cells in the non-responders had opposite
dynamics when compared to the responders. For immune cells
in the tumor, Supplementary Fig. 8 shows that activated T cell
subsets also increased in responders during PD-L1 inhibition.
However, unlike T cell ratios in blood, CD8/CD4 ratio increased in

Fig. 3 Probability density of model-predicted pre-treatment variable distribution in the virtual patient cohort. Clinical data on tumor size
were from the OAK trial31,32. CD8 and CD4 T cell densities in NSCLC tumor were obtained from Kilvaer et al.39. Average PD-L1 expressions on
cell surface were estimated by dividing the model-predicted average PD-L1 density across all cells in the tumor by a theoretical maximal PD-
L1 density of 1770 molecules/μm2.
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responders, and CD8/Treg ratio was transiently increased by
durvalumab in responders for the first two months and did not
drastically change from the baseline level in the long term.
Furthermore, M1/M2 ratio decreased and MDSC density increased
in responders, suggesting that TAMs and MDSC may partly
contribute to resistance to immunotherapy in NSCLC51. Sensitivity
analysis (Supplementary Fig. 9) also suggested that recruitment of
MDSC, Th-to-Treg differentiation, and M2 polarization could be
potential targets of drugs that can be combined with durvalumab,
as parameters related to these mechanisms were among the most
influential ones to tumor size at the end of durvalumab treatment.

DISCUSSION
In the present study, we revisited PD-(L)1 simulation in NSCLC with
the latest QSP model expansion and attempted to address the
challenge on generating heterogeneous yet physiologically
realistic virtual patients, which was raised in our previous
studies13–15. In terms of model structure, we utilized our
previously developed QSP model of TNBC and incorporated an
additional source of IFNγ in the tumor microenvironment (see
Methods). In addition, baseline values of cancer type-specific
parameters were recalibrated by experimental and clinical data on
stage III NSCLC. Notably, PD-L1 in the model represents the

Fig. 4 Variabilities in pharmacokinetics of durvalumab in virtual patients. a Distribution of fitted pharmacokinetic parameter values in the
virtual patient cohort. b Model-predicted durvalumab serum concentration following a flat-dosing regimen of 750mg every 2 weeks (Q2W).
Green line represents the median model prediction; Orange lines represent the 5th and 95th percentiles.
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average expression on all tumor cells, including cancer cells and
immune cells, that can interact with PD-1 on activated T cells and
TAMs to inhibit Teff-mediated cancer killing and TAM-mediated
phagocytosis. However, PD-L1 on different cell types may have
different roles in the tumor microenvironment52, and thus can be
separately modeled in future studies. In addition, PD-L1 expres-
sion is upregulated only by IFNγ in the current model, so we
assume a baseline PD-L1 expression to match the percentage of
virtual patients in the PD-L1-high and PD-L1-low groups as
observed in the clinical trial. It should be noted that multiple
inflammatory signaling pathways are involved in PD-L1 upregula-
tion, which results in the clinically observed heterogeneous PD-L1
expression53. Additional mechanistic details can be incorporated
into the model when sufficient experimental data become
available for model calibration.
One of our main focuses is to improve our approach to virtual

patient generation. In previous studies, we randomly generated
deviations around baseline parameter values assuming uniform,
log-uniform, or log-normal distribution, and manually calibrated
the distribution statistics (e.g., standard deviation, upper and
lower boundaries) so that the summary statistics in virtual patients
matched those reported by clinical analyses15. This is a time-
consuming process, which becomes even more challenging when
fitting to multi-dimensional data. The probability of inclusion
proposed by Allen et al. allowed us to select virtual patients that
statistically matched the observed data from the randomly

generated plausible patients21, and iAtlas portal provided
cancer-specific patient-level data for this method. However, unlike
the model of cholesterol metabolism presented by Allen et al.,
physiologically plausible ranges for the present QSP model
variables are not well established due to the insufficient biological
understanding of the tumor microenvironment. Therefore, we
could not apply the additional step to optimize plausible patients
via simulated annealing before calculating the probability of
inclusion, which would further improve confidence in model
predictions by constraining virtual patients within the physiolo-
gically reasonable ranges21. Comparing to the results from Allen
et al., a similar proportion (2-3%) of plausible patients in this study
was included in the final virtual patient cohort, which depended
on the data dimensionality and the initial distribution of plausible
patients21,54.
Besides the three immune subset ratios that were used to select

virtual patients in the present analysis (Fig. 2), there are other
patient characteristics, such as cancer cell growth rate, T cell
clonality, and binding affinity between neoantigen and MHC
molecules, which also differ among patients but cannot be directly
obtained from the immunogenomic data. In future analyses,
machine learning algorithms can be applied on multi-omics data
to predict model-related parameter values55–57. Importantly, we
have demonstrated here that the virtual patients generated by the
QSP model and selected by the three immune subset ratios were
able to capture the inter-patient heterogeneity while being

Fig. 5 In silico clinical trial simulation of PD-L1 inhibition in virtual patients. a, b Percentage change in tumor size over time upon drug
administration. c, d The best overall tumor size change throughout the treatment. Results were shown for PD-L1-low (a, c; N= 276) and PD-L1-
high (b, d; N= 353) virtual patient subgroups. R responders, NR non-responders, PD progressive disease, SD stable disease; PR/CR partial/
complete response.
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consistent with unseen digital pathology data on immune cell
densities in NSCLC tumor.
To account for variability in PK of durvalumab and predict its

intratumoral concentration, we fitted PK parameters in the QSP
model to the data simulated from the time-dependent popPK
model40 via compressed latent parameterization. This method not
only considers the covariance between parameters but also
minimizes parameter deviations from the group-average value
when there is a lack of parameter identifiability23. One of the
limitations, however, is that the popPK data and the immunoge-
nomic data were collected from two different patient populations,
so the covariances between PK-related characteristics and
immunogenomic data were not accounted for during virtual
patient generation. In addition, as the patient data in iAtlas portal
were not body weight dependent, we simulated 750 mg flat
dosing instead of weight-based dosing.
With the virtual patients that have shown resemblance to real

patient data, we investigated if the model could make reliable
efficacy prediction for durvalumab in stage III NSCLC. Following
the same dose regimen in Study 1108, we simulated 750mg doses
every 2 weeks and divided virtual patients into two subgroups
based on their PD-L1 expression on tumor cells. The model
predictions fell within the clinically reported confidence intervals
and confirmed that patients with high PD-L1 expression have a
higher ORR than the PD-L1-low group. It should be noted that the
appearance of new lesions (e.g., locoregional and distant

metastases) is not a rare event especially during treatment of
late-stage NSCLC24,58, which would be categorized as progressive
disease regardless of the tumor size change. New lesions are most
likely seeded before therapy begins and grow to a detectable size
during the treatment59,60. This stochastic process, which may
require a hybrid modeling technique or approximation methods
to integrate into the QSP model61,62, may be addressed if relevant
data become available in the future.

METHODS
Overview of the QSP modeling platform for immuno-oncology
(QSP-IO)
This work was built upon our latest QSP-IO platform15 with
modifications specified below. The QSP model comprises four
main compartments: central (C), peripheral (P), tumor (T), and
tumor-draining lymph node (LN). These compartments represent
the circulating blood, lumped peripheral tissues/organs, tumor
microenvironment, and lumped tumor-draining lymph nodes,
respectively. Ten modules were involved in this study, which
described dynamics of cancer cells, T cells (i.e., effector, helper,
and regulatory T cells), antigen-presenting cells, neo/self-antigens,
therapeutic agent, immune checkpoints, myeloid-derived sup-
pressor cells (MDSCs), and tumor-associated macrophages (TAMs).
Cancer type-specific parameters were reparametrized to NSCLC
based on experimental data, preferentially from stage III NSCLC if
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available (Table 1). In addition, we modified our previous
assumption so that the main source of interferon-gamma (IFNγ)
was not limited to activated CD4 helper T cells. Instead, we
assumed that activated CD8 T cells also produced IFNγ with a rate
3 times higher than CD4 T cells63. For cancer cell growth, we
assumed logistic growth for NSCLC with a constant maximum
carry capacity of 10 cm (Table 1).
Overall, there are 255 parameters, 141 ODEs, and 40 algebraic

equations (model rules with repeated assignments). Model
compartment, parameter, reaction, species, and rules are listed
in Supplementary Data 2–6. Model simulations were performed
using SimBiology Toolbox in MATLAB R2020b (Mathworks, Natick,
MA) with ODE solver, SUNDIALS. Each simulation started from a
single cancer cell, and tumor volume was calculated at each time
step via Eq. 1. Ctotal , Ttotal , and Mtotal are the total number of cancer
cells, T cells, and TAMs; Vcell , VTcell , and VMcell are volumes of single
cancer cell, T cell, and macrophage; Cx and Texh are the numbers
of dying cancer cells and exhausted T cells; and Ve;T is the volume
fraction of intracellular space in NSCLC tumor. During

postprocessing, tumor diameter was estimated assuming a
spherical tumor.

VT ¼ 1
Ve

Vcell Ctotal þ Cxð Þ þ VTcell T total þ Texhð Þ þ VMcellMtotalð Þ (1)

Virtual patient generation
To account for interindividual variability that results in the
heterogeneous tumor response to immunotherapy, we selected
a subset of model parameters, which are known to differ among
patients, and generated random deviations around their baseline
values using Latin-hypercube sampling (LHS). The distribution
statistics (e.g., standard deviation, upper and lower boundaries)
were estimated based on available clinical observations and
experimental data on NSCLC (Supplementary Data 1). In theory,
each randomly generated parameter set represents a virtual
patient64. However, to avoid confusion, we define the virtual
patients generated at this step as plausible patients. Notably, each

Fig. 7 Effect of pre-treatment variables on objective response. For each variable of interest, virtual patients are sorted by the variable
amount in ascending order, and evenly divided into 5 subgroups. The response status of each subgroup is plotted against the corresponding
median variable amount. Blue represents partial or complete response. Green represents stable disease. Red represents progressive disease.
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patient was randomly assigned a preset initial tumor diameter
(see initial tumour size in Table 1)31,32. When the tumor size
reached the preset value, the model variables were saved and
treated as the pre-treatment characteristics for the corresponding
patient. At this step, we generated 30,000 plausible patients.
To generate a virtual patient cohort whose characteristics

statistically match the real patient population, we adapted the
probability of inclusion proposed by Allen et al.21. We first
explored the “Immune Cell Proportions” data from the “Immune
Feature Trends” module in iAtlas portal (https://isb-
cgc.shinyapps.io/shiny-iatlas/) by selecting TGCA subtypes: lung
adenocarcinoma (LUAD) and lung squamous cell carcinoma
(LUSC), which are the two major subtypes of NSCLC22,65. Then,
we downloaded the proportions of CD8, CD4, and regulatory T cell
(Treg), M1 and M2 macrophages from analyses of the two TCGA
subtypes; and we generated a 3-dimensional patient-level data
containing ratios between CD8 T cells and Tregs, CD8 and CD4
T cells, and M1 and M2 macrophages, all of which have
corresponding QSP model species. Data points that contained
zero value(s) were removed to avoid singularities. Moreover, as the
TCGA data were collected from untreated patients, they corre-
spond to the pre-treatment characteristics predicted by the
model66. Finally, we calculated the probability of inclusion via
Eq. 2, which is the conditional probability of including a plausible
patient into the final virtual patient cohort (i.e., S θð Þ ¼ 1) given the
model prediction M θð Þ ¼ r.

P S θð Þ ¼ 1jM θð Þ ¼ rð Þ ¼ β
ρobsðrÞ
ρsimðrÞ

(2)

Here, S is a logical function that equals to 1 if the plausible
patient θ should be included and 0 if otherwise, and M represents
the QSP model that predicts time-dependent profile of model
variables for the plausible patient θ. In this study, we focused on
the model-predicted pre-treatment ratios that corresponded to
the data from iAtlas (i.e., CD8/Treg, CD8/CD4, and M1/M2).
Additionally, ρobsðrÞ and ρsim rð Þ are the probability density
estimate for model-predicted ratios, r, in the observed data and
the plausible patients, respectively. Probability densities were
estimated by ρ rð Þ ¼ N

VNðrÞ where VNðrÞ is the volume of an
N-dimensional hypersphere with radius defined by the distance
to the N-th nearest-neighbor of r. N was typically chosen from 5 to
10 in this study. The constant β was optimized by the simulated
annealing algorithm to minimize the average two-sample
Kolmogorov-Smirnov test statistic when evaluating the difference

between the empirical cumulative distribution functions of the
observed data from real patients and the predicted values from
selected virtual patients21. With the optimal β, virtual patients
were selected based on the inclusion probability to generate the
final virtual patient cohort.

In silico clinical trial
To account for the interindividual variability in pharmacokinetics
of durvalumab, we applied compressed latent parameterization
proposed by Tivay et al.23 to generate PK parameters for the
virtual patients. Since this method required patient-level PK data
for durvalumab, which were not available from published studies,
we first generated time-dependent durvalumab PK of 400 pseudo-
patients based on the population PK (popPK) study by Baverel
et al.40. Specifically, we assumed log-normal distribution for
patient characteristics, such as serum albumin level, body weight,
and soluble PD-L1 level, and we estimated the standard deviations
based on the reported means and ranges. For categorical
variables, including sex and Eastern Cooperative Oncology Group
(ECOG) performance status, we assumed binomial distribution
with probabilities estimated by the summary statistics of
corresponding patient characteristics. Based on the estimated
distributions, we randomly generated characteristics of 400
pseudo-patients and calculated values for linear clearance, Cl,
maximum elimination rate, Vmax, and volumes of the two
compartments, V1 and V2, in the popPK model using algebraic
equations provided by Baverel et al.40. Intercompartmental
clearance, Q, was assumed to be 0.476 L/day for all patients.
Since time-dependent profile of the patient characteristics were
not available, we assumed they were constant over time. With the
following ODEs for the two-compartment popPK model, we
simulated the durvalumab concentration profile in the 400
pseudo-patients40.

V1
d
dt

A½ �1 ¼ Q � A½ �2 � A½ �1
� �� Cl � A½ �1 � Vmax

A½ �1
A½ �1 þ Km

(3)

V2
d
dt

A½ �2 ¼ Q � A½ �1 � A½ �2
� �

(4)

The first step of compressed latent parameterization is to find

the “group-average” model defined by θ ¼ argminθjjY� ŶðθÞjj22,
where Y is a matrix storing data from all patients and ŶðθÞ is the
corresponding model predictions23. Here, due to the high
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variability in durvalumab PK, we defined Y as an Nt-by-1 vector
storing the median durvalumab concentration in the 400 pseudo-
patients at each time point (Nt is the length of the time vector),
and ŶðθÞ as an another Nt-by-1 vector storing the QSP model-
predicted durvalumab concentration given an input PK parameter
set θ. We fitted six PK parameters, which were capillary filtration
rate, blood volume, volume fraction of interstitial space in
peripheral tissues available to durvalumab, linear and maximum
non-linear clearance rates, and Michaelis-Menten constant for
non-linear clearance, using MATLAB function, fmincon. Then, we
randomly generated k= 500 random local deviations around the
group-average model, which was stored in a 6-by-k matrix Θ. The
corresponding changes in model-predicted serum durvalumab
concentration were stored in a Nt-by-k vector ŶΘ. Through
singular value decomposition of the covariance matrix
C ¼ ŶΘΘ

T ¼ USVT, we got a 6-by-6 matrix V whose columns are
sorted orthogonal directions of maximum covariance in the
parameter space23. Further, we fitted the six PK parameters in the
QSP model to the pseudo-patient data generated above via

θi ¼ argminθjjYi � ŶðθÞjj22 þ λjjðθ� θÞTVjj1, and a l atent para-

meter space was constructed via ϕT ¼ θTV� θ
T
V, where θ is a 6-

by-400 matrix storing all fitted parameter sets. Finally, new PK
parameter sets were randomly generated from the latent space
via θVPi ¼ Vϕi þ θ for the virtual patients, where the 6-by-1 vector
ϕi was randomly sampled from the latent space ϕ assuming
independent uniform distribution for each dimension of the latent
parameter space.
With the final virtual patient cohort, we simulated their tumor

response to durvalumab treatment starting from the time point
when the tumors reached their preset initial diameter (i.e., pre-
treatment tumor size), following the same settings in a phase 1/2
clinical trial of durvalumab (NCT01693562)24. 10 mg/kg durvalu-
mab was administered every 2 weeks (Q2W) via a SimBiology dose
object. Tumor diameters were recorded at 6, 12, and 16 weeks,
and every 8 weeks thereafter, corresponding to the frequency of
pre-scheduled tumor size measurement in the clinical trial. Clinical
response was classified by RECIST v1.167 with a minimum duration
of stable disease of 6 weeks.

Statistical analyses
For comparison between model-predicted ORRs and clinical
observation, bootstrap sampling was performed to resample the
virtual patient (sub)population with a sample size matching the
number of patients in the corresponding subgroups (i.e., PD-L1
high/low) in Study 1108. The bootstrap median and the 95
percentile confidence intervals were then calculated. Wilcoxon
tests were conducted using ranksum function in MATLAB 2020b.
Random forest models were trained on potential predictive

biomarkers of interest to predict response status using caret and
randomForest packages in R 4.2.3. For each model, 500 trees were
trained, and each tree was trained on two-thirds of the data
points. The out-of-bag error is defined as the error rate of each
tree in predicting the data excluded by the training set (i.e., out-of-
bag samples). The Mean Decrease Accuracy for each variable is the
average decrease of model accuracy in predicting outcomes of the
out-of-bag samples when a particular variable is excluded from
the model, which is reported as variable importance. Receiver
Operating Characteristic (ROC) analyses were performed by
perfcurve function in MATLAB 2020b.
Sensitivity analysis was performed using Morris screening/

elementary effects method68,69 with an 11-level grid and a step
size Δ of 1/10 for the 30-dimensional hypercube [0,1]30 (i.e., 30
input parameters specified in Supplementary Data 1). Actual
values of the 30 parameters were calculated based on their
distributions (Supplementary Data 1) by treating the sampled
points from the hypercube as quantiles69. 1000 trajectories were

randomly generated at the beginning. Trajectories with points fell
outside the hypercube, as well as those with points containing 0%
and 100% quantiles for parameters with lognormal distribution,
were disregarded. Overall, 34 successful trajectories were plugged
into the model to simulate tumor sizes at day 400 of durvalumab
treatment, which were used to calculate the elementary effects
(EEs). Finally, the variance σ2 and the mean absolute values μ� of
the EEs were estimated for each parameter69.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Immunogenomic data are available under “Immune Feature Trends” in iAtlas
database (https://isb-cgc.shinyapps.io/shiny-iatlas/). Lung adenocarcinoma (LUAD)
and Lung squamous cell carcinoma (LUSC) can be selected under “TCGA Subtype” in
“Explorer Settings”.

CODE AVAILABILITY
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