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CT radiomic signature predicts survival and chemotherapy
benefit in stage I and II HPV-associated oropharyngeal
carcinoma
Bolin Song1, Kailin Yang2, Vidya Sankar Viswanathan1, Xiangxue Wang 3, Jonathan Lee 4, Sarah Stock4, Pingfu Fu 5, Cheng Lu1,
Shlomo Koyfman2, James S. Lewis Jr6 and Anant Madabhushi 1,7✉

Chemoradiation is a common therapeutic regimen for human papillomavirus (HPV)-associated oropharyngeal squamous cell
carcinoma (OPSCC). However, not all patients benefit from chemotherapy, especially patients with low-risk characteristics. We aim
to develop and validate a prognostic and predictive radiomic image signature (pRiS) to inform survival and chemotherapy benefit
using computed tomography (CT) scans from 491 stage I and II HPV-associated OPSCC, which were divided into three cohorts
D1–D3. The prognostic performance of pRiS was evaluated on two test sets (D2, n= 162; D3, n= 269) using concordance index.
Patients from D2 and D3 who received either radiotherapy alone or chemoradiation were used to validate pRiS as predictive of
added benefit of chemotherapy. Seven features were selected to construct pRiS, which was found to be prognostic of overall
survival (OS) on univariate analysis in D2 (hazard ratio [HR] = 2.14, 95% confidence interval [CI], 1.1–4.16, p= 0.02) and D3

(HR= 2.74, 95% CI, 1.34–5.62, p= 0.006). Chemotherapy was associated with improved OS for high-pRiS patients in D2 (radiation vs
chemoradiation, HR= 4.47, 95% CI, 1.73–11.6, p= 0.002) and D3 (radiation vs chemoradiation, HR= 2.99, 95% CI, 1.04–8.63,
p= 0.04). In contrast, chemotherapy did not improve OS for low-pRiS patients, which indicates these patients did not derive
additional benefit from chemotherapy and could be considered for treatment de-escalation. The proposed radiomic signature was
prognostic of patient survival and informed benefit from chemotherapy for stage I and II HPV-associated OPSCC patients.
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INTRODUCTION
There has been a significant increase in the incidence of HPV-
associated oropharyngeal squamous cell carcinoma (OPSCC) over
the past several decades1. Based on data from 2015 to 2019, about
47,199 new HPV-associated cancers occurred in the United States
each year, accounting for about 70% of cancers of the
oropharynx1. It has been shown that patients with HPV-
associated OPSCC demonstrate improved treatment response to
chemoradiation and prognosis compared to patients with HPV
independent OPSCC, whose tumors are much more often
associated with alcohol and tobacco use2. A distinct tumor, node
and metastasis (TNM) staging system for HPV-associated OPSCC
patients was established in the 8th edition of the American Joint
Commission on Cancer (AJCC) staging system to account for the
unique clinical characteristics3. However, recent studies report that
the differentiation of outcome between the AJCC 8th stage
groups remains less than satisfactory4,5. New biomarkers to
improve AJCC 8th staging in risk stratification within the HPV-
associated OPSCC population is sorely needed.
Previous studies have shown that using concurrent chemor-

adiation as definitive treatment confers lower local and regional
failure rates compared with radiotherapy alone for high risk
OPSCC. However, the addition of chemotherapy can cause
increased treatment-related toxicity, a particular concern for
patients with HPV-associated OPSCC who are at low risk for
disease recurrence6–8. Skillington et al. compared the outcomes of

195 p16-positive, surgically managed OPSCC patients and found
that receiving chemotherapy did not provide additional disease-
free survival benefit and was associated with worse overall
survival, potentially due to the lack of benefit from the additional
chemotherapy in low-risk patients6. Furthermore, toxicity from the
chemotherapy was also observed9–11. Significant deteriorations in
swallowing outcome occurred in those who had chemotherapy in
addition to radiotherapy9. To reduce treatment toxicity without
compromising survival outcomes for HPV-associated OPSCC
patients, recent clinical studies have focused on identifying
patients suitable for treatment de-escalation with lower dose
radiotherapy and also for potentially avoiding the use of
chemotherapy without compromising survival outcome12,13. This
highlights the need for developing a predictive biomarker to
distinguish which low-risk OPSCC patients may not benefit from
chemotherapy and thus for whom such toxic treatments could be
avoided, without compromising patient outcomes.
With the advent of computerized image analysis and an

increased attention paid to machine learning, there is an
opportunity for deep mining of computer-extracted image
features to inform patients’ outcome and to guide treatment
intensities14–17. Radiomics, which seeks to identify subtle image-
based attributes related to tumor phenotypes18,19 and prog-
nosis20,21 is useful in not only identifying the presence of disease
on radiographic scans but also in helping identify features that
related to disease outcome and treatment response. Although a
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few studies have shown that machine learning based prognostic
classifiers can predict molecular subtype18,19 and survival20,21 in
head and neck cancer, there has been no methodology available
to evaluate the predictive utilities of these approaches for
chemotherapy benefit among HPV-associated OPSCC patients.
Those patients with low risk of disease recurrence (AJCC 8th
edition stage I and II patients) who would not derive additional
benefit from chemotherapy could therefore potentially avoid the
toxicity induced by chemotherapy.
In this work, we interrogate a prognostic and predictive

radiomic image signature (pRiS) that employs quantitative texture
features derived from within and around the primary orophar-
yngeal tumor on treatment planning CT scans to predict survival
and chemotherapy benefit. Using a total of 491 patients from
4 sites, treated either with radiotherapy + chemotherapy or
radiotherapy alone, our goal is to investigate if pRiS is (a)
prognostic of survival and (b) associated with chemotherapy
benefit in AJCC stage I and stage II HPV-associated OPSCC
patients.

RESULTS
Clinical characteristics
Table 1 lists the detailed demographic and clinical characteristics
of the patients in cohorts D1 (n= 60), D2 (n= 162), and D3

(n= 269). Of the total 491 patients included in the study, 409
(83.3%) were men, and the median (interquartile range) age was
59 (53.8–64.2) years. 223 patients (45.4%) had AJCC 8th edition
stage I OPSCC, of which 128 (57.4%) patients received chemother-
apy. 268 patients (54.6%) had AJCC 8th edition stage II OPSCC, of
which 201 (75%) patients received chemotherapy. More details

regarding treatment are provided in Supplementary Table 2.
Demographic and clinical characteristics according to treatment
groups are provide in Supplementary Table 3. The median values
for OS in D1, D2 and D3 were 7.48, 7.76, and 5.16 years and the
median values for DFS were 7.06, 7.63, and 5.13 years.

pRiS for prognosis prediction
Top selected features from LASSO model along with their LASSO
coefficients are provided in Supplementary Table 4. The median
pRiS value from D1 was −1.04 and was used for dividing patients
into high- and low-pRiS groups. Clinical characteristics within the
high- and low-pRiS groups are summarized in Supplementary
Table 5. In D1, there were significant differences in OS (Fig. 1a)
comparing patients with high- versus low-pRiS. The prognostic
performance of pRiS was confirmed on D2 and D3 for OS (D2,
HR= 2.14, 95% CI, 1.1–4.16, p= 0.025, C-index = 0.6, Fig. 1b; D3,
HR= 2.74, 95% CI, 1.34–5.62, p= 0.006, C-index = 0.64, Fig. 1c).
For DFS, the difference between high- and low-pRiS groups were
significant on D1 (Fig. 1d) but not significant on D2 and D3,
although we could observe a clear separation of the KM curves
(D2, HR= 1.81, 95% CI, 0.97–3.37, p= 0.06, C-index = 0.62, Fig. 1e;
D3, HR= 1.69, 95% CI, 0.93–3.05, p= 0.08, C-index = 0.61, Fig. 1f).
On D2, the 5-year OS and DFS rates were 80.0% and 78.8% for the
high-pRiS patients, and 90.2% and 84.1% for the low-pRiS patients.
On D3, the 5-year OS and DFS rates were 88.9% and 85.0% for the
high-pRiS patients, and 91.9% and 91.4% for the low-pRiS patients.
Intratumoral and peritumoral feature expression heatmaps for one
example high-pRiS and one low-pRiS patient are provided in
Fig. 2. Two features that contribute to construction of pRiS
(Intratumoral Laws texture and peritumoral CoLlAGe inertia) were
spatially mapped on top of the tumor itself and annular ring area
around the tumor, with blue and red representing low and high
feature values, respectively.
Multivariate Cox analysis on OS in D2 and D3 are provided in

Table 2 and Supplementary Table 6, adjusting for clinical variables
including age, gender, tumor subsite, smoking PY, T-stage, N-stage
and treatment types. pRiS remained an independent prognostic
factor for OS in D1 (HR= 25.5, 95% CI, 4.68–138.9, p= 0.0002), in
D2 (HR= 2.24, 95% CI, 1.05–4.76, p= 0.04) and in D3 (HR= 7.59,
95% CI, 1.37–42.14, p= 0.02). Point-biserial correlation analysis
between each individual prognostic radiomic feature including
pRiS and the clinicopathologic factors are provided in Supple-
mentary Table 7.

Incremental prognostic value of pRiS
pRiS, age, smoking PY, T-stage and AJCC overall stage were found
to be significantly associated with OS in univariate Cox analysis in
D1 (Supplementary Table 8) and were incorporated into the Mrad+c

(Fig. 3a). The clinical nomogram Mc is provided in Supplementary
Fig. 1. The calibration curves for the radiomic nomogram Mrad+c at
4, 5 and 6 years showed good agreement between the actual and
the estimated OS (Fig. 3b, c) and DFS (Supplementary Fig. 2) on D2

and D3. The decision curve analysis for OS prediction revealed that
the Mrad+c had higher clinical net benefit than Mc when the
threshold probabilities are less than 20% (Fig. 3d, e). Mrad+c

resulted higher C-index compared with Mc regarding OS (0.68 vs
0.64, p= 0.06) and DFS (0.6 vs 0.57, p= 0.1) estimation (Table 3),
although the differences were not significant. We then obtained
the prognostic accuracy of pRiS, Mrad+c and Mc using time-
dependent ROC analysis at specific times for predicting 4-, 5-, and
6-year OS and DFS. We observed consistently higher AUC from
Mrad+c compared with Mc across D1, D2, and D3 for both survival
endpoints (Supplementary Fig. 3).

Table 1. Demographic characteristics of the patients.

Parameter D1 (n= 60) D2 (n= 162) D3 (n= 269) p Value

Age 60.70 ± 10.21 59.07 ± 8.04 58.71 ± 8.98 0.21

Gender

Male 47 (78.3%) 131 (80.1%) 231 (85.9%) 0.22

Female 13 (21.7%) 31 (19.9%) 38 (14.1%)

Tumor subsite

Base of tongue 18 (30%) 67 (41.4%) 140 (52%)

Tonsillar
complex

37 (61.7%) 89 (54.9%) 120 (44.6%) 0.01

Posterior wall/
soft palate

5 (8.3%) 6 (3.7%) 9 (3.4%)

Smoking PY 18.17 ± 19.20 16.59 ± 20.92 10.12 ± 15.71 <0.0001

T-stage

T1 17 (28.3%) 33 (20.4%) 81 (30.1%)

T2 23 (38.3%) 72 (44.4%) 129 (48.0%) 0.02

T3 20 (33.4%) 57 (35.2%) 59 (21.9%)

N-stage

N0 19 (31.7%) 14 (8.6%) 37 (13.8%)

N1 34 (56.7%) 108 (66.7%) 111 (41.3%) <0.0001

N2 7 (11.6%) 40 (24.7%) 121 (44.9%)

AJCC 8th Stage

I 36 (60.0%) 83 (51.2%) 118 (43.9%) 0.09

II 24 (40.0%) 79 (48.8%) 151 (56.1%)

Recurrence

Local/regional/
distant

10 (16.7%) 20 (12.3%) 26 (10%) 0.27

Non-
recurrence

50 (83.3%) 142 (87.7%) 243 (90%)
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Fig. 1 Kaplan–Meier survival analysis of pRiS on AJCC 8th stage I and II HPV-associated OPSCC. Stratifications are provided using overall
survival from cohorts D1 (a), D2 (b), and D3 (c) and using disease-free survival from cohorts D1 (d), D2 (e), and D3 (f).

Fig. 2 Intratumoral and peritumoral radiomic feature maps. Feature maps are overlaid onto the corresponding region of interests of an
example low-pRiS patient (a) and an example high-pRiS patient (b). We observe stronger feature expressions in terms of Laws texture
(intratumoral) and CoLlAGe inertia (peritumoral) in the high-pRiS patient compared to the low-pRiS patient.

B Song et al.
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pRiS for predicting chemotherapy benefit
For patients treated with only radiotherapy, high-pRiS patients
had significantly worse OS compared to low-pRiS patients in both
D2 (HR= 2.8 [1.1–7.17], p= 0.0316, Fig. 4a) and D3 (HR= 10.9
[2.66–44.9], p= 0.0009, Fig. 4b). By contrast, no significant
differences in OS were observed between the high-pRiS and the
low-pRiS patients treated with chemoradiation in either D2

(HR= 1.76 [0.76–4.06], p= 0.186, Fig. 4c) or D3 (HR= 1.9
[0.735–4.93], p= 0.184, Fig. 4d). These consistent patterns across
D2 and D3 suggest that only the high-pRiS patients were able to
derive benefit from chemotherapy, as reflected by their better OS
when treated with chemotherapy in addition to radiation.
We then compared OS between patients in the two treatment

arms and found that only high-pRiS patients tended to have
longer survival when chemotherapy was administered while low-
pRiS patients did not. For both D2 and D3, chemotherapy was
associated with an improved OS in high-pRiS patients (radiation vs
chemoradiation, D2, HR= 4.47 [1.73–11.6], p= 0.002, Fig. 5a; D3,
HR= 2.99 [1.04–8.63], p= 0.0429, Fig. 5b). On the other hand, for
patients in the low-pRiS group, chemotherapy did not affect OS
(radiation vs chemoradiation, D2, HR= 2.56 [0.745–8.77],
p= 0.136, Fig. 5c; D3, HR= 0.278 [0.052–1.49], p= 0.135, Fig. 5d).
We also performed the experiments using DFS as the endpoint
and obtained similar results (Supplementary Fig. 4 and Fig. 5). We
also used the threshold output −1.1 (with the smallest p value in
D1) from X-tile software as the cutoff to define the pRiS groups
and repeated the predictive experiments for OS (Supplementary
Figs. 6 and 10) and DFS (Supplementary Fig. 7) as outcomes. When
combining D2 and D3 for interaction test, there was a significant
interaction between treatment and pRiS groups in the Cox
regression model (p= 0.04), indicating a predictive effect of pRiS.
On subset analysis by AJCC 8th overall stage (stage I and II), pRiS
was predictive of chemotherapy benefit for stage II (p= 0.047;

Supplementary Fig. 8) but not for stage I patients (p= 0.38;
Supplementary Fig. 9).

DISCUSSION
The European Organization for Research and Treatment of Cancer
(EORTC) 2293110 and Radiation Therapy Oncology Group (RTOG)
95-01 randomized clinical trial6 demonstrated the survival benefit
of concurrent chemoradiotherapy in high-risk head and neck
cancer patients. This paved the way for chemoradiotherapy to
become the standard treatment protocol22,23 for locally advanced
OPSCC patients, regardless of HPV status. However, clinical
characteristics and treatment response differ between various
head and neck cancer subsites24 (e.g., oropharyngeal, laryngeal
and oral cavity). As the HPV-associated OPSCCs have more
favorable prognosis and are more responsive to radiation than
the HPV negative OPSCC2, it is likely that some of these patients
do not receive added benefit from chemotherapy and might have
had a similar outcome if treated with radiotherapy alone. With the
advent of HPV related cancers causing a significant epidemiolo-
gical shift, there is a growing call for more specific and selective
treatment planning strategies to be reconsidered for HPV-
associated OPSCC12,22.
Currently, there are many treatment de-escalation strategies for

HPV-associated OPSCC patients, including eliminating chemother-
apy or reducing the dosage of radiotherapy, with no consensus on
an optimal choice. Recently, a randomized phase II trial (NRG-
HN002)12 assigned HPV-associated OPSCC patients into one of
two de-escalated treatment arms: (1) reduced dosage of radio-
therapy with weekly cisplatin, or (2) accelerated radiotherapy
(60 Gy) alone. Results showed that there were no significant
differences (p= 0.23) in progression-free survival (PFS) rate
between the two arms and the two-year OS rates were similar
(96.7% and 97.3%). These results potentially indicate that not all
selected candidates for treatment de-escalation benefited from
the additional chemotherapy and they could have avoided the
aggressive chemotherapy without compromising outcome. The
interim analysis of NRG HN-005 trial failed to demonstrate the
non-inferiority of 60 Gy of radiation plus cisplatin arm to the
standard arm of 70 Gy with cisplatin. One possible explanation to
this preliminary result is that the current selection criteria for lower
risk HPV+OPSCC patients, which is based on clinical T/N stages
and smoking status, remains insufficient for risk stratification.
Development of novel and robust biomarkers to improve the
accuracy of prognostication for HPV+OPSCC patients may aid in
the design of future de-intensification trials. While definitive
chemoradiation differs from the adjuvant treatment protocols, it
still highlights the therapeutic importance of chemotherapy.
Given these results, an individualized approach to accurately
identify OPSCC patients who are most likely to benefit from
chemotherapy would enable delivery of precision care to these
patients.
In this work, we present a prognostic CT-based radiomic

signature (pRiS) which is also predictive of added benefit of
chemotherapy using a cohort of 491 AJCC 8th edition stage I and
II HPV-associated OPSCC. pRiS comprises 7 radiomic textural
features, one of which captures spots and waves textural
heterogeneity patterns from within the primary tumor and six
from the peritumoral region characterizing the tissue microenvir-
onment around the tumor. Within the 0–15mm annular ring
around the tumor, 2 Gabor feature quantifying filter response and
four CoLlAGe features characterizing co-occurrence of gradient
orientations and intensity disorders were found to be prognostic.
In multivariable analysis, pRiS was found to be an independent
prognostic predictor and was able to stratify patients into high-
and low-risk groups with significant differences in OS. Clinically,
AJCC 8th edition stage I and stage II HPV-associated OPSCC
patients could be considered for treatment de-escalation.

Table 2. Multivariable analysis on OS using the combined cohorts of
D2+D3.

Parameter HR (95% CI) p Value

Age 1.03 (1–1.06) 0.1

Gender

Female Ref

Male 1.38 (0.65–2.94) 0.41

Tumor subsite

Base of tongue Ref

Tonsillar complex 0.82 (0.46–1.46) 0.53

Posterior wall/soft palate 0.2 (0.04–2.18) 0.15

Smoking PY 1.02 (1.01–1.03) <0.0001

T-stage

T1 Ref

T2 1.91 (0.85–4.34) 0.12

T3 2.67 (1.15–6.21) 0.02

N-stage

N0 Ref

N1 1.58 (0.64–3.89) 0.08

N2 1.44 (0.44–4.75) 0.15

Treatment

Radiotherapy Ref

Chemoradiation 0.42 (0.24–0.73) 0.002

pRiS 3.45 (1.09–10.96) 0.03

Note: bold values refer to statistically significant by two-tailed test, p < 0.05.
OS overall survival, HR hazard ratio, PY pack-year, CI confidence interval.
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Fig. 3 The radiomic nomogram and its calibration and decision curve analysis. The nomogram consists of pRiS, age, T-stage, smoking PY,
and AJCC 8th staging (a). Calibration curves showed good agreement between the predicted and actual OS on D2 (b) and D3 (c). Decision
curve analysis demonstrated higher net benefit of OS predictions on D2 (d) and D3 (e) from the radiomic nomogram Mrad+c compared to the
clinical nomogram Mc. Net benefit = true positive rate− (false positive rate × weighting factor). Weighting factor = Threshold probability/
1− threshold probability.

B Song et al.
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However, a subset of these patients still had poor survival
outcome and need to be identified for better treatment manage-
ment24,25. The pRiS developed in this study was able to risk stratify
these two populations, indicating that the true low-risk patients
from these two clinically defined low-risk groups could be
distinguished. On the other hand, high-pRiS patients were
associated with worse outcome and thus should not be treated
with de-escalation protocols. In addition, an integrated nomogram
combining clinical factors and radiomic could improve the
prognostic accuracy than using either alone26,27. These results
indicate that pRiS could provide complementary information on

Table 3. C-indices of nomograms.

Models D1 D2+D3

OS DFS OS DFS

Mrad+c 0.80 0.77 0.68 0.60

Mc 0.72 0.69 0.64 0.57

C-indices of the radiomic nomogram (Mrad+c) and the clinical nomogram
(Mc) on OS and DFS estimation.

Fig. 4 Stratified Kaplan–Meier survival analysis according to treatment arms between high-pRiS and low-pRiS groups (using median
cutoff). On both D2 and D3, the high-pRiS groups have significant worse OS than the low-pRiS group when treated with radiotherapy alone
(a, b) while the separations in the chemoradiation arm (c, d) were not significant, indicating high-pRiS patients potentially could benefit from
chemotherapy.

B Song et al.
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OPSCC outcome beyond what is obtainable via currently known
prognostic predictors.
pRiS was also found to be predictive of added benefit of

chemotherapy for AJCC 8th stage I and II HPV-associated OPSCC
patients, which is the main innovative contribution of this work. To
the best of our knowledge, there is no existing studies aimed to
identify HPV-associated OPSCC patients who might not benefit
from chemotherapy in addition to the definitive radiotherapy.
Although previous work focused on risk-stratification and prog-
nosis prediction, these studies could not provide an individualized
treatment strategy based solely on the predicted risk profile18–21.
In contrast, the pRiS developed in this study not only carry
prognostic value but more importantly it could also convey which
patients would derive additional benefit if treated with che-
motherapy versus those who would not. This would enable a
more granular and robust treatment de-escalation for OPSCC
patient with low risk of recurrence. Currently, the criteria for
selecting candidates suitable for chemotherapy are based on AJCC
7th edition staging28–31, which did not take HPV status into
account for risk stratification. In our study, we found that patients
with high-pRiS scores using median value from training set as

cutoff (>−1.04) were estimated to benefit from chemotherapy
with reduced hazard of dying while low-pRiS patients (<−1.04)
showed non-significant hazard ratios between the two treatment
arms when using OS as the endpoint. A slight change in the high-
and low-pRiS membership using X-tile cutoff selection (−1.1) did
not alter the statistical significance found in the radiotherapy
alone cohorts, indicating the robustness of pRiS regarding
predictive power (Fig. S10A, B). These results suggest that most
of the high-pRiS patients in radiotherapy treatment arm are “truly
high risk” patient populations with worse outcome and could have
benefited from additional chemotherapy after radiation. This is
strongly suggested by results in the chemoradiation arm, where
we do not observe significant survival difference between high-
and low-pRiS populations (Fig. S10C, D), potentially suggesting
that high-pRiS patients have improved survival outcome due to
receiving benefit from chemotherapy. When using DFS as the
endpoint, high-pRiS patients derived statistically significant DFS
benefit in D2 when treated with chemotherapy while did not yield
the same significant DFS benefit in D3 (p= 0.074). However, we
could observe a clear trend that patients who received
chemoradiation had more favorable prognosis compared with

Fig. 5 Kaplan–Meier survival analysis for comparing OS between patients treated with radiotherapy alone and treated with
chemoradiotherapy. Only high-pRiS patients did benefit from chemotherapy (a, b) while there was no advantage or potential negative
impact on survival in low-pRiS patients (c, d) when treated with chemotherapy.
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those treated with radiation alone. Interestingly, low-pRiS patients
in D3 showed detrimental effect of chemotherapy (HR < 1,
radiotherapy alone vs chemoradiotherapy), regardless of the
endpoint (OS, Fig. 5d; DFS, Fig. S5D). These results suggest
chemotherapy only improved high-pRiS patients’ outcome and
there is no added benefit of instituting potentially toxic
chemotherapy for low-pRiS patients with favorable prognosis.
Machine learning-based approaches have been applied to

radiographic images for prognosticating outcome for head and
neck cancer patients. Ou et al.32 retrospectively analyzed 120
patients with locally advanced HNSCC and constructed a signature
integrating radiomics with p16 status. They found that patients
with high signature score significantly benefited from chemor-
adiation while no benefit from low signature patients was
observed. While the results were promising, this study did not
investigate the predictive value of peritumoral radiomic. In
another study conducted by Howard et al.33, 33,527 HNSCC
patients were included for analysis and chemotherapy recom-
mendations from three deep learning (DL) models were all
associated with survival benefits. It is known that DL-based
approaches provide limited interpretability. On the other hand,
the selected hand-crafted features in this study for pRiS includes
descriptors characterizing CT pixel textural patterns (e.g., local
intensity heterogeneity and microscale disorder in gradient
orientation). Kann et al.34 validated a DL algorithm in identifying
Extranodal extension (ENE) on pretreatment CT scans in 144
patients with HNSCC. They demonstrated that the algorithm’s
diagnostic performance surpassed that of specialized radiologists
with head and neck cancer experience. Although pathologic ENE
is an indication for adjuvant treatment escalation, to the best of
our knowledge, there has been no studies on developing
predictive imaging biomarker which could guide OPSCC clinical
treatment decision in the definitive setting. A previous study by
Leijenaar et al. externally validated the prognostic value of
intratumoral radiomic signatures in a cohort of 542 OPSCC35 (C-
index = 0.63). Our study is different from Leijenaar’s study in that
we focused only on OPSCC patients with low-risk profile (HPV-
associated stage I and II patients). Since HPV+ and HPV- patients
are clinically considered different tumor entities with distinct
outcome and treatment response, it is more meaningful to risk-
stratify these two patient populations separately. Rather than
combining these two populations together for analysis like
Leijenaar et al study, we focused on prognosis and treatment
response prediction specifically for HPV+ patients.
Within the HPV+ population, currently the main treatment

strategy is to provide de-escalated treatment protocols (i.e., less
dosage of radiotherapy and potentially avoid the aggressive
chemotherapy). Existing studies (including Leijenaar et al.35) either
only constructing prognostic biomarker without investigating
their association with treatment benefit18–21 or managed to
quantify the treatment benefit for head and neck cancer with
various disease subsites32,33 (oropharyngeal, laryngeal and oral
cavity). Our study not only developed a prognostic radiomic
biomarker which enabled individualized risk prediction of HPV-
associated OPSCC patients, but also tackled a clinical-significant
problem of identifying potential candidates not benefiting from
chemotherapy and thus for whom such toxic treatments could be
avoided.
This work is significantly different from previous related

publications16,18,20,21 by (a) pRiS was shown to be not only
prognostic for OPSCC patients’ outcome but also predictive to
added benefits of chemotherapy; (b) rather than analyzing
patients with different HNSCC subtypes, we specifically investi-
gated the role of chemotherapy in the context of AJCC 8th stage I
and II HPV-associated OPSCC patients.
We acknowledge that our study did have its limitations. First,

this is a retrospective study subject to confounders and biases.
Second, radiation doses and type of chemotherapy are not strictly

controlled for the two treatment arms. Third, we did not manage
to assess the intra-observer and inter-observer agreement of the
radiomic features, which might cause selected features suscep-
tible to variation of the tumor annotations. Fourth, the training set
D1 has a relatively small sample size with 20% of events,
potentially limiting its generalizability to a broader population
with a more diverse demographic distribution. This is suggested
by the C-index discrepancy between the training and the
validation datasets. More data is needed to construct a predictive
biomarker with better generalizability. Nevertheless, the findings
in this study could guide future studies in the design of more
robust predictive biomarkers for HPV-associated OPSCC treatment
de-escalation. Future investigations, such as a prospective clinical
trial with a large patient cohort aimed at comparing survival
benefit between high-pRiS OPSCC patients treated with and
without chemotherapy, would be necessary to demonstrate its
clinical utility.
In summary, we have developed and validated a seven-feature

prognostic and predictive signature for chemotherapy benefit in
patients with HPV-associated OPSCC. Further work on larger
populations will be needed to validate this preliminary biomarker.
If prospectively validated, pRiS could serve as an inexpensive,
tissue non-destructive prognostic and predictive companion
diagnostic tool to identify patients most likely to be safely de-
intensified.

METHODS
Patients and outcome
This retrospective study included 491 AJCC 8th edition stage I and
II HPV-associated OPSCC patients from four different cohorts.
Among the 222 patients from the Cancer Imaging Archive
(TCIA)36,37 “OPC-Radiomic” cohort, 114 patients received chemor-
adiation and 108 patients received radiotherapy alone. 60 patients
with radiotherapy alone from the “OPC-Radiomic” cohort formed
the training set (D1) while the remaining 162 patients formed the
internal validation cohort (D2). Among the 222 patients from the
Cancer Imaging Archive (TCIA) “OPC-Radiomic” cohort, 114
patients received chemoradiation and 108 patients received
radiotherapy alone. The fundamental rule is to unsure all patients
in the training set received only radiation therapy (no chemother-
apy), while maintaining descent number of patients treated with
radiation alone in the internal validation set so as not to lose
statistical power when comparing survival difference between the
two treatment arms. We thought taking 60 out of the 108 patients
treated with radiation alone to form the training set (D1) should
be reasonable. Then all the remaining 48 radiation-treated
patients plus 114 patients treated with chemoradiation (total
162) will be assigned to the internal validation set. We performed
the following steps to determine the exact constitution of D1: we
randomly selected 60 patients from the 108 patients treated with
radiation alone and performed the statistical tests to see if there
were statistically significant difference (p < 0.05) on clinicopatho-
logical variables (i.e., age, gender, AJCC 8th staging and disease
recurrence) between the selected 60 patients and the remaining
162 patients (222-60). Differences between age were estimated
using Wilcoxon rank-sum test and differences on gender, AJCC 8th
staging, and disease recurrence were calculated using the chi-
square test. We repeated this experiment for 500 iterations and
documented the count for each patient which appears in
iterations where there was no statistical difference between the
selected 60 and the remaining 162 patients across all the four
variables. Then the counts for all patients were re-sorted in
descending order and we chose the top 60 patients to form the
D1. The overall rationale is to keep balanced clinicopathological
profile across the D1 and the D2. Three additional cohorts
including cases from Cleveland Clinic Foundation (CCF, N= 91),
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TCIA-HNSCC (N= 134), and TCIA-Head-Neck-PET-CT (N= 44) were
combined to form the external validation set (D3), which consisted
of 269 patients in total. A patient selection diagram is provided in
Fig. 6. HPV status for D1 and D2 cohorts were determined using
p16 immunohistochemistry (IHC). A combination of p16 IHC and/
or HPV DNA in situ hybridization were used for the D3 cohort. The
waiver of written informed consent was granted by the IRB at
Cleveland Clinic since all images are de-identified. In addition, it is
not practicable to obtain consent from patients for this study since
most patients was not alive or available for consent.
Inclusion criteria were: (i) non-metastatic (M0) AJCC 8th stage I

and II HPV-associated (strong and diffuse, block-like nuclear and
cytoplasmic p16 staining present in ≥70% of the tumor specimen)
OPSCC, (ii) with available baseline pretreatment CT images
covering the head and neck region, (iii) treatment with curative
intent, (iv) follow-up continued for at least 20 months or until
death and (v) matched clinical information (e.g., age, stage and
survival). Patients with any of the following were excluded: (i) lack
of identifiable tumors on CT scans or (ii) number of pixels within
tumor being less than 200, this was the minimum tumor volume
that was deemed to be necessary for feature extraction. Disease-
free survival (DFS) was defined as time from radiotherapy end date
to the date of following events: local, regional, distant failure or
death whichever occurred earlier and censored at the date of last
follow-up for those without event. Overall survival (OS) was
defined as the time from radiotherapy end date to death from any
cause and censored at the date of last follow-up for those alive.
Clinical and outcome information from patients in the CCF cohort
was obtained by chart review after approval from the Institutional
Review Board (IRB number: CCF 14–551). The overall workflow is
provided in Fig. 7.

CT image acquisition, segmentation, and compartment
definition
All patients underwent an initial pretreatment CT scan with or
without contrast agent injection for radiation therapy planning. CT
images for the CCF cohort were acquired from GE (Chicago, IL) or
Siemens (Erlangen, Germany) scanners. CT scans were acquired in
helical mode with a slice thickness of 3 mm, at 120 kVp and 235
mAs tube current. Image resolution was between 0.4 mm - 0.5 mm
for most of the patients, with image matrix of 512 × 512. The CT
images for the three TCIA cohorts were acquired from one of the
following CT scanners: General Electric Discovery ST; General
Electric Lightspeed Plus; Toshiba Medical Systems Aquillion ONE.
More details regarding the CT imaging parameters for the three

TCIA cohorts included in this study could be found in
Supplementary Table 1.
For primary tumor annotations on CCF cohort, two board-

certified head and neck radiologists J.L. (with 5 years of clinical
expertise) and S.S. (with 6 years of clinical expertise) manually
delineated the tumor boundaries across all two-dimensional CT
axial slices with visible tumor present using the 3D Slicer
software38. The slices with dental artifacts were excluded for
tumor annotations. The binary masks which comprise the outline
of the gross primary tumor volume (GTV) for the three TCIA
cohorts were obtained via the Radiation Therapy Structures
(RTSTRUCT). RTSTRUCT is used to transfer anatomical structures
related data between radiotherapy departments. It mainly
comprises the information related to the regions of interest (ROIs)
including GTV.
After obtaining the binary tumor mask for all patients,

morphologic dilations were performed to define the annular ring
region outside the tumor up to a radial distance of 15mm based on
a previous study16. The binary tumor masks were then subtracted
from the dilated masks to obtain the peritumoral regions, which
were then sub-divided into three peritumoral rings of 5-mm-radius
increments. For all patients, peritumoral masks were dilated 15mm
from the corresponding intratumoral masks in a two-dimensional
fashion. For each CT axial slice with tumor, the number of pixels
dilated in each peritumoral mask were calculated as follows:

No: of pixels dilated ¼ 15
pixel size ðin mmÞ

During this peritumoral feature extraction process, additional
consideration was taken to get rid of the region with air (<−900
HU). To avoid any edge artifacts that might arise during feature
extraction, the filtered “dead” pixels of the CT scan were
substituted by using an averaging filter across its 9 × 9
neighborhood.

Radiomic feature extraction
Radiomic feature extraction was performed for each patient on
the primary tumor using an in-house program developed with
MATLAB 2020b (Mathworks, Natick, MA, USA), meeting IBSI criteria
in terms of the reporting criteria for reproducible and transparent
implementations. We resampled all CT images to an isotropic
voxel size of 1 mm prior to feature extraction. The feature families
utilized in this study included gray level intensity features, gray
level co-occurrence matrix (GLCM) Haralick features39, Laws
energy, Gabor wavelet-based features, and intensity gradient

Fig. 6 Patient selection diagram.
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orientations features (CoLlAGe)40. These features were extracted
on a per-pixel basis across all 2D slices with tumor for all patients
from both intratumoral and peritumoral regions (0–5mm,
5–10mm, and 10–15mm). The feature values were averaged
across all slices. Statistics of mean, median, standard deviation
(std), skewness, and kurtosis were calculated from the feature
responses of all pixels within the region of interest, which resulted
in a total of 2045 features. All feature values were transformed into
new scores with a mean of 0 and a standard deviation of 1 (z-score
transformation). Detailed description of extracted features is
provided below:

Laws texture. 2-dimensional Laws filters are derived by comput-
ing the outer product of combinations of the following
1-dimensional filter vectors focused on different texture patterns:
Level (L5)—detects smoothness of intensity values, L5= [1 4 6 4 1];

Edge (E5)—detects edges between regions with abrupt changes
in intensity, E5 = [−1 −2 0 2 1]; Spot (S5)—detects speckled
enhancement patterns, S5 = [−1 0 2 0 −1]; Wave (W5)—detects
oscillating local intensity patterns, W5 = [−1 2 0 −2 1]; Ripple (R5)
—detects oscillating intensity patterns centered at region of
extreme intensity, R5 = [1 −4 6 −4 1].
To obtain a feature vector, convolution is performed on the

filters and the images within a window size neighborhood
followed by summing up all the values. Features are named by
the combination of filters applied in the y and x axes, e.g., L5E5 is
the product of a level detection filter in the y axis and an edge
detection filter in the x axis.

Gabor filter responses. Two-dimensional Gabor filters are computed
by modulating a Gaussian kernel function with one of 48 sinusoidal
plane waves. Each sinusoidal plane wave corresponds to a unique

Fig. 7 Flowchart of the radiomic workflow. a Primary tumor identification; b radiomic feature extraction; c radiomic signature profiling, and
d signature validation.
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combination of one of four spatial wavelengths (2 pixels, 4 pixels, 8
pixels, 12 pixels) and one of seven orientations (22.5°, 45°, 67.5°, 90°,
112.5°, 135°, 157.5°). Each Gabor filter is then convolved with the
original image and values corresponding to filter response within the
region of interest are concatenated.

Haralick features. The following Haralick gray level co-occurrence
matrix (GLCM) descriptors were computed: entropy, energy,
inertia, inverse difference moment, correlation, information
measure of correlation 1, information measure of correlation 2,
sum average, sum variance, sum entropy, difference average,
difference variance, and difference entropy. GLCM statistics were
concatenated within a window size neighborhood, yielding 13
descriptor vectors per region.

Co-occurrence of local anisotropy gradients (CoLlAGe). An image’s
intensity gradients in the x and y direction are computed. Within a
window size neighborhood, the dominant intensity gradient
orientation (between 0° and 360°) is computed via principal
component analysis, resulting in a 2D array of equal size with the
dominant gradient orientation value centered at the correspond-
ing pixel of the original image. Metrics of the co-occurrence matrix
are then applied to this gradient orientation image in the same
manner as described above for Haralick GLCM features. The
resulting 13 CoLlAGe descriptors quantify the homogeneity of
intensity gradient directionality within an image.

pRiS: a radiomic risk signature
The top prognostic radiomic features were selected by applying a
least absolute shrinkage and selection operator (LASSO) Cox
Proportional Hazard model41 on OS using D1. The optimal value of
the tuning parameter in the LASSO Cox (alpha) model was
determined by 10-fold cross validation to search for 100 values up
to 1% of the estimated maximum. Once the parameter alpha is
determined, the number of features was locked down to 7. pRiS
was then constructed by linearly combining these 7 features
weighted by their corresponding coefficients. The cutoff value for
dividing patients into low- and high-risk patients was chosen
using the median pRiS value from D1 based on OS. The potential
association between the dichotomous pRiS group (high- vs low-
pRiS group) and survival was first evaluated in D1 and then
validated in D2 and D3 based on Kaplan-Meier (KM) survival
analysis and Harrell’s concordance index (C-index).

Combining pRiS with clinical factors to improve
prognostication
To investigate whether pRiS adds incremental prognostic value to
the clinical factors for individualized prediction of OS and DFS, we
constructed an integrated radiomic nomogram (Mrad+c) by
combining pRiS with the prognostic clinical factors and compare
it against a clinical nomogram (Mc). Variables significant in
univariate analysis in D1 were included in the Mrad+c. Both the
Mrad+c and Mc were developed in D1 based on the multivariable
Cox regression analysis and tested in D2 and D3 with respect to
calibration, discrimination (C-index), and clinical usefulness.
Calibration curves along with the Hosmer–Lemeshow test were
used to compare the predicted survival probabilities with the
actual probabilities. Decision curve analysis was performed to
quantify the net benefit at various threshold probabilities and to
compare the clinical usefulness of the Mrad+c and Mc.

Association of pRiS with chemotherapy benefit
Patients from D2 and D3 sets who received either radiotherapy alone
or chemoradiation were included for analysis. We evaluated pRiS in
terms of its ability to predict the benefit of chemotherapy by
comparing OS and DFS differences between patients who were

treated with radiotherapy alone and those with chemoradiation in
both the high-pRiS and low-pRiS groups. We also examined the
predictive value of pRiS separately for AJCC 8th edition stage I and
stage II patients. Furthermore, we used the cutoff values generated
from the X-tile software42 version 3.6.1 to investigate the predictive
value of pRiS on OS and DFS. X-tile provides a global assessment of
every possible way of dividing a population into two groups based
on the given biomarker, of which each possible biomarker value
from the training set represents a unique cut-off point. The criteria
to define the optimal threshold is to choose the cut-off point with
the smallest p value from the log-rank test by iterating through all
possible groupings defined by all unique cut-off points from training
set. Using median value as the cut-off aims to maintain a balance
between the number of patients in high- and low-pRiS groups in the
training set while X-tile seeks to maximize the survival stratification
between the two groups from a statistical perspective. The rationale
for trying both cutoff-selection approaches is to investigate the
robustness of predictive power carried by pRiS.

Statistical analysis
The difference of the continuous variables (i.e., age, smoking pack-
year [PY] and pRiS) among 3 datasets (D1–D3) was compared using
the one-way analysis of variance test (ANOVA) and the association
of the categorical variables with 3 datasets was estimated using
the chi-square test. Differences of OS and DFS among groups was
examined using the log-rank test. Univariate analysis of the
continuous pRiS value with the clinical and pathologic factors (i.e.,
age, gender, tumor subsites, smoking in pack years, pathological
T- and N-stages, and AJCC 8th overall stage) were conducted.
Multivariable Cox regression analysis was performed to assess the
relationships between the various clinical factors and OS. We also
performed the point-biserial correlation analysis to investigate
potential association between each individual prognostic radiomic
feature and the clinicopathologic factors. Interaction between
pRiS and chemotherapy was assessed by adding an interaction
term in the Cox model. Statistical analyses were performed using R
version 3.4.0. The R packages used in this study included glmnet,
survminer, rms, survival, Hmisc, survMisc, survey, and SvyNom. A
threshold of 0.05 was used to define statistical significance.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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