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Deep learning generates synthetic cancer histology for
explainability and education
James M. Dolezal1, Rachelle Wolk2, Hanna M. Hieromnimon1, Frederick M. Howard1, Andrew Srisuwananukorn 3, Dmitry Karpeyev4,
Siddhi Ramesh1, Sara Kochanny1, Jung Woo Kwon2, Meghana Agni2, Richard C. Simon2, Chandni Desai2, Raghad Kherallah2,
Tung D. Nguyen2, Jefree J. Schulte 5, Kimberly Cole2, Galina Khramtsova 2, Marina Chiara Garassino1, Aliya N. Husain2, Huihua Li2,
Robert Grossman 6, Nicole A. Cipriani2✉ and Alexander T. Pearson 1✉

Artificial intelligence methods including deep neural networks (DNN) can provide rapid molecular classification of tumors from
routine histology with accuracy that matches or exceeds human pathologists. Discerning how neural networks make their
predictions remains a significant challenge, but explainability tools help provide insights into what models have learned when
corresponding histologic features are poorly defined. Here, we present a method for improving explainability of DNN models using
synthetic histology generated by a conditional generative adversarial network (cGAN). We show that cGANs generate high-quality
synthetic histology images that can be leveraged for explaining DNN models trained to classify molecularly-subtyped tumors,
exposing histologic features associated with molecular state. Fine-tuning synthetic histology through class and layer blending
illustrates nuanced morphologic differences between tumor subtypes. Finally, we demonstrate the use of synthetic histology for
augmenting pathologist-in-training education, showing that these intuitive visualizations can reinforce and improve understanding
of histologic manifestations of tumor biology.
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INTRODUCTION
Accurate diagnosis from histopathology is the first step in the
evaluation of many cancers, with management pivoting upon a
tumor’s morphologic classification. In addition to morphologic
assessment, molecular profiling through analysis of DNA muta-
tions, RNA fusions, and gene expression is also increasingly
utilized, as a tumor’s molecular subtype may inform prognosis or
allow targeted therapies. Deep neural networks (DNN), a form of
artificial intelligence, can classify tumors from pathologic images
with high accuracy, and several studies have shown that these
models can also detect actionable genetic alterations and gene
expression from tumor histology even when the associated
histopathological phenotype is unknown1. Although still in their
nascent stages, DNN applications in digital pathology are being
explored to assist with technical tasks, automate or augment
pathologist workflows, and extend pathologist capabilities
through the development of novel biomarkers2. DNNs are
however limited by their lack of predictive transparency, which
is contributing to an explainability crisis as the scientific
community attempts to interpret these frequently opaque
models3,4. When a neural network trained to detect molecular
subtype performs well but the corresponding histologic features
are poorly understood, explainability tools may provide insights
into what the model learned and help ensure predictions are
based on biologically plausible image features.
Many techniques exist for explaining artificial intelligence

models in medical image analysis, as recently outlined by van
der Velden et al. 5. The most common explainability approaches
use visual explanations that highlight areas of an image important
to the final prediction. These local explainability methods, which

include saliency mapping6, attention7, and perturbation-based
approaches8, provide insights into how a prediction was made for
a specific image, contrasting with global explainability methods
that provide dataset-level insights into image features learned
during training. Their visual explanations are attractive due to ease
of interpretability, although concerns have been raised that
localizations from these techniques may not be entirely accurate
for medical imaging applications9,10. Localization-based
approaches are most helpful in instances where predictions can
be attributed to a discrete object, but medical images –
particularly histopathological images, which are largely textural –
may not manifest predictive features amenable to clear localiza-
tion. The reliability of these methods in identifying textural image
features with predictive significance is unclear.
Many other approaches to providing explanations for deep

learning model predictions are similarly limited for histopatholo-
gical applications. Image captioning methods seek to provide text-
based explanations through clearly interpretable, plain lan-
guage11, but these approaches require additional ground-truth
text labels for training, and it is not clear how such approaches
would translate to DNN histopathological models. Testing with
concept activation vectors (TCAV) provides explanations through
identifying which concepts in an image are most relevant for the
prediction12, but this approach similarly requires an additional
labeled dataset and is limited to providing explanations from only
prespecified concepts. Example-based explanations provide a
collection of sample images similar to the specified image through
analysis of neighbors in the classifier latent space13, but do not
offer insights into specific image features important to the
prediction.
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Generative adversarial networks (GAN) are deep learning
models that use a pair of competing neural networks, called the
generator and discriminator, to create realistic images. Conditional
GANs (cGANs) use additional information to control the genera-
tion process, providing the ability to create images belonging to a
particular class or style and smoothly transition between
classes14,15. Recent work has shown that cGANs can be leveraged
as a tool for explaining DNN classifiers, providing image-specific
explanations that offer dataset-level insights into differences
between image classes16,17. As an explainability tool, cGANs yield
easily interpretable, visually clear explanations that differ from
other approaches in that they are not limited to explaining
localizable image features and do not require additional labeled
training data. This dataset-level explainability method offers a
fundamentally different, yet complementary, approach to explain-
ability than is typically used in medical imaging explications.
Rather than answering the question “why has a certain prediction
been made for a specific image?”, this method helps answer the
question “what image features are associated with each class?”.
A growing body of evidence is showing that GANs can create

realistic histologic images18–24. Quiros et al. showed that GANs can
generate realistic artificial cancer tissue, and that traversal of the
GAN latent space results in realistic images with smooth
architectural changes. Levine et al. used a cGAN to generate
synthetic histologic images indistinguishable from real images,
which were accurately classified by both human pathologists and
DNNs trained on real images. Krause et al. demonstrated that
synthetic images generated by a cGAN improve detection of
genetic alterations in CRC when used for training augmentation21,
and other groups have similarly shown that augmentation with
images generated from cGANs can improve classifier perfor-
mance22,25,26. Finally, several groups have explored the use of
GANs for stain and color normalization27–29, virtual staining30–32,
and image enhancement33–36. Their potential utilization as an
explainability tool for histopathological DNN models, however,
remains unexplored.
Here, we describe an approach to explaining histopathological

DNN models using cGAN-generated synthetic histology. We show
that cGAN-generated synthetic histology provides visually clear,
dataset-level insights into the image features associated with DNN
classifier predictions. Furthermore, we demonstrate that genera-
tion of synthetic histology can be fine-tuned through class and
layer blending to provide nuanced insights into the histologic
correlates for a given tumor subtype or molecular state at varying
scales. Finally, we show that synthetic histologic visualizations are
sufficiently intuitive and informative to improve pathology trainee
classification of a rare tumor subtype.

RESULTS
Our approach starts with training DNN classification and cGAN
models on digital pathology images (Fig. 1a–c). cGANs generate
an image from the combination of a seed – a vector of random
numbers that determines what the image will broadly look like –
and a class label, which influences the image toward one class or
another. The class label is converted into an embedding, a vector
of numbers learned through training that encodes the essence of
the class, and passed to each layer of the cGAN. For a given seed,
synthetic histologic images and corresponding classifier predic-
tions are generated for each class (Fig. 1d). If the predictions are
strong and match the cGAN class label, the seed has strong
classifier concordance, and if the predictions are weak but match
the cGAN class label, the seed has weak concordance (Fig. 1e).
Side-by-side, classifier-concordant image pairs illustrate histologic
differences responsible for changes in classifier prediction,
assisting with model explainability. To create an image in
transition from one class to another, we perform a linear
interpolation between two class embeddings and use the

interpolated embedding for cGAN conditioning; using the same
seed but gradually interpolating the embedding creates class-
blended images that gradually shift from one class to another
(Fig. 1f).

Non-small cell lung cancer subtyping
We trained a classifier and cGAN for non-small cell lung cancer
(NSCLC) conditioned on adenocarcinoma vs. squamous cell
carcinoma, as this is a well-described histologic phenotype
suitable for assessing feasibility of the approach when the
expected morphologic differences are known (Fig. 2a and
Supplementary Fig. 1). The classifier and cGAN models were
trained on the same dataset of 941 slides from The Cancer
Genome Atlas (TCGA). Three-fold cross-validation Area Under
Receiver Operator Curve (AUROC) for the classifier was 0.96 ± 0.01,
with an AUROC of 0.98 (95% CI 0.97 – 1.0) on an external test set
of 1306 slides from the Clinical Proteomics and Tumor Analysis
Consortium (CPTAC) (Supplementary Table 1). The trained cGAN
was evaluated by calculating Fréchet Inception Distance (FID)37, a
commonly used metric to evaluate realism and diversity of GAN-
generated images due to its sensitivity to distributional changes
and consistency with human evaluation. Lower FID values indicate
higher quality images, and for comparison, FID values for highly-
performing GANs reported in the StyleGAN papers14,15,38 range
from 3-6. FID for the lung cGAN was 3.67. Expert pathologist
assessment revealed that strongly-concordant synthetic images
were realistic and consistent with the cGAN class labels
(Supplementary Fig. 2). The synthetic image pairs illustrated
known histologic differences in adenocarcinomas and squamous
cell carcinomas, including gland formation, micropapillary mor-
phology, and papillary projections in the adenocarcinoma images,
and intercellular bridging and keratinization in the squamous cell
images. Some strongly concordant seeds, however, did not clearly
illustrate diagnostic-grade differences between image pairs. For
example, some image pairs lacked tumor, instead illustrating
differences in level of necrosis, which was increased in squamous
cell images, or non-diagnostic stromal changes, with an orange
tint seen in some squamous cell images.

Estrogen receptor status in breast cancer
We repeated the approach for the molecular outcome of breast
cancer estrogen receptor (ER) status, chosen because ER status
influences morphologic phenotype on standard hematoxylin and
eosin (H&E) stained slides39,40, but the morphologic correlates are
incompletely characterized (Fig. 2b). Classification and cGAN
models were trained on 1048 slides from TCGA, and the classifier
was externally validated on a dataset of 98 slides from CPTAC.
Three-fold cross-validation AUROC was 0.87 ± 0.02 for the
classifier, with a test set AUROC of 0.81 (95% CI 0.72–0.90)
(Supplementary Table 1). FID for the trained cGAN was 4.46. Two
expert breast pathologists concluded that the synthetic ER-
negative images had higher grade, more tumor-infiltrating
lymphocytes, necrosis, and/or apocrine differentiation compared
with ER-positive images, consistent with known histopathological
associations with ER status (Supplementary Fig. 3).

Human papillomavirus status in head and neck cancer
We next tested the approach for the molecular outcome of Human
Papillomavirus (HPV) status in head and neck cancer (Fig. 2c). HPV
status is known to influence morphologic phenotype on standard
H&E slides, but PCR or IHC is required for diagnosis. We trained
classification and cGAN models on a single-site institutional dataset
of 362 slides, with HPV status determined through positivity by
either PCR or p16 IHC. The classification model was externally
validated on a dataset of 405 slides from TCGA. Three-fold cross-
validation AUROC was 0.83 ± 0.05 for the classifier, with a test set
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AUROC of 0.83 (95% CI 0.77 – 0.89) (Supplementary Table 1). FID
for the trained cGAN was 7.35. Two pathologists reviewed the
synthetic histology explanations, concluding that HPV-negative
images showed greater keratinization, intercellular desmosomes,
increased cytoplasm, and pleomorphic nuclei, compared with HPV-
positive images that showed increased inflammation, tightly
packed syncytial cells with decreased cytoplasm, and smaller,
more monotonous nuclei, consistent with known histopathologic
associations41,42 (Supplementary Fig. 4).

BRAF-RAS gene expression in thyroid neoplasms
Finally, we trained a cGAN on thyroid neoplasms, conditioned on
the molecular outcome of whether the tumor had BRAFV600E-like
or RAS-like gene expression (Fig. 2d). BRAF-RAS gene expression
score (BRS), a score between -1 (BRAFV600E-like) and +1 (RAS-
like), correlates with thyroid neoplasm histologic phenotype and
can be used to distinguish malignant papillary thyroid carcino-
mas (PTC) from the low-risk non-invasive follicular thyroid
neoplasms with papillary-like nuclear features (NIFTP), despite
the fact that these entities are challenging to distinguish even
by experienced pathologists43–46. We trained a DNN regression
model to predict BRS as a linear outcome and evaluated
performance as a classifier by discretizing the predictions at 0.
The classification and cGAN models were trained on 369 WSIs

from TCGA, and the classifier was externally validated on an
institutional dataset of 134 tumors, including 76 BRAFV600E-like
PTCs and 58 RAS-like NIFTPs, as previously reported43. Three-fold
cross-validation AUROC was 0.94 ± 0.03, with an external test set
AUROC of 0.97 (95% CI 0.95–1.0) (Supplementary Table 1). The
cGAN generated realistic and diverse images with an FID of 5.19.
cGAN visualizations illustrate subtle morphologic changes
associated with the BRAF-RAS spectrum, including nuclear
changes (enlargement, chromatin clearing, membrane irregula-
rities), architectural changes (elongated follicles, papillae),
colloid changes (darkening, scalloping), and stromal changes
(fibrosis, calcification, ossification) (Fig. 3). Class blending
provides realistic histologic images that gradually transition
from BRAFV600E-like morphology to RAS-like morphology, and
predictions of these blended images smoothly change from
BRAFV600E-like to RAS-like (Fig. 4).

Effect of classifier architecture and stain normalization
To investigate the potential effect of classifier architecture
selection on the cGAN explainability pipeline, we trained
additional classifiers on the thyroid BRAF-RAS gene expression
endpoint using the MobileNetV247, ResNet1848, and EfficientNet-
B349 architectures. AUROC on the external test set was similar
between architectures, at 0.97 (95% CI 0.95–1.00), 0.96 (95% CI

Fig. 1 cGAN-based approach for explaining histopathological models with synthetic histology. a Our approach starts with a classification
model trained to predict a molecular outcome from a histologic image. b A separate conditional generative adversarial network (cGAN) model
is then trained to generate synthetic histologic images. cGANs create synthetic images from a seed of random noise and a class label, passed
to each layer in the network through an embedding. c The same training data is used for training both the classifier and cGAN. Held-out
validation data is used to validate the predictive accuracy of the classifier. d The trained cGAN and classifier are then combined to form a
single pipeline. For a given seed, synthetic images are generated for both the negative and positive classes. Both images are then stain
normalized and passed to the classifier, resulting in two predictions. If the classifier predictions match the synthetic image labels, the seed is
designated “classifier-concordant” and the synthetic images can be used for morphologic explanations. Visualizing classifier-concordant
image pairs side-by-side allows one to appreciate the histologic features associated for classifier predictions, providing a tool for model
explainability and education. e Classifier-concordant seeds are further subdivided into weakly- and strongly-concordant based on the
magnitude of the predictions. f Class-blended images are generated for strongly-concordant seeds by interpolating between class
embeddings while holding the seed constant.
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0.93–0.99), and 0.98 (0.96–1.00), respectively (Supplementary Fig.
5). When used for determining classifier concordance from the
trained cGAN, selected strongly-concordant patches were highly
similar between Xception and EfficientNet-B3, with 41.2% and
42.6% seeds selected by each classifier, respectively. The classifier
concordant seeds identified between these two architectures
exhibited high overlap, with 90.9% of classifier concordant seeds
selected by both classifiers. MobileNetV2 and ResNet18 both
selected fewer strongly concordant image patches, with 31.6%
and 27.0% seeds identified as strongly concordant, respectively.
However, there was still a strong degree of overlap between
classifier concordant seeds; 89.5% of classifier-concordant seeds
by MobileNetV2 were also classifier-concordant by Xception, and
90.0% of ResNet18 classifier-concordant seeds overlapped with
Xception concordant seeds. Taken together, Xception and
EfficientNet-B3 reproduced highly similar seeds when selecting
synthetic images for explainability. Smaller architectures, such as
MobileNet-V2 and ResNet18, labeled fewer seeds as strongly

concordant, but the selected classifier-concordant seeds were
highly similar to the seeds also selected by Xception and
EfficientNet-B3.
Digital stain normalization methods are commonly used to

assist with reducing the effect of varying staining intensities
when training deep learning models on digital pathology
images. All classifiers were trained with a modified Reinhard
algorithm, but cGANs were trained on non-normalized images to
avoid unrealistic colors or artifacts caused by normalization that
may interfere with pathologist interpretation. Selected synthetic
histology images are shown before and after stain normalization
in Supplementary Fig. 6. We investigated the effect of different
stain normalization strategies on classifier performance and
assessment of classifier concordance by comparing four normal-
ization strategies, and all four strategies yielded similar
performance on the external test sets (Supplementary Fig. 7
and Supplementary Table 2). For the BRAF-RAS gene expression
endpoint, 92.1% of classifier-concordant seeds as determined by

Fig. 2 Synthetic histology illustrates molecular states expressed in tumor histopathology. a A cGAN was trained on lung adenocarcinoma
vs. squamous cell carcinoma. Classifier concordance for 1000 seeds was 31.1% strong, 27.0% weak, and 41.9% non-concordant. b A second
cGAN was trained on breast cancer estrogen receptor (ER) status determined by immunohistochemistry (IHC). Classifier concordance for
1000 seeds was 25.9% strong, 10.0% weak, and 64.1% non-concordant. c A third cGAN was trained on head and neck cancer Human
Papillomavirus (HPV) status, as determined by either PCR or p16 immunohistochemical staining. Classifier concordance for 1000 seeds was
33.6% strong, 23.9% weak, and 42.6% non-concordant. d A final cGAN was trained on thyroid neoplasm BRAF-RAS gene expression score (BRS).
Classifier concordance for 1000 seeds was 41.2% strong, 36.2% weak, and 22.6% non-concordant.
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a classifier trained on the Reinhard method were also selected
by the classifier trained using the modified Reinhard method.
Similarly, 92.7% of seeds selected by the Macenko classifier and
90.0% of seeds selected by a classifier trained without stain
normalization were also selected by the standard classifier
trained with the modified Reinhard method. In summary, the
choice of stain normalization method had little effect on
classifier performance, and all methods yielded similar
classifier-concordant seeds for downstream explainability.

cGAN layer blending
Layer blending can provide deeper insights into class-specific
morphology, as passing different embeddings to each layer in the
cGAN offers a method for controlling the scale at which an image
is influenced to be more like one class or another (Fig. 5a). We
assessed the utility of layer blending to illustrate morphologic
differences at difference scales using the BRAF-RAS gene expres-
sion endpoint. In Fig. 5b, a synthetic RAS-like image is shown as
image B1, and a BRAFV600E-like image from the same seed is

Fig. 3 cGAN-generated synthetic histology illustrates morphologic differences associated with BRAF-RAS gene expression score in
thyroid neoplasms. Classifier-concordant seeds from the thyroid cGAN were reviewed with an expert thyroid pathologist and pathology
fellow to determine thematic differences in cGAN-generated BRAFV600E-like and RAS-like histologic features. Seed 0 illustrates architectural
differences, with a papillae in the BRAFV600E-like image replaced with colloid in the RAS-like image. Seed 3 highlights the an increase in fibrosis
in the BRAFV600E-like image. The BRAFV600E-like image for seed 12 shows a cystic structure with cell lining, which is replaced with what appears
to be a tear in the RAS-like image, accompanied by architectural differences moving from papillae in the BRAFV600E-like image to follicles in the
RAS-like image. Seed 16 demonstrates an increase in lacunae caused by resorbed colloid in the BRAFV600E-like image, compared with smaller,
more regular follicles in the RAS-like image. Seed 18 shows papillae, a papillary vessel, and a cystic structure in the BRAFV600E-like image
replaced with follicles, colloid, and an endothelial-lined vessel in the RAS-like image, respectively. Seed 30 highlights more tumor-infiltrating
lymphocytes in the BRAFV600E-like along with increased cytoplasmic density compared with the RAS-like image. Seed 35 shows overall similar
architecture in the two images, but with greater cell flattening in the RAS-like image compared to the BRAFV600E-like image. Seeds 102 and 128
both illustrate nuclear pleomorphism, increased cytoplasm, papillae, and scalloping in the BRAFV600E-like images compared with the RAS-like
image. Seed 167 highlights nuclear pleomorphism and fibrosis in the BRAFV600E-like image compared with RAS-like image which has
monotonous, circular, non-overlapping nuclei with regular contours and fine, dark chromatin.
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shown as image B6. Passing the BRAFV600E-like embedding only to
layers 4–6, as shown in image B2, results in a decrease in size and
variation in morphology of the follicles compared to image B1, but
the prediction does not move in a BRAFV600E-like direction. Passing
a BRAFV600E-like embedding to layers 7–9, as shown in Image B3,
instead results in a minimal increase in chromatin clearing and a
more eosinophilic color profile, and the classifier prediction has
now moved closer to the BRAFV600E-like end of the spectrum. In
image B4, setting layers 10-12 to BRAFV600E-like results in subtle
changes to the stroma, resulting in a more ropey appearance to
the collagen as well as a more eosinophilic color profile.

Comparison with gradient-based pixel attribution
We used several gradient-based pixel attribution methods on the
trained BRAF-RAS gene expression classifier to better understand
the differences between explanations from these localization-
based approaches and synthetic histology (Fig. 6). Unlike the
synthetic histology approach, which provides dataset-level
insights into morphologic features between classes, these
gradient-based tools provide explanations through saliency maps
that highlight areas of an image likely to be important for the
classifier prediction. Grad-CAM, XRAI, and vanilla gradients yielded
coarse saliency maps which offered little information for this
histopathologic application (Fig. 6a). Integrated gradients, guided
integrated gradients, and blur integrated gradients all generally
yielded similar results. We generated saliency maps using
integrated gradients for randomly sampled BRAFV600E-like and
RAS-like images from the thyroid training dataset, and reviewed
these maps with two domain-expert pathologists (Fig. 6b, c).
These saliency maps identified relevant localizable image features
known to be associated with the BRAF-RAS spectrum, including
apoptotic bodies, denser eosinophilic cytoplasm, occasionally
darker nuclei, or wrinkled and irregular nuclei in BRAFV600E-like
images, and interfollicular outlines in the RAS-like images.
However, the importance of larger and less localizable features,

such as papillary architecture, stromal characteristics (such as
vascularity versus desmoplasia), and colloid characteristics, were
not well conveyed. Additionally, similar features were sometimes
highlighted in both BRAFV600E-like and RAS-like images, such as
nuclear membranes and inflammatory cells, making it difficult to
interpret which class these features would be associated with.

Educational intervention using synthetic histology
Finally, we tested the use of synthetic histology to augment
pathologist-in-training education by creating a cGAN-based
educational curriculum illustrating the BRAF-RAS spectrum in
thyroid neoplasms (Fig. 7). Six pathology residents first received a
standard educational lecture on thyroid neoplasms, including
discussion of NIFTP subtype and differences in BRAFV600E-like and
RAS-like morphology. Residents completed a 96-question pre-test
comprised of images of real tumors from a University of Chicago
dataset, predicting whether images were BRAFV600E-like (PTC) or
RAS-like (NIFTP). Residents then participated in a one-hour cGAN-
based educational session, which included image pairs of
synthetic BRAFV600E-like and RAS-like images generated from the
same seed, video interpolations showing the gradual transition
from BRAFV600E-like to RAS-like (Supplementary Data), and a
computer-based interface in which residents could interactively
generate synthetic images. Following the teaching session,
residents completed a 96-question post-test comprised of real
images from different cases than the pre-test. After the one-hour
educational session, resident accuracy on real pathologic images
significantly improved from 72.7% to 79.0% (p= 0.021, 95% CI for
difference in means 1.7%–∞) (Fig. 7d).

DISCUSSION
The ability to understand how deep learning histopathological
classifiers make their predictions will have broad implications for
the interpretability and reliability of potential DNN biomarkers and

Fig. 4 Class blending yields smooth histologic transitions between classes. a Illustration of class blending performed for a strongly-
concordant Thyroid cGAN seed, transitioning from BRAFV600E-like to RAS-like. Intermediate images are generated through linear interpolation
between class embeddings. b Example class-blended images for the Lung and Breast cGANs. c Classifier predictions smoothly transition
during class blending. For 1000 strongly-concordant seeds, predictions were generated for synthetic images during class blending,
transitioning from BRAFV600E-like to RAS-like. For each seed, predictions were assessed at 100 intermediate steps during class blending. The
orange line indicates the proportion of change in prediction at each step, from BRAFV600E-like to RAS-like, during class blending for all 1000
seeds. The orange bars indicate the 95% confidence interval of the average change in prediction across all seeds at each class blending step.
The blue shaded interval represents the standard deviation.
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may provide an avenue for discovering how biological states
manifest morphologically.
Our results show that cGANs can be leveraged as an

explainability method for histopathological DNN models, provid-
ing interpretable explanations for image features associated with
classifier predictions through the generation of synthetic histol-
ogy. For weakly supervised histopathological applications where
tile-level image labels are inherited from the parent slide, not all
labeled images in the training dataset are expected to possess
image features associated with the outcome of interest, such as
image tiles with background normal tissue, pen marks, out-of-
focus areas, or artifact. GANs are trained to generate images from
the entire training distribution, which includes these potentially
uninformative image tiles. By filtering cGAN-generated images
with classifier concordance, we use the classifier’s predictions to
identify synthetic image pairs that are enriched for morphologic
differences related to the outcome of interest. We demonstrate

that this approach highlights known morphologic differences
between lung adenocarcinoma and squamous cell carcinomas,
ER-negative and ER-positive breast cancers, HPV-positive and HPV-
negative head and neck squamous cell carcinomas, and BRAFV600E-
like and RAS-like thyroid neoplasms. Generating class-blended
images which smoothly transition from one class to another
through linear interpolation of the embedding latent space further
improves intuitiveness of the synthetic image explanations, and
assists with interpreting differences between image pairs when
the images are markedly different from one another.
This dataset-label explainability approach has some key

advantages over other local explainability methods for histo-
pathological models. Gradient-based pixel attribution methods,
such as Grad-CAM and integrated gradients, can highlight
morphologically significant image features relevant to classifier
predictions for a specific image. These methods are, however,
unable to convey differences between image classes that do not

Fig. 5 Class and layer blending provides nuanced insights into BRAFV600E-like and RAS-like thyroid neoplasms. a cGANs can create
synthetic layer-blended images by conditioning the network using different embeddings at each layer. b Layer blending with a seed from the
Thyroid cGAN reveals different morphologic changes associated with the RAS-like and BRAFV600E-like gene expression spectrum. Each image
includes a corresponding classifier prediction, from -1 (BRAFV600E-like) to +1 (RAS-like). Image B1 is a fully RAS-like image, and Image B6 is a
fully BRAFV600E-like image. Images B2-B5 are generated by using different class embeddings at each cGAN layer. Examining the resulting
morphologic changes that occur when passing the BRAFV600E-like embedding to different layers illustrates different types of morphologic
changes associated with the BRAFV600E-RAS spectrum.
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easily localize within an image, such as broad architectural
changes, variations in hue and color, staining differences, and
changes in stromal characteristics (Fig. 6). In contrast, synthetic
histology generated by cGANs offer complementary insights into
potentially subtle morphologic differences between image classes.

Compared with TCAV and image captioning, this approach does
not require a priori specification of captions or concepts thought
to be important for prediction, capturing a broader array of
morphologic differences and permitting more exploratory use.
Finally, the approach does not require any additional labeled
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training data, instead utilizing the same training distribution used
for the classifier being explained. When combined with other
explainability approaches, class- and layer-blending with cGANs
can improve richness of classifier explanations and support
biological plausibility of DNN predictions.
cGAN-generated synthetic histology also provides an avenue

for hypothesis generation through illustration of morphologic
patterns capable of being learned by deep learning. The
application of this method in thyroid neoplasms is a particularly
salient example: a DNN trained to predict a gene expression
signature and a cGAN conditioned on the same signature together
illustrate the morphologic manifestation of BRAFV600E-like and RAS-
like gene expression. This not only provides a method of
explaining the DNN classifier – it also provides insights into how
underlying tumor biology is connected with morphologic
phenotype. A similar approach could be used to investigate
morphologic manifestations of other molecular states in any
cancer.
In addition to its use for DNN explainability, this approach

provides a potential tool for pathology trainee education,
particularly for rare tumors or elusive diagnoses. cGANs can
generate synthetic histology that, with curation by an expert
pathologist, depict subtle differences significant for diagnosis that
may otherwise be challenging to clearly demonstrate with real
histopathological images. The generation process can be both
controlled and fine-tuned, allowing an educator to build a
curriculum using synthetic histologic images for a particular
objective or phenomenon as a supplement to real images. In our
small study with pathology residents at a single institution, a short
education curriculum utilizing synthetic histology improved
trainee recognition of diagnostically challenging thyroid neo-
plasms. It is important to emphasize that this small educational
intervention was intended as a proof-of-concept to explore the
potential utility of the approach; the study was not powered to
disentangle the benefit of synthetic histology on learning from
improvements due to repeat content exposure.
Although synthetic histology offers compelling possibilities for

both DNN explainability and trainee education, some important
limitations must be acknowledged. As an explainability tool,
cGANs provide global explanations using synthetic image
examples. Thus, their utility is in improving understanding at the
dataset level, rather than providing local insights into why a
prediction was made for a specific real image. It also requires
training a separate GAN model, incurring additional computa-
tional time and requiring a modest training dataset size which
may be challenging to obtain for some clinical outcomes or very
rare tumors. A well-performing classification model is also
necessary for this cGAN-based explainability pipeline, as differ-
ences in classifier architectures and training paradigms may
impact the selection of GAN seeds used for generating synthetic
histology explanations. Finally, GANs may learn to generate

images that reflect underlying biases in the training dataset.
Identification of bias is advantageous for explainability, as it may
assist with highlighting potential confounding factors such as
stain or color differences. Careful curation by an expert pathologist
will be required to utilize synthetic histology for education in
order to prevent perpetuation of potential biases in the training
dataset.
In summary, cGANs can generate realistic, class-specific

histologic images, and exploring visualizations from images with
high classifier concordance provides an intuitive tool for deep
learning model explainability. Class blending via embedding
interpolation yields realistic images with smooth transitions
between classes, and layer blending reveals unique morphological
constructs at architectural, cellular, and stromal levels. Synthetic
histology not only offers an approach to model explainability, but
can also provide new, hypothesis-generating insights into
histologic associations with molecularly-defined tumor subtypes.
Finally, synthetic histology can also be an effective teaching aid,
capable of improving trainee recognition of histologic classes in a
rare cancer subtype.

METHODS
Dataset description
The Lung cGAN was trained on 941 whole-slide images (WSI) from
The Cancer Genome Atlas (TCGA), including 467 slides from the
lung adenocarcinoma project (TCGA-LUAD) and 474 slides from
the lung squamous cell carcinoma project (TCGA-LUSC) (https://
portal.gdc.cancer.gov/). Validation was performed on 1306 WSIs
from the Clinical Proteomic Tumor Analysis Consortium (CPTAC)
lung adenocarcinoma (CPTAC-LUAD) and lung squamous cell
carcinoma (CPTAC-LSCC) collections (https://
www.cancerimagingarchive.net/collections/). The Breast cGAN
was trained on 1,048 WSIs from The Cancer Genome Atlas
(TCGA-BRCA), including 228 estrogen receptor (ER) negative
tumors and 820 ER-positive tumors. Validation was performed
on 98 WSIs from CPTAC, including 26 ER-negative and 72 ER-
positive tumors, with ER status determined through IHC staining
using standard clinical criteria. The Head and Neck cGAN and
classifiers were trained on 362 WSIs from a single-site institutional
dataset, including 202 HPV-negative and 160 HPV-positive tumors.
HPV status on the institutional dataset was determined through
positivity by either PCR or p16 IHC. Validation was performed on
405 WSIs from TCGA (TCGA-HNSC), with 359 HPV-negative and 46
HPV-positive tumors. The Thyroid cGAN was trained on 369 WSIs
from The Cancer Genome Atlas (TCGA-THCA), including 116
BRAFV600E-like tumors (where BRAF-RAS gene expression score is
less than 0) and 271 RAS-like tumors (where BRAF-RAS gene
expression score is greater than 0). Validation was performed on
an institutional dataset of 134 tumors, including 76 BRAFV600E-like
PTCs and 58 RAS-like NIFTPs.

Fig. 6 Local explainability with gradient-based pixel attribution. Twelve randomly sampled and correctly predicted real histologic images
were taken from the thyroid BRAF-RAS training dataset, including six BRAFV600E-like images and six RAS-like images. Saliency maps were
generated using pixel attribution calculated via integrated gradients. For each image, the associated classifier prediction is shown underneath.
Saliency maps were reviewed with two domain-expert pathologists. a Comparison of different pixel attribution methods for a single real
image. Grad-CAM, vanilla gradients, and XRAI methods yield coarse attribution maps that in general offer fewer insights than the more
detailed attribution maps produced by methods based on integrated gradients. b Saliency maps for BRAFV600E-like images. The saliency map
in image (1) emphasizes the nuclear membrane, sparing the cytoplasm. The importance of the papillary architecture seen in this image –
often associated with BRAFV600E-like images, is not well conveyed. Image (2) highlights tumor cell nuclei and largely ignores stroma. Nuclei are
again highlighted in (3), and notably the colloid does not have high attribution. In image (4), inflammatory cells are prominently highlighted.
Image (5) shows high attribution in several densely eosinophilic, apoptotic bodies, which are associated with BRAFV600E-like status (likely
reflecting high cell turnover). Image (6) shows greater attribution for dark, wrinkled, and irregular nuclei, and does not display high attribution
for the surrounding stroma. c Saliency maps for RAS-like images. Image (7) highlights nuclear membranes and appears to outline vessels.
Vessels are similarly outlined with high attribution in image (8) and (11). Images (9) and (11) show high attribution in nuclei. Image (10)
highlights both the nuclear membrane and inflammatory cells. Images (11) and (12) also show high attribution in nuclei and interfollicular
outlines. For all shown saliency maps, SmoothGrad59 was used to help reduce noise.
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Image processing
For the classifier models, image tiles were extracted from WSIs
with an image tile width of 302 μm and 299 pixels using Slideflow
version 1.3.150. For the breast and lung cGANs, image tiles were
extracted with an image tile width of 400 μm and 512 pixels. For
the thyroid cGAN, image tiles were extracted at 302 μm and 512
pixels. Background was removed via grayspace filtering, Otsu’s
thresholding, and gaussian blur filtering. Gaussian blur filtering
was performed with a sigma of 3 and threshold of 0.02. Image tiles
were extracted from within pathologist-annotated regions of
interest (ROIs) highlighting areas of tumor, in order to remove
normal background tissue and maximize cancer-specific training.

Classifier training
We trained deep learning classification models based on an
Xception architecture, using ImageNet pretrained weights and
two hidden layers of width 1024, with dropout (p= 0.1) after each
hidden layer. Xception was chosen out of prior experience due to
its fast convergence and high performance for histopathological
applications43,51–54. Models were trained with Slideflow using the
Tensorflow backend with a single set of hyperparameters and
category-level mini-batch balancing (Supplementary Table 3).
Training images were augmented with random flipping and
cardinal rotation, JPEG compression (50% chance of compression
with quality level between 50 and 100%), and gaussian blur (10%
chance of blur with sigma between 0.5 and 2.0). Random Gaussian

blurring is a technique used to simulate of out-of-focus artifacts, a
common issue encountered when scanning slides with whole-
slide image scanners, and may theoretically improve performance
and generalizability55,56. Training images also underwent stain
normalization with a modified Reinhard57 method, with the
brightness standardization step removed for computational
efficiency. Binary categorization models (lung and breast classi-
fiers) were trained with cross-entropy loss, and the thyroid BRS
classifier was trained with mean squared error loss. Models were
first trained with site-preserved cross-validation52, then a final
model was trained across the full dataset and validated on an
external dataset. Classifier models were evaluated by calculating
Area Under Receiver Operator Curve (AUROC), with cross-
validation AUROC reported as mean ± SD. AUROC 95% confidence
intervals and p-values were calculated with the DeLong method58.

cGAN training
Our cGAN architecture is an implementation of StyleGAN2,
minimally modified to interface with the histopathology deep
learning package Slideflow and allow for easier embedding space
interpolation14. The lung cGAN was conditioned on the binary
category of adenocarcinoma vs. squamous cell carcinoma, and the
breast cGAN was conditioned on the binary category of ER-
negative vs. ER-positive. The thyroid cGAN was conditioned on a
binary categorization of the continuous BRAF-RAS score, discre-
tized at 0 into BRAFV600E-like (less than 0) or RAS-like (greater than

Fig. 7 Synthetic histology augments pathologist-in-training education. a Schematic for creating GAN-based educational curriculum. A
trained classifier and cGAN were used to generate and select classifier-concordant synthetic histology images, along with class blending
videos generated through embedding interpolation. Synthetic histology images and videos were curated by an expert pathologist and
incorporated into an educational curriculum. b Schematic for assessing effect of cGAN-based educational session on ability for pathology
trainees to accurate classify images from real thyroid neoplasms. 48 BRAFV600E-like PTCs and 48 RAS-like NIFTPs were randomly split into a pre-
test and post-test dataset. Predictions were generated for tiles from each slide using the trained BRS classifier and separated into weakly
correct predictions (correct predictions between −0.5 and 0.5) and strongly correct predictions (correct predictions <−0.5 or > 0.5). For each
slide, three weakly-correct images were randomly selected and merged into a single image trio, and three strongly-correct images were
randomly selected and merged, resulting in 2 images per slide. The pre-test thus consisted of 96 images from 48 slides. The same procedure
was taken for the post-test, comprised of 96 images from 48 different slides. c Example real image trios used during pre-test or post-test.
d Trainee classification accuracy on real images significantly improved after the teaching session, from 72.7% to 79.0% (p= 0.021).
e Improvement in trainee classification accuracy was greater for real images with strong classifier predictions (74.3% to 83.0%, p= 0.012)
compared to real images with weak predictions (70.8% to 75.0%, p= 0.132).
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0). All cGANs were trained on images without stain normalization,
to improve training dataset diversity and aid in pathologist
interpretation of raw images without normalization artifacts.
The lung cGAN was trained on 4 A100 GPUs for 25,000 kimg (25

million total images) starting with random weight initialization.
The breast cGAN was trained on 4 A100 GPUs for 10,000 kimg (10
million total images), and the thyroid cGAN was trained on 2 A100
GPUs for 12,720 kimg (12.7 million total images), stopped at this
time point due to model divergence with further training. All
cGANs were trained with an R1 gamma of 1.6384, batch size of 32,
and using all available augmentations from StyleGAN2. cGANs
were evaluated by calculating Fréchet Inception Distance (FID)37

using the full real image dataset and 50,000 cGAN-generated
images.

Classifier concordance
To assess classifier concordance for a cGAN and an associated
classifier, the cGAN generates an image for each class using the
same seed. The generated images are center-cropped, resized to
match the same histologic magnification as the associated
classifier, and stain normalized using the modified Reinhard
method. and the classifier creates predictions for each image.
Predictions are considered “strong” if the post-softmax value is
greater than 0.75 for the predicted class, and “weak” if the post-
softmax value for the predicted class is less than 0.75. For the
thyroid BRS classifier which uses a continuous outcome,
predictions are considered “strong” if the raw prediction is less
than −0.5 or greater than 0.5, and “weak” if the prediction is
between -0.5 and 0.5. A given seed is defined as strongly
concordant if the classifier predictions match the cGAN class
labels for both images and the predictions are both strong. A
seed is weakly concordant if the classifier predictions match the
cGAN class labels, but either prediction is weak. A seed is non-
concordant if the classifier predictions do not match the cGAN
class labels.

cGAN class and layer blending
To create class-conditional images, cGAN class labels are
projected into an embedding space before conditioning the
network, with the projection learned during training. After
training, each class label has a single associated embedding
vector. To create class-blended images, we perform a linear
interpolation between class embeddings and use these inter-
polated embeddings for network conditioning while holding the
cGAN seed constant. We create layer-blended images by passing
different class embeddings to each cGAN network layer while
holding the cGAN seed constant.

Pathologist assessment of cGAN images
Domain-expert pathologists reviewed at least 50 strongly-
concordant synthetic histologic images to assess realism, variety,
and consistency with cGAN class labels. Pathologists first reviewed
the images in a blinded fashion without knowledge of the
associated cGAN labels. Lossless, PNG images were viewed at the
full 512 ×512 px resolution. Pathologists then reviewed the
strongly-concordance synthetic image pairs side-by-side with
knowledge of the cGAN labels to assess consistency of the
synthetic images with biological expectations for the associated
class labels. Pathologists described histologic differences between
each image pairs and provided an overall summary of thematic
differences between classes.

cGAN educational session
Six pathology were recruited for this study via email. No sample-
size calculation was performed prior to recruitment. Participat-
ing residents received a one-hour lecture as a part of their core

educational curriculum discussing the histopathological diag-
nosis of thyroid neoplasms, including a discussion of differ-
entiating between malignant papillary thyroid carcinomas
(PTCs), including follicular-variant PTCs, and benign non-
invasive follicular thyroid neoplasms with papillary-like nuclear
features (NIFTP). A discussion of the molecular association
between PTCs and BRAFV600E mutations, and NIFTPs and RAS
mutations, was also included.
Pathology residents then took a pre-test based on 96 real

images from 48 cases at the University of Chicago, including 24
PTCs (both classic and follicular-variant) and 24 NIFTPs. The trained
BRS classifier model generated predictions across all whole-slide
images, and for each case, three strongly-predicted image tiles
(prediction less than −0.5 or greater than 0.5) were randomly
selected and merged side-by-side, and three weakly-predicted
image tiles (prediction between −0.5 and 0.5) were randomly
selected and merged, resulting in two merged image trios for
each of the 48 cases. The pre-test was comprised of weak and
strong image trios for 24 PTCs and NIFTPs, and residents were
asked to predict whether the image trios came from a BRAFV600E-
like tumor (PTC) or RAS-like tumor (NIFTP).
Residents then participated in a one-hour cGAN-based

educational curriculum. The curriculum was developed by first
calculating classifier concordance for 1000 seeds and identifying
the strongly-concordant seeds. BRAFV600E-like and RAS-like
image pairs for the 412 strongly-concordant seeds were
reviewed by a domain expert pathologist. The vast majority of
these images highlighted morphologic features known to be
associated with the BRAF-RAS spectrum, and a diverse subset of
46 were chosen for inclusion in the teaching session. Video
interpolations were generated and shown for seven of these
seeds. The educational session was structured as a PowerPoint
presentation, using only synthetic histologic image pairs and
video interpolations to highlight important morphologic differ-
ences associated with the BRS spectrum. Residents also had
access to a computer workstation loaded with an interactive
visualization of cGAN generated images and class blending, to
supplement the visualizations shown in slideshow format.
Synthetic images shown on the workstation were displayed
both pre- and post- stain normalization.
Finally, residents completed a post-test comprised of 96 images

from 48 different cases than the pre-test, and resident classifica-
tion accuracy was compared using a one-sided paired T-test.

Ethics statement
Educational study was reviewed by the Biological Sciences
Division/University of Chicago Medical Center Institutional Review
Board and deemed minimal risk, exempt from protocol approval
and requirement for informed consent.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
All data and associated accession numbers used for training is included in this
repository, and can be additionally accessed directly at https://portal.gdc.cancer.gov/
and https://www.cancerimagingarchive.net/collections/ using the accession numbers
provided in the Supplementary Data. Restrictions apply to the availability of the
internal University of Chicago thyroid dataset, but all requests will be promptly
evaluated based on institutional and departmental policies to determine whether the
data requested are subject to intellectual property or patient privacy obligations. The
University of Chicago dataset can only be shared for non-commercial academic
purposes and will require a data user agreement. Class interpolation videos
generated using the thyroid cGAN are available at https://doi.org/10.5281/
zenodo.7921816.
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CODE AVAILABILITY
All code and models are made publicly available with an interactive user interface for
class blending and latent space navigation at https://github.com/jamesdolezal/
synthetic-histology, which includes all code necessary for reproducing results of this
manuscript. The user interface provided is the same interface used during the
educational teaching session. This code utilizes the software package Slideflow,
version 1.3.150, available at https://github.com/jamesdolezal/slideflow.
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