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Potential utility of risk stratification for multicancer screening
with liquid biopsy tests
Elle S. Kim1, Robert B. Scharpf1,2, Montserrat Garcia-Closas 3, Kala Visvanathan2,4, Victor E. Velculescu2 and Nilanjan Chatterjee 1,2✉

Our proof-of-concept study reveals the potential of risk stratification by the combined effects of age, polygenic risk scores (PRS),
and non-genetic risk factors in increasing the risk-benefit balance of rapidly emerging non-invasive multicancer early detection
(MCED) liquid biopsy tests. We develop and validate sex-specific pan-cancer risk scores (PCRSs), defined by the combination of
body mass index, smoking, family history of cancers, and cancer-specific polygenic risk scores (PRSs), to predict the absolute risk of
developing at least one of the many common cancer types. We demonstrate the added value of PRSs in improving the predictive
performance of the risk factors only model and project the positive and negative predictive values for two promising multicancer
screening tests across risk strata defined by age and PCRS.
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Developing effective screening tools for early cancer detection has
long been a pressing interest due to the poor prognosis and
survival associated with advancing cancer stage1. Identifying
individuals at the subclinical or asymptomatic stage provides a
unique window of opportunity for early intervention that has been
shown to improve survival2. In a general population with a
relatively low prevalence of cancer, ideally, a screening test needs
to be broadly accessible, highly specific, and sensitive. A screening
test should be specific to minimize overdiagnosis-related psycho-
logical and financial burdens and risks associated with unneces-
sary follow-up treatments and sensitive to prevent missed or
interval cases. For these reasons, to date, the United States
Preventive Service Tasks Forces has recommended only a handful
of age-based single-cancer screening modalities such as colono-
scopy3 (37.1% to 79.4% sensitivity (se) and 86.7% to 97.3%
specificity (sp)) for colorectal cancer4 mammogram5 (86.9% se and
88.9% sp) for breast cancer6, low-dose computerized tomography7

(59% to 100% se and 26.4 to 99.7% sp) scan for lung cancer8, and
pap test9 (70% to 80% se and 95% sp) for cervical cancer10.
Existing single-cancer screening tools face several challenges,

including lack of adherence to screening recommendations11–13,
low positive predictive value (PPV) or high false positives14, and
missed or interval cancer cases15. Additionally, there are no
presently accepted screening tools for many cancers with poor
prognoses or high late-stage diagnosis rates for cancer detection
in asymptomatic individuals. In this context, multicancer early
detection (MCED) liquid biopsy tests using analytes such as cell-
free DNA (cfDNA) are gaining traction16–26. Several recent studies
have started to explore the feasibility of such approaches for early
cancer detection in a limited clinical setting18–28. GRAIL’s Galleri
test21,26 and Thrive’s DETECT-A24 (Detecting cancers Earlier
Through Elective Mutation-based blood Collection and Testing)
are of note.
MCED has the promise to lower cancer mortality, especially

through early detection of cancers for which there is currently no
screening available. However, as many recent studies have shown,
the issue of low PPV persists as a significant limitation of the newly

developed multicancer tests (Supplementary Table 1)21,24,26,29. The
values of PPV for tests are anticipated to be highly influenced by
specificity, and for a constant specificity value, by the combination
of sensitivity and prevalence. The current MCED tests have high
specificity (99% or higher) but typically have low PPV for the
general population due to modest sensitivity and low prevalence
of cancer in the general population. While sensitivity for some of
these tests can be substantially higher for some specific cancers
and may be improved further through the incorporation of
additional features in cfDNA19,27,28, the PPV in most settings will
still be expected to remain low as the prevalence of individual
cancers is even lower. Thus, in the future, a risk-stratified approach
is likely to be needed to enhance PPV and the risk-benefit balance
of these tests. In the multicancer setting, however, population risk
stratification becomes more challenging as one needs to consider
risk factors across many cancers. There are also new opportunities
due to the emergence of polygenic risk scores (PRSs) from
genome-wide association studies (GWASs) across many cancers30.
Recently, a study investigated the potential utility of PRSs and
other risk factors to build a model for predicting risk for at least
one of several cancers to understand the impact of lifestyle
modifications on overall cancer risk30. However, the prospects of
risk stratification in multicancer screening and the added values of
PRS in addition to classical risk factors are yet to be investigated in
the context of emerging MCED tests.
We use data from the prospective UK Biobank (UKBB) study and

the US population cancer incidence rates to estimate future
cancer risk given individuals’ genetic and nongenetic profiles. We
identified the top ten incident cancer types for females and males
with sufficiently large and publicly available GWAS (see Meth-
ods)31. Our final analysis involved 133,830 female and 115,207
unrelated male participants of White British ancestry aged 40–73,
with 5807 and 5906 incident cancer cases for bladder, breast
(female only), colorectum, endometrium, kidney, lung, melanoma,
non-Hodgkin’s lymphoma, ovary, pancreas, and prostate (male
only), respectively, over the course of follow-up. We used sex-
specific Cox proportional hazards models where the baseline
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hazard is specified as a function of age and assumed the
multiplicative effects of the risk factors32 with the outcome as the
first cancer incidence of the above-mentioned cancers. PRSs were
calculated for eleven (bladder, breast, colorectum, endometrium,
kidney, lung, melanoma, non-Hodgkin’s lymphoma, ovary, pan-
creas, and prostate) cancer types (Supplementary Figs. 1 and 2).
We included two major lifestyle-related exposures, namely
smoking (status and pack-years of smoking) and body mass index
(BMI), known to influence risk across multiple cancers, and family
history of breast, colorectal, lung, and prostate cancer in non-
adoptive first-degree relatives as risk factors. We then computed
pan-cancer risk scores (PCRSs) as the weighted sum of the
predictors included in the multicancer Cox model. The perfor-
mance of the PCRSs was evaluated using a standardized hazard
ratio for instantaneous risk and area under the curve (AUC) using
up to 5 years of follow-up data. We assume that the probability of
an individual carrying an asymptomatic, but screen-detectable
cancer is proportional to the risk of incident cancer over a small-
time interval (eleven months for DETECT-A and one year for
Galleri). We use the Bayes theorem to determine expected PPVs
and NPVs for DETECT-A and Galleri across the PCRS percentiles
and ages based on reported diagnostic accuracies of these tests.
As anticipated, PCRSs were strongly associated with the risk of

developing at least one cancer during the follow-up of the UKBB
study in both females (HR: 1.39 per 1 SD, 95% CI: 1.33–1.45) and
males (HR: 1.43 per 1 SD, 95% CI: 1.37–1.49) (Supplementary Table
2). We observed a strong degree of multicancer risk stratification
by the combined effects of age, cancer-specific polygenic risk
scores, and conventional risk factors shared across multiple cancer
types (Figs. 1, 2, and Supplementary Figs. 3–6). Comparison of the
1-year and 10-year trajectories across various ages and risk strata
for the PRS only model (Female AUC: 0.58, Male AUC: 0.59), risk
factors only model (Female AUC: 0.55, Male AUC: 0.57), and the
combined model (PCRS model; Female AUC: 0.60, Male AUC: 0.62),
further demonstrates the added value of cancer-specific PRSs as
covariates to improve multicancer risk stratification and predictive
model performance (Supplementary Table 2 and Supplementary
Figs. 3–6). The combined (i.e., PCRS) model showed a mean 1-year
overall absolute cancer risk of 3.58% for the high-risk females aged
75 (top 10 percentile) and 0.77% for the low-risk females of the
same age (bottom 10 percentile)—close to a 4.6-fold increase—
whereas the risk factors only model showed a lower level of
overall cancer risk stratification between the high-risk group and
low-risk group, with 1-year absolute risks sitting at 2.36% and
1.12%, respectively, approximately corresponding to a 2.1-fold
increase (Supplementary Fig. 3a–c).
Further, the projected PPVs of the MCED tests (Galleri with a

sensitivity of 51.5% at a specificity of 99.5% and DETECT-A with a
sensitivity of 27.1% at 98.9% specificity) varied substantially by the
level of the underlying risk of the population strata and
the diagnostic accuracies of the liquid biopsy test in question
(Figs. 1c, d, 2d–f). For example, 75-year-old females in the 90–95th
PCRS percentile (AR: 2.27%) will have a 2.6-fold increased 1-year
risk compared to the same-aged female in the 5–10th PCRS
percentile (AR: 0.89%) (Fig. 1a). This corresponds to a PPV value of
70.3% and 48.2% for the Galleri test, translating to a 22.1% PPV
difference for Galleri (Fig. 1c). NPV across all risk percentiles was
reasonably high for both tests across all strata (Fig. 1e, f).
As the first step to integrating these new multicancer screening

tests in the clinical setting, one can also consider a scenario in
which a fixed threshold for PPV is employed as a metric to
recommend early multicancer screening in the asymptomatic
stage. The eligibility will strongly vary by both age and PCRS
percentile. For example, at a threshold of 40% PPV, females could
be eligible for the Galleri test as early as age 50 and in the 95th
PCRS risk percentile and above (Fig. 1c). However, for DETECT-A,
females would be eligible for screening starting at age 61 and in
the highest PCRS risk percentile (Fig. 2d). Raising the PPV

threshold to 60%, for DETECT-A, none of the females would
achieve the required PPV even at the oldest age and highest risk
groups (Fig. 2d). With Galleri’s high sensitivity and specificity,
females will reach the desired threshold starting at age 56 and in
the highest PCRS percentile (Fig. 1c).
Our analysis has several limitations. We assumed that the

reported sensitivity and specificity of a test like DETECT-A and
Galleri would be applicable across all age, sex, and risk groups.
Given the increase in observed sequence alterations in cfDNA
resulting from clonal hematopoiesis in older individuals33–36,
improvements in cfDNA analyses will be needed to overcome
these challenges, potentially through the use of mutation-agnostic
methods19,20,36. Additional empirical data are needed to explore
the potential heterogeneity of the diagnostic accuracy of MCED
tests by age and other risk factors. In our multicancer risk
prediction models, we included a limited set of risk factors, namely
two major lifestyle-related factors that influence the risk of
multiple cancers, family history of the most common cancers, and
PRSs for each cancer type. We further assumed a proportional
hazard model for all cancer risks, assuming multiplicative effects of
age and all the other risk factors. Additional efforts are needed to
build and validate more refined multicancer risk models in
prospective cohort studies by including additional risk factors
and interaction effects. Further, models37,38 that incorporate
extensive family history information and carrier status for rare
high-penetrant mutations would be important for individuals in
high-risk families with strong clustering of related cancers.
Excluding variants with minor allele frequency <0.01 is another
limitation of our study.
We did not account for all cancer types in our multicancer

model. To build a more robust and complete multicancer risk
prediction model, cancer-specific risk models should first be
developed and then combined to generate the risk of composite
outcomes, like that of any cancer among several. The use of site-
specific models will also allow PPV calculations to take into
consideration underlying variations in the diagnostic accuracy of
the MCED tests across different cancer types. Finally, our model-
building effort was restricted to the participants of White British
ancestry in the UKBB due to the limited sample size of other
ancestry groups in this study, and also the lack of well-validated
PRS in non-European ancestry populations. Large studies of
diverse populations are urgently needed to study the accuracy of
MCED tests and to build and validate robust multicancer risk
prediction models across different racial and ethnic groups.
In summary, we conducted a first-of-a-kind study highlighting

the potential for a risk-based approach in multicancer screening.
We observed the added value of PRS in improving the degree of
risk stratification for composite cancer outcomes compared to the
model defined by age, family history, smoking, and BMI. In the
context of population-level early cancer screening, the addition of
PRS could allow the detection of high-risk individuals even in the
absence of conventional risk factors. In the future, well-powered
empirical studies are needed in diverse populations to prospec-
tively evaluate the utility of the multicancer liquid biopsy tests for
their use in personalized early cancer detection.

METHODS
Based on the report from the 2013–2017 United States Cancer
Statistics (USCS) database, we identified the top ten malignant
incident cancer types for females and males, after excluding non-
melanoma skin cancer31. First, we surveyed the NHGRI-EBI Catalog
of Published Genome-Wide Association Studies (GWAS Catalog)39

and the Polygenic Risk Score (PGS) Catalog40 to select the largest
European ancestry-based GWAS as of May 2020 for each cancer
type. We additionally browsed PubMed41 for large cancer-specific
GWASs that were not included in the GWAS Catalog or PGS
Catalog. For breast and colorectal cancer, we searched for prior
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European sample-based large-scale polygenic risk score (PRS)
studies as of July 2020 and selected studies reporting the best-
performing PRS (Supplementary Data). We did not consider
pleiotropic GWAS. We filtered to cancer types with at least ten
independent genome-wide significant SNPs after LD clumping at
a genome-wide significant (GWS) p-value, 5E-8, threshold.
Ultimately, eleven cancer types (bladder, breast, colorectum,
endometrium, kidney, lung, melanoma, Non-Hodgkin’s lym-
phoma, ovary, pancreas, and prostate) were included in our
analysis. For the full list of source literature and GWAS summary
statistics included in our analysis, see Supplementary Data.
UK Biobank (UKBB) is a prospective epidemiological cohort

study with over 500,000 participants42–44. Individuals aged 40–69
at baseline were recruited across the United Kingdom (UK) from
2006–201042–44. A wide range of genotypic and phenotypic
information, including personal medical and family history and
lifestyle data, were collected at enrollment42–44. UKBB data is
regularly updated by completing follow-up questionnaires,
linkage to national cancer and mortality registries, and hospital
inpatient electronic medical records systems42–44. With linkage to

the national cancer registry data, cancer diagnosis date and type
(coded based on International Classification of Disease 10 (ICD-
10)) were available for participants diagnosed with cancer42–44. For
our analysis, we used ICD-10 codes for cancer classification (see
Supplementary Table 4).
We then filtered to unrelated UKBB participants of White British

ancestry with imputed genotype data. We excluded individuals
who were lost to follow-up, with genetic sex and self-reported sex
mismatch, those with any cancer diagnosis prior to baseline
assessment (prevalent cancers), and participants with missing data
in any one of the classical risk factors (BMI, smoking status, pack
years of smoking, and family history of cancer in non-adoptive
first-degree relatives). In UKBB, family history of all cancers is not
available. UK Biobank only reports family history of the top three
cancer incident types for females (breast, bowel, and lung) and
males (breast, bowel, and prostate). These quality control
procedures resulted in a study population involving 133,830
females and 115,207 males.
After determining the source literature (Supplementary Data)

for each cancer type, we reviewed the manuscript and any

Fig. 1 Estimated 1-year absolute risk and the projected PPV and NPV of the Galleri test with an overall sensitivity of 51.5% at 99.5%
specificity for females and males. a, b Estimated 1-year risk of developing at least one of ten and eight cancer types for females and males,
respectively. c, d Projected PPV of the Galleri test by age and PCRS percentile strata for females and males, respectively. e, f Projected NPV of
the Galleri test by age and PCRS percentile strata for females and males, respectively. se sensitivity, sp specificity.
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relevant additional resources. We extracted all autosomal SNPs
from each cancer GWAS along with their summary statistics such
as RSIDs, observed effect size estimates (OR or beta), effective (or
risk) allele, risk allele frequency (RAF), and p-value. We excluded
variants with minor allele frequency (MAF) < 0.01 and ambiguous
SNPs (A/T or G/C allele) with MAF > 0.40. We filtered to variants
with a MAF difference of less than 0.10 relative to the UK Biobank
data. We removed variants with allele mismatches that could not
be resolved by strand or dosage flips and/or SNPs with complete
information mismatch, based on RSID, chromosome number, and
position, to the European 1000 Genome reference panel45 or the
UK Biobank data. We filtered to variants with an information score
≥0.90 based on the UK Biobank imputed genotype data. Finally,
we used the fixed threshold approach to calculate PRS for each
cancer. Using Plink46, we performed LD clumping at a p-value
threshold of 5E-8, r2 of 0.1, and 1000 kb window with the
European 1000 Genome reference panel45 as the reference panel
to remove SNPs in linkage disequilibrium within each cancer type.
Then, PRS for UK Biobank participants was computed using

PRSice247.
The formula used for PRS calculation in PRSice2:
PRSj ¼

P

i
βiSNPij where PRSj is the PRS for the jth individual, βi is

the observed effect size estimate for the ith SNP, and SNPij is the
dosage information for the effective allele of the ith SNP for the jth

individual. We standardized each PRS to have unit variance and
zero mean.
We developed a sex-specific pan-cancer risk prediction model

to estimate the risk of developing at least one cancer over the
course of follow-up. The multicancer model included eleven
cancer types (bladder, breast [Female only], colorectum, endome-
trium [Female only], kidney, lung, melanoma, Non-Hodgkin’s
lymphoma, ovary [Female only], pancreas, and prostate [Male
only]). Data were split into 2/3 training set and 1/3 of test set—
independent validation datasets used for model performance
evaluation and subsequent analysis.
Cox proportional hazard regression (Cox) model32 was fitted to

the training set with the outcome as an incidence of any first
cancer included in the analysis. The models specified a baseline
hazard as a function of age and assumed multiplicative effects of
the risk factors32:

λ tjzð Þ ¼ λ0ðtÞ exp β1z1 þ β2z2 þ ¼ þ βnznð Þ

t: time-to-event; time to any first cancer incidence, censoring age,
or death age
λ0ðtÞ: baseline hazard function
z = (z1, z2, …, zn): set of covariates (risk factors) included in the

Cox model

Fig. 2 Comparison of the estimated absolute risk and the projected PPV and NPV of the DETECT-A test for three separate models (PCRS,
Risk factors only, and PRS only). a–c Estimated 1-year absolute risk of developing one of the ten cancer types for the three separate
multicancer risk prediction models. d–f Projected PPV of the DETECT-A test (27.1% sensitivity at 98.9% specificity) for three separate
multicancer risk models. g–i Projected NPV of the DETECT-A test for three separate multicancer risk models. The pan-cancer risk score (PCRS)
model uses cancer-specific PRSs and conventional risk factors (BMI, smoking status, pack-years of smoking, and family history of cancer in first-
degree relatives) shared across multiple cancer type as covariates. Risk factors only model includes conventional risk factors as predictors. PRS
only model includes the cancer-specific polygenic risk scores for bladder, breast, colorectum, endometrium, kidney, lung, melanoma, non-
Hodgkin’s lymphoma (NHL), ovary, and pancreas as covariates. se sensitivity, sp specificity.

ES Kim et al.

4

npj Precision Oncology (2023)    39 Published in partnership with The Hormel Institute, University of Minnesota



β = (β1, β2, …, βn): set of coefficients (log hazard ratios) for the
predictors
Polygenic risk scores for each cancer (Supplementary Figs. 1

and 2), family history of cancer (breast, colorectum, lung, and
prostate) in any first-degree relatives (nonadopted), body mass
index, and pack-years of smoking were included as predictors in
the model. We also adjusted for the first ten principal
components. Also, as UKBB is a left-truncated and right-
censored cohort, we used age as the timescale for the Cox
model—that is, participants enter the model at recruitment age
and exit at cancer incidence age, censoring age, or death
age–whichever occurs first. We used the censoring date for the
cancer registry data provided by UKBB48. In the underlying
analysis of the UK Biobank data using the Cox proportional
hazard model, the “event” is defined as the occurrence of any of
these cancers, and the “time-to-event” is the time to first onset of
any of these cancers. Thus, if an individual has multiple cancers,
e.g., lung cancer first and then prostate, the individual is
censored at the onset of the lung cancer. Further, if an individual
first develops cancer of a type other than the ones included in
our list, then they are censored at the first onset of those cancer
types. Further, deaths from non-cancer causes were also treated
as censoring events. Thus, the underlying hazard ratio para-
meters of the model can be interpreted as the instantaneous risk
of developing at least one among the set of selected cancers,
given a person was free of all cancers up to that time point.
Additionally, recognizing the concerns with the imputation of

clinical/epidemiologic data, we conducted a complete-case
analysis for the paper. A total of ~19% of subjects were removed
who have missing data in any of the risk factors. Pack-years of
smoking had the highest amount of missing data (~16%) missing,
but all other individual variables had a small missing rate (<5%).
For demonstrating the risk-stratification ability of models, a
complete-case analysis is more desirable as imputation and
model averaging will cause a diminishing of risk-stratification
compared to the full potential of the model. In other words, our
goal is to demonstrate the risk-stratification ability of the models
for a population in which the underlying risk factors could be fully
observed. From that point of view, a complete-case analysis is
more desirable.
We computed pan-cancer risk scores (PCRS) or cancer-specific

risk scores for all UKBB participants as the weighted sum of the
predictors, with weights for each predictor as the estimated log
hazard ratio (HRs) from the fitted Cox model. Then, in the test set,
we assessed the discriminatory accuracy of the pan-cancer risk
score (PCRS) or the cancer-specific risk score (for individual cancer
models) using Harrel’s concordance index (C-statistic) and area
under the curve (AUC) at five years of follow-up.
We used iCARE (Individualized Coherent Absolute Risk Estima-

tion)49 to estimate absolute risk. Detailed methodology for
absolute risk model building is described in Choudhury et al.
202049. Briefly, risk estimates for each individual in the test set
were obtained by feeding age-specific cancer incidence rates by
1-year strata, log HR parameters from the Cox model, and the
reference dataset into the model. We used 2016 cancer incidence
rates in white individuals of the SEER*Stat database50. Site-specific
cancer incidence rates were obtained and then added to get the
overall incidence rates for any cancer included in our study.
Cancer incidence rates for a given age and sex were determined
by the following year’s cancer incidence rates. For instance, in our
study, cancer incidence rates for females aged 50–51 will
correspond to SEER*Stat’s cancer incidence rates for females
aged 51–52. This is to account for the fact that the DETECT-A test
was performed at study enrollment, and the female participants
were followed up over the course of 12 months. DETECT-A and
Galleri will both be used to detect cancers early, prior to
conventional diagnosis. The reference dataset was obtained by

simulating 10,000 samples representative of the underlying UKBB
population using the normal distribution with PCRS or cancer-
specific risk score mean and standard deviation.
DETECT-A study reported an overall sensitivity of 27.1% at

98.9% specificity and an empirical PPV value of 19.4% (95% CI:
13.1–27.1%)24. We wanted to select a time window for absolute
risk estimation so that the PPV for females aged 65–75 is equal to
the point estimate of 19.4% reported in the DETECT-A study24. We
varied the time window by one month around one year and
calculated the weighted average PPV for females aged 65–75
based on the UKBB PCRS distribution and age distribution as
reported by the US Census Bureau51. We found that a time
window of 11 months provided the best match for the overall PPV
for the 65–75 group to the empirically determined PPV value of
19.4%. Thus, subsequently, we calculated PPV and NPV for
different age and PCRS risk groups based on underlying 11-
month absolute risk.
Galleri reported an overall sensitivity of 51.5% at 99.5%

specificity. For Galleri, we used a time window of 1-year21,26. For
DETECT-A, we omit the calculation of projected PPVs and NPVs for
males as it does not include prostate cancer (highest incident
cancer for males) as one of the detectable cancer types50.
Given the absolute risk estimate, x, the positive predictive value

and negative predictive value of the multicancer liquid biopsy test
can be calculated using the formula below:

Se ¼ sensitivity; Sp ¼ specificity

PPVðxÞ ¼ Se ´ pðxÞ
Se ´ pðxÞ þ 1� Spð Þ ´ 1� pðxÞð Þ

NPVðxÞ ¼ Sp ´ ð1� pðxÞÞ
1� Seð Þ ´ pðxÞ þ Sp ´ 1� pðxÞð Þ

The absolute risk estimate can be written as a function of age
and risk factors. We assumed that the sensitivity and specificity of
the multicancer liquid biopsy test do not depend on the
underlying risk factors, and we used the value of these as
reported from the DETECT-A and Galleri study (Supplementary
Table 1)24,26.
This study was conducted under UK Biobank Application

Number 17712 (PI: Dr. Nilanjan Chatterjee). The study analyzes
existing UK Biobank data and does not involve new human
research participants. UK Biobank was approved by the North
West Multi-center Research Ethics Committee (https://
www.ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/
ethics).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
UK Biobank data are available through an application to the UK Biobank Access
Management System (AMS), https://www.ukbiobank.ac.uk/enable-your-research/
register. GWAS summary statistics of the single-nucleotide polymorphisms (SNPs)
used for polygenic risk score (PRS) construction for each trait is available in the
Supplementary Data section with relevant source literature.

CODE AVAILABILITY
This project was developed using R version 4.2.2. and the codes used for the project
are available from Github at https://github.com/eswk-im/PCRSanalysis-.git.
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