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Exploiting convergent phenotypes to derive a pan-cancer
cisplatin response gene expression signature
Jessica A. Scarborough 1,2, Steven A. Eschrich3, Javier Torres-Roca4, Andrew Dhawan5✉ and Jacob G. Scott 1,2,6✉

Precision medicine offers remarkable potential for the treatment of cancer, but is largely focused on tumors that harbor actionable
mutations. Gene expression signatures can expand the scope of precision medicine by predicting response to traditional (cytotoxic)
chemotherapy agents without relying on changes in mutational status. We present a new signature extraction method, inspired by
the principle of convergent phenotypes, which states that tumors with disparate genetic backgrounds may evolve similar
phenotypes independently. This evolutionary-informed method can be utilized to produce consensus signatures predictive of
response to over 200 chemotherapeutic drugs found in the Genomics of Drug Sensitivity in Cancer (GDSC) Database. Here, we
demonstrate its use by extracting the Cisplatin Response Signature (CisSig). We show that this signature can predict cisplatin
response within carcinoma-based cell lines from the GDSC database, and expression of the signatures aligns with clinical trends
seen in independent datasets of tumor samples from The Cancer Genome Atlas (TCGA) and Total Cancer Care (TCC) database.
Finally, we demonstrate preliminary validation of CisSig for use in muscle-invasive bladder cancer, predicting overall survival in a
small cohort of patients who undergo cisplatin-containing chemotherapy. This methodology can be used to produce robust
signatures that, with further clinical validation, may be used for the prediction of traditional chemotherapeutic response,
dramatically increasing the reach of personalized medicine in cancer.
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INTRODUCTION
Despite rich collections of cancer “-omic” data, precision medicine
research has largely focused on producing therapies that target
somatic mutations in previously documented driver genes. These
therapies have produced some inspiring successes, extending the
lives of patients with targetable mutations by months to years1–3.
However, the reach of these drugs is narrow and most patients
without targetable mutations simply have not seen the benefits of
personalized medicine. In fact, it was estimated that in 2020, just
7.04% of cancer patients in the United States could benefit from
genome-driven care4. Even among the patients who do benefit
from mutation-targeted therapies, the costs of these agents are
high and the clinical responses are typically not durable, as tumors
evolve in response to the targeted selection pressure, eventually
becoming resistant to the drug.
Without an actionable mutation, patients often receive conven-

tional cytotoxic chemotherapy. In these scenarios, there are
significant opportunities for expanding the reach of precision
medicine. For example, gene expression signatures can be used to
predict response to these traditional chemotherapy agents
without relying on changes in mutational status. Not only is gene
expression a powerful measure of phenotype, it is readily
translatable to a clinical setting, as patient tumors can undergo
RNA-sequencing at relatively low cost and high scale. Defined as a
set of genes (typically fewer than 100) whose expression covaries
with a particular trait, certain gene expression signatures have
already been incorporated into standard-of-care and clinical
decision-making algorithms (e.g., OncotypeDx5, Mammaprint6).
In addition, signatures of radiosensitivity have been developed
and have achieved level 1 evidentiary status for archival tissue7–10.

As seen in experimental and natural evolution, a variety of
evolutionary trajectories can lead to the same phenotype11–14.
Figure 1a shows a canonical example of convergent evolution,
where genomically disparate species (bats and birds) both
evolved the same phenotype of flight independently of one
another. Just as bats and birds are genetically closer to mice and
reptiles, respectively, individual tumors may be genotypically
similar to tumors with differing drug response phenotypes, Fig. 1b.
Even chemotherapy-naive tumors undergo some broadly similar
selection pressures as uncontrolled growth bounded by normal
tissue (e.g., hypoxic microenvironments, mechanical-physical
limitations, and altered vascularity). Under these evolutionary
pressures, tumors have many genotypes that may match to a
convergent drug response phenotype, making a single genomic
marker of drug sensitivity or resistance infeasible. In order to
characterize chemotherapeutic response phenotype, our
approach exploits convergent phenotypes by combining hun-
dreds of cell lines from a variety of tissue types and extracting
transcriptomic patterns of this phenotypic state.
While our novel method may be used to extract consensus

gene expression signatures for any quantitative or binary
phenotype, here, we will demonstrate its utility with the extraction
and preliminary validation of the Cisplatin Response Signature
(CisSig), for use in predicting response to cisplatin in epithelial-
origin tumors (carcinomas). Cisplatin is one of the most commonly
used chemotherapy agents, given to a variety of cancer subtypes
including bladder, head and neck, gynecological, and many more
disease sites. Given its widespread use, it comes as no surprise
that prior work has assessed the utility of mutational and
transcriptomic signatures in predicting response to this drug;
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yet, to the best knowledge of these authors, none of these
advancements have been translated into routine clinical care15–19.
Furthermore, in contrast to our pan-epithelial strategy, most
previously published cisplatin response signatures or biomarkers
are intended for application in a single disease site.
This work employs a seed gene approach, inspired by Buffa

et al., where previously identified hypoxia-regulated genes
became seeds in a co-expression network, and highly connected
genes formed a hypoxia metagene (gene signature)20. By
extracting genes that are highly co-expressed with biologically
significant genes, Buffa et al. produced a robust hypoxia gene
signature which was prognostic, even in multivariate analysis and
across multiple tissue types21,22.
Our method derives these seed genes using differential gene

expression analysis, comparing cisplatin-sensitive and –resistant
cell lines from the Genomics of Drug Sensitivity in Cancer (GDSC)
database. Of note, this empirical approach to gene extraction is
distinct from the majority of signature extraction methods, which
rely on genes with a known role in drug response or cancer
development. The seed genes are trimmed based on co-
expression in epithelial-based tumor and tissue samples from
The Cancer Genome Atlas (TCGA) ensuring that the final signature
contains genes that tend to be expressed together in both cell
lines and clinical samples. We then show that our final signature is
highly predictive of drug response within GDSC cell lines, and we
establish that signature expression is congruent with use of
cisplatin in standard of care guidelines between disease sites. And
finally, we provide an example of how CisSig may be translated for
use in a single disease site, muscle-invasive bladder cancer (MIBC),
predicting which patients will benefit less from cisplatin-
containing chemotherapy.

RESULTS
Convergent phenotypes inform Cisplatin Response Signature
(CisSig) derivation
CisSig was derived using 429 epithelial-based cancer cell lines in
the GDSC Database, each characterized for gene expression and
drug response (see Fig. 2a). The distribution of disease sites for
these cell lines may be found in Supplementary Table 1. GDSC
gene expression consists of RMA normalized microarray data,
details discussed in “Methods”. This database reports both half-
maximal inhibitory concentration (IC50) and area under the drug
response curve (AUC) as measures of drug response. A Spearman
correlation between these two metrics demonstrated reasonable
concordance (r= 0.84, p < 0.001) in measuring cisplatin response
for our cell lines of interest (Supplementary Fig. 1). We therefore
moved forward with IC50 as the metric of drug response, as it is a
more commonly reported measure.

Each of these folds was analyzed with a pipeline of differential
gene expression and co-expression analysis, visually depicted in
Fig. 2b and discussed below. This pipeline was performed across
five partitions of the data, each with a different 20% of the cell
lines removed (each containing 343 or 344 cell lines), illustrated in
Fig. 2c. The method utilized multiple partitions of the data in order
to find genes that are consistent between folds, reducing the
chance for outlier cell lines to influence the results.
With no pre-filtering of genes, differential gene expression (DE)

analysis using limma23, SAM24, and multtest25 methods was
performed between the top and bottom 20% of responders (i.e.,
cell lines with the highest and lowest 20% of IC50 values). The
distribution of disease sites found in each comparison group
(resistant and sensitive) for each fold may be found in
Supplementary Tables 2–6. A detailed description of the packages
and parameters used for DE analysis can be found in the
“Methods” section. For each fold, the genes found to be over-
expressed in a cisplatin-sensitive state by all three DE methods
were termed the “seed genes,” resulting in 5 sets of seed genes, as
depicted in Fig. 2c. Using only intersecting genes between the
three methods is done with the goal of increasing stringency by
reducing overall false discovery rate. Results of the DE analysis for
each fold are summarized in Supplementary Table 7, and lists of
differentially expressed genes from each method, for each fold
can be found in Supplementary Files 1 and 2.
A co-expression network was built for each set of seed genes, as

described in “Methods” and visually represented in the bottom
panel of Fig. 2b. These networks were built using The Cancer
Genome Atlas (TCGA) RNA-Seq expression data from epithelial-
based normal and tumor tissue samples, comparing the expres-
sion of each seed gene and all other genes in the dataset. Seed
genes that were highly co-expressed with each other are
extracted from each fold, termed “connectivity seeds.” Here, we
bring in gene expression from tissue samples (not cell lines) to
ensure that only genes that are expressed together in both cell
lines and tissue are included in the final signature. The final gene
signature, CisSig, contains any gene found in at least 3 of the
5 sets of connectivity seeds, and the genes included in the
signature are listed in Table 1.
Using the ‘sigQC’ package in R, we analyzed a suite of quality

control metrics to assess the robustness of CisSig in a clinical
sample (TCGA) dataset26,27. The signature is compared to the 5
sets of seed genes originally extracted from GDSC prior to being
refined by co-expression analysis. These results are visualized in a
radar plot in Supplementary Fig. 2. CisSig demonstrates greater
intra-signature correlation, increased correlation between mean
and median, and increased standard deviation within TCGA
samples of epithelial origin. Other metrics of interest include the
coefficient of variance and the proportion (s) of signature genes
found in the top 10%, 25%, or 50% of variable genes. These
metrics can be used to assess the variability of signature genes

Fig. 1 Visual representation of convergent evolution in animals and convergent phenotypes in tumors. a Birds and bats are genomically
disparate, but both have individually evolved the ability to fly. b Two tumors may evolve cisplatin resistance independently, despite being
genomically distinct from one another. Created with BioRender.com.
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within a dataset, where it is ideal to have signature genes that vary
more than the background noise. Here, CisSig performs similarly
to the unfiltered differential gene expression results. Finally, the
these metrics are summarized into a score, also displayed in
Supplementary Fig. 2, where CisSig outperformed all sets of
seed genes.

Increased CisSig expression predicts cisplatin sensitivity
within GDSC dataset
Figure 3a demonstrates the expression of CisSig genes in cisplatin-
sensitive and -resistant GDSC cell lines (top and bottom IC50)
quintiles. From this, we see that signature expression tends to be
higher (more red) in sensitive, rather than resistant, cell lines.
Notably, despite a clear trend there is heterogeneity between
expression of individual genes even at the extreme ends of
cisplatin sensitivity and resistance. This highlights the need for a
summary statistic (e.g., median expression of CisSig genes) to
compare individual cell lines. Next, a “CisSig score,” the median
normalized expression of the 19 CisSig genes, is calculated for the
same sensitive and resistant cell lines. The distribution of CisSig
score and IC50 among all cell lines can be found in Supplementary

Fig. 3. Figure 3b shows that sensitive cell lines tend to have higher
CisSig scores than resistant cell lines, although there is overlap
between cell lines with mid-range signature expression. This is
expected, given that the seed genes were initially extracted as
genes with increased expression in a cisplatin-sensitive state in
the GDSC dataset.
Figure 3c compares the distribution of IC50 between cohorts of

GDSC cell lines in this top and bottom quintile of CisSig score. We
are terming this plot a “Cell Line Persistence Curve,” which
resembles a Kaplan–Meier survival curve, but uses IC50 in place of
survival time for cell lines. Here, we assume that a cell line does
not “survive” when the concentration of cisplatin is greater than
it’s IC50. For example, at 50% “survival” on the y-axis, the median
IC50 of the high CisSig cohort is 3.98 log2(µM) (left, vertical dashed
line), while the median IC50 of the low CisSig cohort is 7.93
log2(µM) (right, vertical dashed line). In other words, cell lines
predicted to be resistant (low CisSig) tend to have greater IC50
values and cell lines predicted to be sensitive (high CisSig) tend to
have lower IC50 values.
As demonstrated by Venet et al., many published gene

signatures do not perform significantly better when predicting

Fig. 2 Schematic representation of CisSig derivation. a Description of the epithelial-origin subset of the Genomics of Drug Discovery in
Cancer (GDSC) dataset (denoted with the pill icon in future figures). These data include 429 epithelial-based cancer cell lines, with drug
response measurements to over 200 drugs and gene expression characterization via microarray. b Pipeline for extracting connectivity seeds.
First, differential gene expression analysis between the top and bottom 20% of cisplatin responders found genes with significantly increased
expression in a state of cisplatin sensitivity. These differentially expressed genes became “seed genes” in a co-expression network built using
gene expression from clinical samples of epithelial-based tumors and tissue in The Cancer Genome Atlas (TCGA). Seed genes that were highly
co-expressed with each other were denoted as “connectivity genes.” c Schematic of data partitioning, where GDSC epithelial-based cancer cell
lines from (a) are split into 5 folds. Each fold underwent the pipeline in (b). Genes found in at least 3 of the 5 connectivity gene sets were
included in the final signature, CisSig. Created with BioRender.com.
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survival outcomes than random gene signatures of the same
length28. Given the large sample size of the cell lines in this
analysis, simply testing for statistical significance may not be
stringent enough. Therefore, we compared the performance of
CisSig’s Cell Line Persistence Curve (hazard ratio) to the
performance of a null distribution. This null distribution was
created using 1000 random gene signatures with the same length
as CisSig, assessing the hazard ratio between each signature’s Cell
Line Persistence Curve. In Fig. 3d, we see that CisSig drastically
outperforms the top 95% of this null distribution.

CisSig Score is not related to status of most common DNA
damage response genes
We compared the expression of CisSig to a variety of genes that
are commonly associated with response to DNA damage, such as
the application of a cytotoxic chemotherapy like cisplatin. The
genes we examined include, but are not limited to, BRCA1/2,
PTEN, RAD51C/D, and ATM. In Supplementary Fig. 4, we show a
heatmap of mutation status for 16 genes across all epithelial-
based cell lines in the GDSC dataset. Each column in the heatmap
represents a GDSC cell line, ordered from high CisSig Score to low
CisSig Score). A chi-square test was used to compare the presence
of a mutation in each gene between cell lines in the top and
bottom half of CisSig score. Out of the 16 genes examined, only
PTEN showed a statistically significant (p= 0.042) relationship
between CisSig score and mutation status after correcting for
multiple hypothesis testing. The presence of a mutation in the vast
majority of the genes assessed does not appear to be more or less

Fig. 3 Visualization of CisSig expression within GDSC dataset. a An unclustered heatmap showing gene expression of the CisSig genes
(rows) in cell lines (columns) from the top and bottom quintiles of cisplatin IC50. Color of the heatmap represents the Z-score of gene
expression, normalized to each gene. Cell lines denoted as sensitive (right, yellow bar) tend to display higher expression of CisSig genes than
cell lines denoted as resistant (left, green bar). Z-scores above 2.5 are denoted as 2.5, and Z-scores below −2.5 are denoted as −2.5. b Violin
plots comparing the distribution of CisSig scores between the cell lines in the highest and lowest quintile of cisplatin IC50. A Wilcoxon rank-
sum test found that the median CisSig scores between these two cohorts was significantly different (p < 0.0001). c Comparison of the
distribution of cisplatin IC50 between cell lines in the highest and lowest quintile of CisSig score. Y-axis represents the proportion of the
cohort with a cisplatin IC50 greater than the cisplatin concentration on the X-axis. A log-rank test between the two cohorts demonstrates
significantly different drug response between the two cohorts (p < 0.0001). d Null distribution of hazard ratio using 1000 random gene
signatures with the same length as CisSig and the model described in (c). CisSig’s performance is compared to the 95% confidence interval of
the null distribution, where each signature’s performance (CisSig and nulls) is represented by the hazard ratio between two cohorts separated
by the signature score. Created with BioRender.com.

Table 1. Genes included in CisSig.

HGNC gene symbol Gene name

ADAT2 Adenosine Deaminase tRNA Specific 2

ATP1B3 ATPase Na+/K+ transporting subunit beta 3

CDIN1 CDAN1 interacting nuclease 1

C1QBP Complement C1q binding protein

CDC7 Cell division cycle 7

CDCA7 Cell division cycle associated 7

FKBP14 FKBP prolyl isomerase 14

KRT5 Keratin 5

LRRC8C Leucine rich repeat containing 8 VRAC subunit C

LY6K Lymphocyte antigen 6 family member K

MMP10 Matrix metallopeptidase 10

NPM3 Nucleophosmin 3

PSAT1 Phosphoserine aminotransferase 1

RIOK1 RIO kinase 1

SLFN11 Schlafen family member 11

STOML2 Stomatin like 2

USP31 Ubiquitin specific peptidase 31

WDR3 WD repeat domain 3

ZNF750 Zinc finger protein 750

These genes all appear in at least 3 of the 5 sets of connectivity seeds.
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common as CisSig Score increases, indicating that CisSig may
represent biomarker information that is orthogonal to mutation
status of DNA damage response genes.

CisSig outperforms the null distributions of drug response
prediction models in the GDSC dataset
In Fig. 3c, d, we demonstrated a novel method to show the stark
difference in IC50 distribution for GDSC cell lines with high and
low CisSig scores, but it is also important to assess CisSig’s
predictive power using more traditional methods. To that aim, we
built a variety of prediction models using CisSig to predict IC50 as
a continuous or binary outcome in epithelial-based GDSC cell
lines, described in Table 2. We chose to evaluate the efficacy of
using a summary score (CisSig score) in addition to individual
gene expression in order to show the possibility of utilizing more
“basic” statistical models (e.g., simple linear regression) for
producing an easier to interpret model while also gauging the
power of using individual CisSig genes in accurately predicting
drug response (e.g., random forest). When utilizing expression of
each gene individually as the input for our models, we chose
penalized regression to prevent overfitting. Finally, for each
method selected, we chose to build two models, one with all
epithelial-based cell lines and one with only epithelial-based cell
lines with high or low signature expression (based on CisSig score
quintiles). In doing so, we can gauge whether more extreme
expression of CisSig is related to improved drug response
prediction accuracy.
In short, simple linear regression models used CisSig score to

predict a cell line’s IC50 as a continuous variable, while elastic net,
L1-, and L2-penalized linear regression models used expression of
all CisSig genes to predict a cell line’s IC50 as a continuous
variable. For these linear regression models, performance was
compared using the Spearman correlation coefficient (ρ) between
the predicted and actual IC50 value for the cell lines withheld from
a given fold’s training dataset. The best correlation coefficient

between the five-folds is chosen to represent each model, shown
in Table 2. Simple logistic regression models used CisSig score to
predict a cell line’s IC50 as a binary outcome (above or below the
median), while elastic net-, L1-, and L2-penalized logistic regres-
sion, support vector machine (with linear and polynomial kernels),
and random forest models were built to use expression of each
CisSig gene to predict IC50 as a binary outcome. We used area
under the receiver operating characteristic (ROC) curve (AUC) to
represent each classification model’s performance, again choosing
the best of five-folds to represent the model in Table 2.
All models demonstrate improved performance when trained

and tested on only cell lines with the highest and lowest signature
scores. In addition, the penalized regression models outperform
the simple regression models when comparing the same cell line
data inputs. It is expected that including CisSig genes as individual
variables would improve performance in comparison to CisSig
score, but it is noteworthy that something as simple as median
normalized expression of all CisSig genes (also known as the
CisSig score) could predict IC50 with the performance shown here.
Figure 4 shows the performance of CisSig for each of the

modeling methods described in Table 2. In Fig. 4a, b, we
demonstrate the basis of the violin plots found in Fig. 4c, d. For
example, in Fig. 4a, we assess a linear regression model with CisSig
score from all epithelial-based GDSC cell lines as the input and
IC50 as the continuous outcome. Each model is built with five-fold
cross validation, and performance is measured by comparing the
predicted and actual IC50 of the testing set using a Spearman
correlation. The best performance of the five-folds is used to
represent CisSig’s performance, shown in Fig. 4a. Next, a null
distribution, shown in Fig. 4b, is produced using 1000 random
gene signatures with the same length as CisSig and the same
modeling method. Again, the best performance of the five-folds is
used to represent each null signature’s performance, and CisSig is
compared to the null distribution.
We repeated the modeling described in Fig. 4a, b for 10

additional modeling methods and the two versions of the dataset

Table 2. Model details and validation results for the prediction of cisplatin response using CisSig in GDSC dataset.

Input Output Method Included data Metric Value

CisSig Score IC50 (continuous) Simple Linear Regression All Corr. Coef. 0.51

CisSig Score IC50 (continuous) Simple Linear Regression Quintiles Corr. Coef. 0.74

All gene expression IC50 (continuous) Elastic Net Linear Regression All Corr. Coef. 0.63

All gene expression IC50 (continuous) Elastic Net Linear Regression Quintiles Corr. Coef. 0.79

All gene expression IC50 (continuous) L1 Linear Regression All Corr. Coef. 0.63

All gene expression IC50 (continuous) L1 Linear Regression Quintiles Corr. Coef. 0.79

All gene expression IC50 (continuous) L2 Linear Regression All Corr. Coef. 0.63

All gene expression IC50 (continuous) L2 Linear Regression Quintiles Corr. Coef. 0.81

All gene expression IC50 (binary) Simple Logistic Regression All AUC 0.79

All gene expression IC50 (binary) Simple Logistic Regression Quintiles AUC 0.90

All gene expression IC50 (binary) Elastic Net Logistic Regression All AUC 0.82

All gene expression IC50 (binary) Elastic Net Logistic Regression Quintiles AUC 0.94

All gene expression IC50 (binary) L1 Logistic Regression All AUC 0.82

All gene expression IC50 (binary) L1 Logistic Regression Quintiles AUC 0.94

All gene expression IC50 (binary) L2 Logistic Regression All AUC 0.81

All gene expression IC50 (binary) L2 Logistic Regression Quintiles AUC 0.95

All gene expression IC50 (binary) SVM (linear kernel) All AUC 0.82

All gene expression IC50 (binary) SVM (linear kernel) Quintiles AUC 0.93

All gene expression IC50 (binary) SVM (polynomial kernel) All AUC 0.78

All gene expression IC50 (binary) SVM (polynomial kernel) Quintiles AUC 0.94

All gene expression IC50 (binary) Random Forest All AUC 0.81

All gene expression IC50 (binary) Random Forest Quintiles AUC 0.91

JA Scarborough et al.
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(one including all cell lines and another including only cell lines in
the top and bottom quintile of signature expression). In Fig. 4c, d,
we show that CisSig outperforms the top 95% of the null
distributions for each of the 11 modeling methods (shaded box on
the right-tail of each violin) using both versions of the dataset,
often outperforming the null distribution altogether. Finally,

Supplementary Figs. 5–15 presents CisSig’s performance in each
of the cross validation folds and show a more detailed histogram
of each model’s null distribution.
A wide variety of modeling methods is included in this analysis

in order to demonstrate that although no one method is
predictably superior to another, CisSig shows strong predictive

Fig. 4 CisSig predicts IC50 using a variety of modeling techniques in the GDSC dataset. a Scatterplot of the actual vs. predicted IC50 using
CisSig score to predict IC50 with linear regression. Plot shows the best performing fold (measured by Spearman’s rho) from 5-fold cross
validation. b Null distribution of the performance metric from (a) (Spearman’s rho), built using 1000 random gene signatures to predict IC50 as
described in (a). As with CisSig, the metric of the best performing fold is used to represent each null signature. The median of the null
distribution and the cutoff for the 95th percentile of the null distribution are represented by the solid and dashed gray line, respectively.
CisSig’s performance, red solid line, outperforms at least 95% of the null distribution. c–d Violin plots containing the null distribution of
performance metrics for 11 modeling methods, split into regression (continuous outcome) and classification (binary outcome) methods,
respectively. Each distribution was created as discussed in a, b, where CisSig’s performance is compared to the performance of 1000 random
gene signatures of the same length. For each violin, a shaded gray bar represents the top 5% of each null distribution and CisSig’s
performance is shown with a red dot. The modeling methods, including input and output, are described in Table 2. Created with
BioRender.com.
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power when utilizing any of them. In addition, models that include
only cell lines with more extreme signature expression consis-
tently have improved performance compared to the same
modeling method that includes all cell lines. This intimates that
more extreme CisSig expression can more accurately predict a cell
line’s response to cisplatin.

Ranking cancer subtypes by CisSig expression is concordant
with observed clinical trends
In addition to demonstrating strong utility in predicting the drug
response of epithelial-based cell lines, CisSig’s expression was
examined across disease sites in external clinical samples. Using
three large datasets, we assessed how expression of CisSig relates
to cisplatin use across epithelial-based cancer disease sites. CisSig
score was calculated for all samples (cell lines or clinical tumor
samples) in GDSC, TCGA, and Total Cancer Care (TCC) databases. In
order to visualize these scores on a log-transformed axis, signature
score was linearly scaled, such that the lowest score became
exactly 1.
In Fig. 5, disease sites were ranked by the median signature

score for the cohort in GDSC (left), TCGA (middle), and TCC (right)
datasets. Furthermore, each disease site is labeled as utilizing
cisplatin in NCCN treatment guidelines (green circle), using
cisplatin in very select circumstances (yellow bars), or not having
cisplatin included in NCCN treatment guidelines (red square). In all
datasets, we see that disease sites with higher CisSig scores tend
to have cisplatin included in treatment guidelines, while those

with lower scores tend to not have cisplatin included in treatment
guidelines.
Finally, disease site rank was compared between datasets using

Spearman’s correlation. There is a strong correlation between the
rank of shared disease sites of all three datasets. Between GDSC
and TCGA, Spearman’s r is 0.78 (p < 0.001). Between GDSC and
TCC, Spearman’s r is 0.92 (p < 0.001). And between TCGA and TCC,
Spearman’s r is 0.93 (p < 0.001).
This high degree of concordance between datasets signifies

that CisSig displays consistent expression between a variety of
data sources (including between microarray and RNA-seq
methods).

CisSig is predictive of survival in muscle-invasive bladder
cancer (MIBC) patients who received cisplatin-containing
chemotherapy
We searched the Gene Expression Omnibus (GEO) for clinical
datasets that include pre-treatment (neoadjuvant) cancer tissue
samples in patients who later received cisplatin-containing
treatment, along with clinical outcomes for each patient (e.g.,
survival time in months). The workflow used to search the GEO,
including the exact boolean search, is described in Supplementary
Fig. 16. With this search, we found a single suitable dataset in the
following disease sites: MIBC, cervical cancer, triple-negative
breast cancer, and esophageal cancer. However, each of these
datasets was too small to split into training/testing datasets. We
then performed a broader search within each of these cancer

Fig. 5 Cancer subtypes with greater CisSig expression tend to have cisplatin included in standard of care guidelines. Cancer subtypes are
ranked by median CisSig Score in three datasets, GDSC (left), TCGA (middle), and TCC (right). The color of each violin plot represents the rank
of the cancer subtype. The ranks of intersecting subtypes between each dataset are compared with Spearman’s rank correlation, reported with
correlation ρ and p-value. Rank correlation ρ between GDSC and TCGA and GDSC and TCC datasets is 0.78 (p= 0.0002) and 0.92 (p < 0.0001),
respectively. Rank correlation r between TCGA and TCC datasets is 0.93 (p < 0.0001). Violin plots display the distribution of CisSig scores for
each cancer subtype. Within each violin, a boxplot denotes median signature score for each subtype (middle horizontal line) and 25th/75th
percentile for signature scores (box edges). Numbers to the left of each violin plot represent sample size included in each cancer subtype. For
disease sites labeled as using cisplatin in select circumstances, notes about these circumstances are included in Supplementary Table 8.
Created with BioRender.com.
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types, looking for suitable datasets that are characterized with the
same platform (e.g., Illumina HumanHT-12 WG-DASL V4.0 R2
expression beadchip). Only the search within MIBC uncovered an
additional viable dataset. The boolean phrase and results of each
of the initial search and each tissue-specific search are described
in Supplementary Files 3 and 4, respectively.
We trained and tested a Cox proportional hazards (PH) survival

model using CisSig genes with the two publicly available MIBC
datasets, described in Table 3. Within Dataset A, we performed
univariate survival analysis with each of the CisSig genes using
only samples that received cisplatin-containing neoadjuvant
chemotherapy. Genes with a strong relationship between
increased expression and improved survival (as seen in GDSC cell
lines) were selected to be included in multivariate analysis; for
additional details, see “Methods”.
As shown in Fig. 6a, this multivariate analysis used Dataset A

samples that received cisplatin-containing treatment, producing a
trained Cox PH model. We tested this model using samples from
Dataset B, which also received cisplatin-containing chemotherapy
and the samples from Dataset A that did not receive cisplatin-
containing chemotherapy. Figure 6b, c shows survival curves from
patients that went on to receive cisplatin-containing therapy.
Patients predicted to be “high risk” have significantly worse
survival than patients predicted to be “low risk.” Figure 6b uses an
arbitrary cutoff (median) to separate the cohorts, while Fig. 6c uses
the optimal cutoff to separate the groups. Similarly, Fig. 6d, e
shows significant separation between “high,” “medium,” and “low
risk” cohorts with worst to best survival outcomes, respectively.
Again, Fig. 6d uses an arbitrary cutoff (tertiles) to separate the
cohorts, while Fig. 6e uses the optimal two cutpoints for each
cohort. Finally, Fig. 6f, g shows that the signal is lost when testing
our model with either binary or tertile cohorts in patients from
Dataset A who did not go on to receive cisplatin-containing
chemotherapy. The reverse of these analyses, where the model is
trained with Dataset B’s patients who did receive cisplatin-
containing chemotherapy, then is tested using Dataset A’s
patients who both did and did not receive cisplatin-containing
chemotherapy shows similar results, shown in Supplementary Fig.
17. For both models, the coefficients and their standard errors can
be found in Supplementary Tables 9 and 10.

DISCUSSION
Genetically distant organisms can independently evolve similar
traits (convergent phenotypes) in order to increase fitness in their
distinct environments. In cancer, therefore, we cannot ignore the
possibility that different mutations may lead to the same drug
response phenotype. Therefore, our novel method groups
convergent phenotypes and uses expression profiling to better
predict drug response in cancer. In doing so, we harnessed the
power of over 400 epithelial-origin cell lines in the GDSC Database
to extract CisSig, a consensus gene expression signature with

potential for use in predicting cisplatin response in epithelial-
origin tumors.
CisSig expression is unique from well-established genetic

markers for chemotherapeutic sensitivity. For instance, we have
shown that CisSig score is not correlated with the presence or
absence of mutations in the vast majority of common DNA
damange response pathway genes (Supplementary Fig. 4).
As demonstrated by many predictive modeling methods, our

gene signature is highly effective at predicting drug response in
GDSC cell lines. Yet, unlike with cell lines, high throughput
characterization of drug response (i.e., IC50, AUC, etc.) in clinical
tumor samples is not feasible29. Because of this, many researchers
use survival as a surrogate measure of treatment response for
tumor samples. However, without a known clinical history of
cisplatin treatment, we cannot use survival as a surrogate measure
of cisplatin response. Even in disease sites where there is level 1
evidence for use of cisplatin-containing chemotherapy (e.g., MIBC,
triple-negative breast cancer), it cannot be assumed that all
patients received this treatment, because many clinical factors
may have prevented its use. Therefore, we assess CisSig’s
translational capabilities across clinical datasets by demonstrating
that increased expression of this signature is correlated to regular
use of cisplatin among disease sites. In this analysis, GDSC was
directly used in the extraction of CisSig, and TCGA is used only for
co-expression analysis in trimming the signature genes, while the
TCC database was not used in any part of the extraction
methodology.
Finally, we demonstrate that a CisSig-trained MIBC model can

predict survival outcomes in a novel MIBC dataset for patients that
received cisplatin-containing chemotherapy. Level 1 evidence for
CisSig’s predictive capabilities in MIBC would require validation in
at least one additional cohort, but the results shown in Fig. 6 show
promising translational potential. Although there is a plethora of
published gene expression data found on Gene Expression
Omnibus, the lack of clinical annotation or use of targeted arrays
makes additional clinical testing infeasible to the best knowledge
of the authors. For example, many datasets contain pre-treatment
samples from patients who later underwent cisplatin-containing
chemotherapy and have publications that analyze survival
outcomes for each patient, but the publicly available data do
not include these outcomes (e.g., bladder: GSE87304; non-small
cell lung cancer (NSCLC): GSE108492). Alternatively, there are
some datasets that contain pre-treatment samples from patients
who underwent cisplatin-containing chemotherapy, but the array
used for gene expression profiling does not include all CisSig
genes (e.g., ovarian: GSE23554; bladder: GSE5287; NSCLC:
GSE14814).
Due to the empirical nature of our gene extraction method, the

exact genes included in the final signature are of lower
consequence than their combined predictive power. As such, we
have not focused the validation of CisSig on the analysis of
individual genes, although future validation could involve
comparing CisSig to the genes expressed by isolated clonal
cisplatin-sensitive and -resistant cellular subpopulations. It is,
however, of note that the majority of the genes included in the
signature are associated with tumorigenesis and tumor aggres-
siveness. Because cisplatin’s mechanism of action relies on
disrupting actively replicating cells, it is not altogether surprising
that increased expression of genes leading to cisplatin sensitivity
would also promote poor prognosis in a treatment-naïve setting.
Furthermore, many of the genes have been denoted as possible
therapeutic targets in a variety of epithelial-based cancers, such as
CDC7 in oral squamous carcinoma30 and liver cancer31, ATP1B3 in
gastric cancer32, and FKBP14 in ovarian cancer33.
In a 2019 manuscript by Mucaki et al., the authors produce a

cisplatin response signature from breast cancer cell lines in the
GDSC dataset; however, their approach only includes genes with a
known relationship to cisplatin response (none of which overlap

Table 3. Description of clinical datasets used for training and testing
of CisSig-informed survival model.

Name GSE acccession
no.

Disease site n with
treatment

n without
treatment

Dataset A GSE48276 Bladder 16 37

Dataset B GSE70691 Bladder 22 0

Treatment refers to neoadjuvant MVAC chemotherapy, which is a regimen
that includes methotrexate, vinblastine, doxorubicin, and cisplatin. Gene
expression profiling in both datasets was performed using the Illumina
HumanHT-12 WG-DASL V4.0 R2 expression beadchip platform.
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with the genes in CisSig)16. Therefore, their final cisplatin response
signature does not contain any CisSig genes. Another cisplatin
response signature, extracted from 26 head and neck cancer
patients with complete clinical response or non-response to

cisplatin and 5-FU contains 10 genes that do not overlap with
CisSig34. Although these signatures do not show overlap with
CisSig, they were both extracted from a specific disease site, while
CisSig has potential for translation to a variety of disease sites

Fig. 6 CisSig-trained model is predictive in patients who have received cisplatin, but lacks signal in patients who have not received
cisplatin. a Schematic description of model training and testing, where a model is trained using patients who did receive cisplatin-containing
treatment from Dataset A. Testing of the trained model is done using patients from the Dataset A who did not receive cisplatin-containing
treatment and patients from the Dataset B who did receive cisplatin-containing treatment. b Test samples that did receive cisplatin-containing
treatment are separated into groups of “high” and “low risk” based on the model’s predictions using a median cutoff. Kaplan–Meier curves
show a significant separation between the two groups. c The same analysis shown in (b), using an optimal cutpoint (determined by chi-square
statistic) instead of median to separate the cohorts. d, e The same analyses shown in (b, c), separating the groups into “high”, “middle”, and
“low risk” groups using tertiles and the optimal two cutpoints, respectively. f, g The same analyses shown in (b) and (d), using samples from
Dataset A that did not receive cisplatin-containing treatment, demonstrating no significant separation between the two groups. Created with
BioRender.com.
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pending further validation. Finally, CDC7A in CisSig overlaps with
the Mammaprint gene signature6, and there are no overlapping
genes with the OncotypeDx Breast Recurrence gene signature5.
This signature extraction method is, of course, not without

limitations. First, a single tumor sample may not capture the
intratumoral heterogeneity that is crucial for predicting the
physiological response to a drug. Next, although the signature
was extracted to find genes with importance across pan-cancer
(epithelial-based) tumor subtypes, clinical validation must occur
within individual disease sites. Given the heterogeneity between
tumor subtypes, disease-site-specific versions of CisSig may
require trimming the genes of this pan-cancer consensus
signature even further, as seen with our preliminary analysis of
CisSig in MIBC. Further, this validation within MIBC remains
preliminary due to the relatively small sample sizes, denoted in
Table 3. Complete validation of CisSig in MIBC will require robust
analysis with additional samples, a key future direction of
this work.
As discussed previously, using cell line expression data as the

basis of a clinical signature is necessary given the current
limitations of high throughput databases, but it can hinder
translation. Therefore, a key future direction will be testing the
signature in additional clinical data to determine if patient
response to cisplatin can be stratified by signature expression.
Although temporal dynamics of gene expression will play a key
role in strategizing which tumor samples should be used to model
CisSig in MIBC, the use of summary statistics (e.g., median
expression across the signature) improves the robustness of the
model across varying timepoints. Finally, expanding this metho-
dology to predict response to combination chemotherapy will
improve its clinical utility even further, as this is how most
chemotherapy is administered in practice today. This will involve
characterizing drug responses of cell lines to drug combinations,
in addition to considering drug synergies, interactions, and
differing resistance mechanisms at the tissue level.
Selection, such as drug treatment, acts on phenotype. And in

this work, we demonstrate a novel gene signature extraction
method—informed by convergent phenotypes—where we find
shared transcriptomic markers of drug response phenotype in
tumors that appear genotypically disparate. By harnessing the
power of a large dataset, such as the GDSC, we extracted a
biologically-inspired product, CisSig. Expanding this method to
produce signatures for response prediction to a variety of
chemotherapeutic agents has the potential to lead to a
monumental expansion of precision medicine in cancer.

METHODS
Data collection and pre-processing
All data cleaning, analysis, and plotting was performed using R
(Version 4.0.5) with RStudio (Version 1.4.1717).

GDSC gene expression, mutation, and meta data
Microarray mRNA expression, DNA mutation, drug response, and
meta-data for 983 cell lines and 251 drugs was downloaded from
the Genomics in Drug Sensitivity Database (GDSC)35. The
expression, mutation, and meta-data were last updated 4 July
2016. The GDSC database can be accessed at https://
www.cancerrxgene.org/. Documentation for the GDSC database
states that the RMA normalized36,37 expression data for all cell
lines were collected via Human Genome U219 96-Array Plate
using the Gene Titan MC instrument (Affymetrix). Further the
robust multi-array analysis (RMA) algorithm was used to normalize
the data, reporting intensity values for 18562 individual loci. The
raw data and probe ID mappings were deposited in ArrayExpress
(accession number: E-MTAB-3610). Whole exome sequencing was
performed using the Agilent SureSelectXT Human All Exon 50 Mb

bait set. In our analysis, a gene labeled as a genomic variant
(missense, frameshift, exonic splicing silencer, nonsense, inframe,
or stop lost mutation) is labeled as having a “mutation present.”
The RMA processed expression data and sequence variant
(mutation) data are available at http://www.cancerrxgene.org/
gdsc1000/.
Epithelial-based cell lines are extracted based on the following

GDSC tissue descriptors (exact labels found in database): head and
neck, esophagus, breast, biliary_tract, large_intestine, liver, adre-
nal_gland, stomach, kidney, lung_NSCLC_adenocarcinoma,
lung_NSCLC_squamous_cell_carcinoma, mesothelioma, pancreas,
skin_other, thyroid, Bladder, cervix, endometrium, ovary, prostate,
testis, urogenital_system_other, uterus.

GDSC drug response data
The drug response data is from the 8.2 release (25 February 2020)
in the GDSC database; this version is referred to as “GDSC2.” The
work in this manuscript uses the preprocessed drug response
data, IC50 and AUC. Cisplatin drug concentration is reported in
log2(µM). According to GDSC documentation (cited above), raw
viability data were processed using the R package, gdscIC50,
where they were normalized with negative controls (media alone)
and positive controls (media only wells with no cells).
Dose–response curves were fit using a multi-level fixed effect
model with a classic sigmoidal curve shape assumed. This model
was fitted using all cell line/drug combinations that were screened
instead of fitting separate models to individual drug-response
series. In this approach, the shape parameter only changes
between cell lines, but the position parameter is adjusted
between cell lines and compounds. Additional information
regarding dose–response curve fitting may be found at Vis
et al.38. Fitting models to all dose–response series leads to
improved robustness for more accurate IC50 and AUC estimates.

TCGA gene expression data
RNA-Seq by Expectation Maximization (RSEM) normalized gene
expression for epithelial-based cancers and normal tissue was
downloaded from The Cancer Genome Atlas (TCGA) database,
which was accessed through the Firebrowse database using the
‘RTCGAToolbox’ package (version 2.20.0)39 in R. The following
TCGA Study Abbreviations were downloaded (exact labels found
in database): ACC, BLCA, BRCA, CESC, CHOL, COADREAD, ESCA,
HNSC, KIRC, KIRP, KICH, LIHC, LUAD, LUSC, MESO, OV, PAAD, PRAD,
STAD, THCA, THYM, UCEC. These values were measured through
the Illumina HiSeq RNAseq V2 platform and were log2
transformed.

Total cancer care (TCC) gene expression data
The Total Cancer Care Dataset is collected by the H. Lee Moffitt
Cancer Center and Research Institute using protocols described in
Fenstermacher et al.40,41. The Total Cancer Care (TCC) protocol is a
prospective tissue collection protocol that has been active at
Moffitt Cancer Center (Tampa, FL, USA) and 17 other institutions
since 2006. They assayed tumors from adult patients enrolled in
the TCC protocol on Affymetrix Hu-RSTA-2a520709, which
contains approximately 60,000 probesets representing 25,000
genes. Chips were normalized using iterative rank-order normal-
ization42. Batch effects were reduced using partial-least squares.
We extracted from the TCC database normalized, debatched
expression values for 9063 samples from 17 sites of epithelial
origin and the 19 CisSig genes. We excluded all metastatic
duplicate samples and disease sites with fewer than 25 samples.

Drug response quality control
IC50 is an imperfect measure of drug response, yet it is widely
used throughout the literature. It is defined as the concentration
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of drug at which cells experience 50% inhibitory effect. Another
measure of drug response is area under the drug response curve,
which is defined as the integral of a drug response curve, where
cellular activity is measured on the y-axis and drug concentration
is measured on the x-axis. IC50 and AUC values for all epithelial
cell lines are compared using a Spearman correlation test (see
Supplementary Fig. 1) in order to assess concordance between the
two metrics.

Differential gene expression analysis
As seen in Fig. 2c, the GDSC dataset is split into 5-folds, where 20%
of the cell lines are removed from further analysis for each of the 5
runs. This leaves 343 or 344 cell lines in each of the 5 partitions.
After data partitioning, the top 20% and bottom 20% are
extracted for comparison using differential expression analysis,
Fig. 2c.
Differential expression analysis is performed using three

algorithms: significance analysis of microarrays (SAM),
resampling-based multiple hypothesis testing, and linear models
for microarrays (limma), which are implemented using R packages
‘samr’24 (version 3.0), ‘multtest’25 (version 2.46.0), and ‘limma’23

(version 3.46.0), respectively. Gene expression was pre-normalized
using RMA (discussed above) and genes were not pre-filtered
before this analysis. This analysis has 68-69 samples per group,
which is appropriate given the demonstration by Baccarella et al.
showing that differential expression results begin to vary
problematically beginning when there are as few as 8 samples
per group43.
A false discovery rate or p-value cutoff of 0.20 was chosen for

each method. The ‘samr’ and ‘multtest’ method were both set to a
seed of 1 (“SAM” function, parameter: “random.seed = 1”; “MTP”
function, parameter: “seed = 1”). The ‘samr’ method used 10,000
permutations (“SAM” function, parameter: “nperm = 10000”),
input gene expression data was described as logged (“SAM”
function, parameter: “logged2 = TRUE”), problem type was two
class unpaired (“SAM” function, parameter: “resp.type = Two class
unpaired”), and t-statistic was used as the test statistic (“SAM”
function, parameter: “testStatistic = standard”). The ‘limma’
method used no p-value adjustment method (“TopTable” function,
parameter: “adjust.method = none”), allowed for infinite number
of differentially expressed genes to be identified (“TopTable”
function, parameter: “number = Inf”), a log-fold change cutoff of
0.5 (“TopTable” function, parameter: “lfc = 0.5”), and allowed for
intensity-trend for setting prior variance (“eBayes” function,
parameter: “trend = TRUE”). The ‘multtest’ method used 1,000
bootstrap iterations (“MTP” function, parameter: “B= 1000”) and
single-step minP for multiple testing procedure (“MTP” function,
parameter: “method = ss.minP”). All other parameters for the
three algorithms were set to default. The intersection of the genes
found to have significantly increased expression in sensitive cell
lines by the three algorithms is termed “seed genes” for use in
future co-expression analysis. An FDR cutoff of 0.2 is a relatively
non-stringent FDR cutoff; it was chosen in order to include a
variety of genes before taking the intersection of results between
the three methods.

Co-expression network analysis and final signature derivation
The co-expression network, represented in the pipeline of Fig. 2b,
is made by performing a pairwise Spearman correlation between
the expression of each seed gene and every other gene (including
other seed genes) except itself with TCGA normal and tumor
tissue sample expression data. The correlation coefficient for each
pairwise comparison is termed the “affinity score.” Next, the
network is transformed so that the largest 5% of affinity scores are
transformed to 1 and all other scores become 0. This is done
without squaring the scores in order to extract only positive
correlations. The average affinity score for each gene compared to

each seed gene is then derived; this value becomes known as a
gene’s “connectivity score.” The intersection between the
differentially expressed seed genes and genes within the top
20% of the highest connectivity scores become known as the
“connectivity genes.” Five sets of connectivity genes are compiled,
one for each data partition. The final signature (CisSig) is produced
by extracting any gene that is found in at least three of the five
connectivity gene sets.

Signature quality control in TCGA
In order to examine how CisSig compares to the original
differential gene expression results and ensure portability to
novel datasets, we perform a quality control analysis within the
TCGA dataset using the ‘sigQC’ R package26 (Version 0.1.22) with
methodology as in Dhawan et al.27. Here, various metrics are
calculated using the expression of the genes found in the final
gene expression signature and the 5 sets of differential expression
analysis results (seed genes). These metrics include intra-signature
correlation, correlation between the mean expression and first
principal component, and skewness of the signature expression.
The final results of all the metrics calculated for each signature are
displayed in a radar plot, with a summary score of each set of
genes (signature) tested. This summary score is the ratio of the
area within the radar plot and the full polygon if each metric was
the highest value possible.

Predicting cell line IC50 using CisSig in GDSC
A cell line or sample’s median normalized expression value of the
CisSig genes is termed the CisSig score. Cell lines were again
organized into five-folds (independent of the data partitioning
used in the signature extraction, described in Fig. 2c). Predictive
models were built using 80% of the cell lines (training cell lines)
and tested on the 20% of the cell lines withheld from the model
(validation cell lines). All models were built with two versions of
input—one using all of the epithelial-based cell lines in the GDSC
database and the other using only the cell lines in the top and
bottom quintiles of CisSig score. When using all the epithelial-
based cell lines, training sets consist of 343–344 cell lines, while
testing sets consist of 85–86 cell lines. When using only the cell
lines in the top and bottom quintiles for signature expression,
training sets consist of 137 or 138 cell lines and testing sets consist
of 34 or 35 cell lines.
Simple linear and logistic regression was used to predict IC50

as a continuous variable with CisSig score as the input. Elastic
net, L1-, and L2-penalized linear regression methods utilized the
expression of each of the 19 CisSig genes to predict IC50 as a
continuous variable. Elastic net, L1-, and L2-penalized logistic
regression methods, support vector machine (SVM), and random
forest methods utilized expression of each of the 19 CisSig
genes to predict IC50 as a binary variable (above or below the
median of the group). All linear regression models were
evaluated using the Spearman correlation coefficient between
true and predicted IC50 values from the validation set.
Classification models (logistic regression, SVM, and random
forest) were evaluated using area under the receiver operating
characteristic (ROC) curve (AUC).
Simple linear regression and logistic regression models were

built using the ‘stats’ package (version 4.0.5) in R. Elastic net, L1-,
and L2-penalized linear and logistic regression models were built
using the ‘glmnet’ package (version 4.1-2) in R. The alpha
parameter was set to 0.5, 1, and 0 for elastic net, L1-, and L2-
penalized regression, respectively. Models were tuned with 10-
fold cross validation to choose a value for lambda with the best
predictive capabilities based on mean square error for linear
models and misclassification error for logistic models.
SVM models were built with the ‘e1071’ package (version 1.7-8)

in R, using both a linear and polynomial kernel. Models were
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tuned with 10-fold cross validation to choose the best value for
degree (from 3, 4, 5), gamma (from 10−3, 10−2, 10−1, 1, 101, 102,
103), and cost (from 10−3, 10−2, 10−1, 1, 101, 102, 103).
Random forest models were built with the ‘randomForest’

package (version 4.6-14), and each model grew 500 trees. All other
parameters in training the prediction models were default.

Cell line persistence curves
Cell lines with high CisSig scores (predicting the more sensitive
cell lines) and low signatures scores (predicting the more
resistant cell lines) are separated by quintile. A Kaplan–Meier
survival model is built for the two cohorts using IC50 in lieu of
survival time, using the ‘Surv’ and ‘survfit’ function from the
‘survival’ R package (version 3.2-13) and ‘ggsurvplot’ from the
‘survminer’ R package (version 0.4.9). A log-rank test (‘ggsurv-
plot’ function from the ‘survminer’ R package) compares the two
survival curves to analyze if the two cohorts of signature
expression are related to different “survival” of higher IC50s in
each group.

Null distributions of cell line IC50 models
CisSig’s performance was compared to a null distribution for all
models built, including all models used to predict IC50 as a
continuous or binary variable and the cell line persistence
models using the log-rank test to compare the two survival
curves. To build each null distribution, 1000 random gene
signatures with the same length as CisSig were chosen. Each
random gene signature was selected using all genes included in
the GDSC expression profiling without replacement. The
performance of each random signature was tested in each
individual modeling method, producing a null distribution for
each modeling method.
As discussed above, the predictive models utilize five-fold cross

validation and the best summary statistic of the five-folds is
chosen to represent the signature’s performance. This remains
consistent for the null models, where the best summary statistic of
the five-folds is used to represent each random signature. If a null
model predicted the same IC50 across all gene expression values,
the Spearman correlation for this model is considered null and this
null signature was not included in the null distribution. By doing
so, CisSig’s performance is being compared to a slightly more
stringent null distribution. This work was performed on a the
CWRU high performance computing cluster and all applicable
software numbers are the same, except R software was version
3.6.2 (therefore the ‘stats’ package was also 3.6.2) and the ‘e1071’
package was version 1.7-3.

Comparing mutation status and CisSig score
Epithelial cell lines were separated into high and low cohorts
based on being above or below the median CisSig score. For each
of the 17 DNA damage response genes shown in Supplementary
Fig. 4, a chi-square test compared the presence of a mutation in
cell lines with high or low CisSig score. This was performed using
the ‘chisq.test’ function in the ‘stats’ package (Version 4.0.5) in R. P-
values underwent Bonferroni correction.

Ranking disease sites in GDSC, TCGA, and TCC by CisSig score
All epithelial-origin cell lines or tumor samples in the GDSC, TCGA,
and TCC datasets had CisSig score calculated as previously
described. For the purposes of plotting on a log-scale, the scores
were linearly adjusted by adding the absolute value of the lowest
score plus 1 to each sample’s score, making the lowest score now
1. For example, if the lowest signature score for the dataset was
−5, 6 was added to each sample’s score. Disease sites within each
dataset were ranked by median CisSig score. For disease sites

shared between datasets, a Spearman correlation was performed
to assess how the rank of disease sites compare between datasets.

Classifying disease sites by cisplatin use
NCCN Treatment Guidelines for each disease site were manually
searched, versions listed in Supplementary Table 8. Disease sites
were classified as including cisplatin in treatment guidelines, only
including cisplatin in very select circumstances, or not including
cisplatin in treatment guidelines. For those classified as only using
cisplatin in select circumstances, details are noted in Supplemen-
tary Table 8.

Survival analysis in external MIBC cohorts
Two separate models were trained, using a similar method
displayed in Fig. 6a and Supplementary Fig. 17A, respectively.
Genes with multiple entries in the processed expression datasets
were averaged to a single value. CisSig genes with a variance
value of <0.2 using the ‘var’ function in the ‘stats’ package (Version
4.0.5) were not included in this analysis.
For the model trained in Fig. 6a, we performed univariate

analysis for each CisSig gene to predict overall survival of samples
that received cisplatin-containing chemotherapy in Dataset A. A
multivariate model was trained using genes from the univariate
analysis that demonstrated a coefficient of 0.5 or lower; this
became the trained model. Both univariate and multivariate
models were built using the ‘Surv’ and ‘coxph’ function from the
‘survival’ package (version 3.2-13) in R. The trained model was
tested using the ‘predict’ function from the ‘stats’ package (version
4.0.5) in R, extracting the linear predictor for samples from Dataset
B who received cisplatin-containing neoadjuvant chemotherapy
and samples from Dataset A who did not receive any cisplatin-
containing treatment. Samples were separated by median,
optimal single cutpoint, tertiles, and optimal double cutpoints.
Cohorts separated by each cutpoint were compared using
Kaplan–Meier analysis, using the ‘ggsurvplot’ function in the
‘survminer’ package (Version 0.4.9) in R.
The same analysis was performed for Supplementary Fig. 17,

except the training dataset was Dataset B (patients who received
cisplatin-containing neoadjuvant chemotherapy), while the test-
ing datasets were patients from Dataset A who did and did not
receive cisplatin-containing neoadjuvant chemotherapy. The
optimal cutpoints for separating cohorts in the Kaplan–Meier
analyses found in Fig. 6c, e and Supplementary Fig. 17C, E are
found by searching all possible cutpoints where each cohort has
at least 4 patients, selecting for which cutpoint leads to the
greatest chi-square statistic.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The Genomics of Drug Sensitivity in Cancer (GDSC) dataset was accessed using R
(code in the cited GitHub repository) to directly download files from the following
links, which do not require registration: https://www.cancerrxgene.org/gdsc1000/
GDSC1000_WebResources//Data/preprocessed/Cell_line_RMA_proc_basalExp.txt.zip,
ftp://ftp.sanger.ac.uk/pub/project/cancerrxgene/releases/current_release/GDSC2_
fitted_dose_response_25Feb20.xlsx, ftp://ftp.sanger.ac.uk/pub/project/cancerrxgene/
releases/current_release/Cell_Lines_Details.xlsx, and https://www.cancerrxgene.org/
gdsc1000/GDSC1000_WebResources//Data/suppData/TableS2C.xlsx. The Cancer Gen-
ome Atlas (TCGA) dataset was accessed using the ‘RTCGAToolbox’ R package (version
2.20.0) to download each disease site’s RSEM normalized RNASeq V2 (labeled
‘RNASeq2GeneNorm’). The data can be accessed, without registration here: https://
gdac.broadinstitute.org/. The Total Cancer Care (TCC) dataset requires application for
access, and can be found here: https://moffitt.org/research-science/total-cancer-care/.
Approval was received to use the anonymized data in this manuscript after
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registration, and the IRB of Moffitt Cancer Center gave ethical approval for the
collection of the original data.

CODE AVAILABILITY
The code to download all data (except TCC data, as discussed in ‘Data availability’
above), extract CisSig, perform validation of the signature, and reproduce all figures
in the manuscript (except the TCC portion of Fig. 5) can be freely accessed with no
restrictions at https://github.com/jessicascarborough/cissig.
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