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Self-supervised attention-based deep learning for pan-cancer
mutation prediction from histopathology
Oliver Lester Saldanha1,2,10, Chiara M. L. Loeffler1,2,10, Jan Moritz Niehues1,2, Marko van Treeck1,2, Tobias P. Seraphin 3,
Katherine Jane Hewitt1,2, Didem Cifci1,2, Gregory Patrick Veldhuizen 1,2, Siddhi Ramesh4, Alexander T. Pearson 5,6 and
Jakob Nikolas Kather 1,2,7,8,9✉

The histopathological phenotype of tumors reflects the underlying genetic makeup. Deep learning can predict genetic alterations
from pathology slides, but it is unclear how well these predictions generalize to external datasets. We performed a systematic study
on Deep-Learning-based prediction of genetic alterations from histology, using two large datasets of multiple tumor types. We
show that an analysis pipeline that integrates self-supervised feature extraction and attention-based multiple instance learning
achieves a robust predictability and generalizability.
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The genotype of any solid tumor determines its phenotype,
giving rise to a large variety of patterns in cancer histopathology.
Deep learning (DL), a tool from the realm of artificial intelligence,
can infer genetic alterations directly from routine histopathology
slides stained with hematoxylin and eosin (H&E)1,2. Initial studies
demonstrated this predictability in lung cancer3, breast cancer4,
and colorectal cancer5. Subsequently, several “pan-cancer”
studies showed that DL-based prediction of biomarkers is feasible
across the whole spectrum of human cancer6–10. However, these
studies were overwhelmingly performed in a single large cohort
without externally validating the results on a large scale. This
raises a number of potential concerns, as prediction performance
can be heavily biased by batch effects occurring in such single
multicentric datasets11,12. To move closer to clinical applicability,
external validation of any DL system is paramount13. Recent
technical benchmark studies have demonstrated that attention-
based multiple instance learning (attMIL)14 and self-supervised
learning (SSL)15,16 for pre-training of feature extractors17,18 can
improve performance and generalizability for computational
pathology biomarkers, but these technical advances have not
yet been systematically applied to mutation prediction in a pan-
cancer approach.
We acquired two large, multi-centric datasets of cancer

histopathology images with matched genetic profiling: the Cancer
Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis
Consortium (CPTAC) dataset. We used all tumor types which were
present in both datasets, namely: breast (BRCA; TCGA N= 1066,
CPTAC N= 122), colorectal (CRC; TCGA N= 534, CPTAC N= 105),
glioblastoma (GBM; TCGA N= 397, CPTAC N= 96), lung adeno
(LUAD; TCGA N= 566, CPTAC N= 110, lung squamous (LUSC;
TCGA N= 484, CPTAC N= 108), pancreatic (PAAD; TCGA N= 179,
CPTAC N= 140 patients), and (uterine) endometrial cancer (UCEC;
TCGA N= 517, CPTAC N= 95; Fig. 1A, B and Supplementary Fig.
1A, B). We aimed to use Deep Learning to predict all N= 1068

clinically relevant oncogenes and tumor suppressor genes (Fig. 1C
and Supplementary Fig. 1C) in the OnkoKb19 database. The
number of genes analyzed decreased after excluding alterations
of unknown significance and the definition of a minimum number
of mutated cases. We trained the model to predict mutations in
TCGA (Fig. 1A) and evaluated the performance on CPTAC (Fig. 1B).
The primary endpoint was the mean (±standard deviation) area
under the receiver operating characteristic curve (AUROC) of five
replicate experiments. We benchmarked our methods against four
other methods, as laid down in the “Methods”" section, and found
that the combination of SSL+ attMIL outperforms other tested
approaches.
We found that in most tumor types, mutations in several genes

were predictable from histology (Fig. 1D, E and Supplementary
Data 1). In accordance with previous studies20, endometrial cancer
(UCEC) had the highest number of detectable mutations. N= 13
out of n= 43 analyzable genes had an AUROC of 0.60 or higher, of
which 6 reached an AUROC of 0.70 or higher in the external
validation cohort (Fig. 2A). Among these were PTEN mutations
(AUROC 0.73 ± 0.03) involved in hereditary cancer;21 TP53 muta-
tions (AUROC 0.72 ± 0.05), which is associated with poor
prognosis22 and APC (AUROC 0.72 ± 0.11), as a potential predictive
marker for immunotherapy in endometrial cancer23. We identified
7 genes for which mutations were predictable (out of 16
analyzable genes) for colorectal cancer (CRC) with AUROCs of
over 0.6 in the external validation cohort. (Fig. 2B). This included
prognostic alterations, such as BRAF and KRAS mutations, which
reached an AUROC of 0.66 ± 0.24 and 0.66 ± 0.03 respectively
(Supplementary Data 1). In GBM, 4 out of 9 genes had an AUROC
over 0.70 including the genes IDH1 (AUROC 0.84 ± 0.06), ATRX
(AUROC 0.70 ± 0.10), TP53 (AUROC 0.70 ± 0.07) and RB1 (AUROC
0.70 ± 0.07; Fig. 2C). These are of increasing relevance as
classification of brain tumors are increasingly based on molecular
markers and therefore of therapeutic importance. In the other
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tumor types prognosis relevant mutations such as EGFR in LUAD
(AUROC 0.76 ± 0.03) or TP53 in BRCA (AUROC 0.72 ± 0.05) could be
predicted with an AUROC over 0.70 (Fig. 2D, E). For the tumor type
LUSC highest AUROCS of 0.61 ± 0.14 for RB1 was achieved (Fig. 2F).
Moreover the DL algorithm was able to detect CDH1 alterations in
BRCA with an AUROC of 0.68 ± 0.17 (Fig. 2G–I). Compared to the
other tumor types in our study, the tumors with the highest
number of predictable alterations (UCEC, CRC, and BRCA) have a
higher average tumor mutational burden24. We hypothesize that
many morphological alterations are related to immune-mediated
changes in the tumor microenvironment. Our method yielded
interpretable spatial predictions (Fig. 2G), and unlike previous
studies25 provided separate heatmaps for attention (Fig. 2H) and
classification (Fig. 2I and Supplementary Fig. 2). Previous studies
have shown such heatmaps to be correlated to the underlying
molecular ground truth on a spatial scale26,27. In summary, in our
study, the use of the new combination of SSL+ attMIL showed the
best performance in comparison to the other techniques
(Supplementary Fig. 3 and Supplementary Data 2), while a visual
examination of correctly and wrongly classified cases suggested a

plausible distribution of model attention on the whole slide image
(Supplementary Figs. 4A–O, 5A–O, 6A–O, and 7A–O).
A key limitation is that many clinically relevant genes were

not analyzable due to having fewer than 25 mutants in TCGA or
many alterations with unknown significance. Large-scale efforts
are needed to create datasets with a sufficient size, which could
be facilitated by federated28 or swarm29 learning. Since the
early 2000s, studies have shown a link between genetic
alterations and histological phenotypes30, which DL can
exploit1,6,7. While there is no biological reason why every
frequent genetic alteration is actually manifest in histology, our
results add to the growing amount of evidence which shows
that many of these alterations are indeed determinable from
H&E. This is also detached from the morphological subtype
(Supplementary Fig. 3B) or other molecular alterations such as
MSI or POLE mutational status (Supplementary Fig. 3C–E).
Crucially, in contrast to previous studies, our pan-cancer
mutation prediction models have been externally validated,
thereby minimizing the risk of overfitting11.
Our analysis shows that in almost all tumor types, cross-

validated performance of SSL+ attMIL is correlated to external

Fig. 1 Study Design with selection process of the genes. A, B Patient numbers for each tumor type in The Cancer Genome Atlas (TCGA) and
the Clinical Proteomic Tumor Analysis Consortium (CPTAC) dataset. C Flowchart showing the preprocessing steps for the training and
validation cohort. Furthermore, an outline of the gene selection process. D Overview Area under the receiving operating curve (AUROC)
results for internal cross-validation in TCGA. E Overview AUROC results for external validation on CPTAC. The plots are based on the original
AUROC values with 5 decimal digits, while numbers in the manuscript text have been rounded to two decimal digits. (Icons were used from
Servier Medical Art provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license).
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validation performance (Fig. 2A–F and Supplementary Fig. 8) and
outperforms the current state of the art. To our knowledge, this is
the first time that a multiplexed biomarker prediction from H&E
slides has been shown to generalize well. Our study identifies a
number of clinically relevant candidate genes amenable to
DL-based pre-screening as part of clinical routine practice, with
the aim of identifying patients who are good candidates for
confirmatory genetic testing.

METHODS
Ethics statement
All experiments were conducted in accordance with the Declara-
tion of Helsinki. For this study, we used anonymized H&E-stained
slides from public repositories.

Data acquisition and experimental design
Mutation data for was obtained from https://www.cbioportal.org/31,
excluding alterations of unknown significance and excluding all
genes with fewer than N= 25 mutant cases in TCGA (Fig. 1C and
Supplementary Fig. 1C). This resulted in 43 analyzable genes in
endometrial cancer (UCEC), down to 4 analyzable genes in
pancreatic cancer (PAAD, Fig. 2A–F and Supplementary Fig. 8).
We then used our in-house open-source DL pipeline (https://
github.com/KatherLab/marugoto) which uses the SSL-trained
model RetCCL32 to obtain 2048 features per tile and uses attMIL
to make patient-level predictions33,34.

Model architecture
The methods used in this paper follow a two-step approach: the
first step is the feature extraction (transforming image tiles into

Fig. 2 Classification performance for all genes in internal and external validation. A–F Internal cross-validation and external validation Area
under the receiving operating curve (AUROC) for six tumor types (PAAD in Supplementary Fig. 8). The bubble size scales with the number of
mutant patients in the external validation cohort. All raw data are in Supplementary Data 1. G–I A representative patient from the CPTAC-
BRCA cohort, with attention map and prediction maps for CDH1 mutational status. The scale bar represents 5mm.
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feature vectors) and the second step is slide aggregation
(transforming a set of feature vectors obtained from a given
pathology slide into a single prediction for that slide).
For feature extraction, we explore two different methods using

a Resnet neural network which was pretrained in a different way.
The first feature extraction model is based on a Resnet18 which
was pre-trained on ImageNet35. We chose this model due to its
broad use in the computational pathology research literature14.
The second model is the Retrieval with Clustering-guided
Contrastive Learning (RetCCL)32 model, a Resnet50 backbone
that was trained on a pathology dataset with Self Supervised
Learning (SSL).
Also, for the aggregation, we explore two different methods:

average pooling (avgPool), which was the dominant approach in
the 2018–2020 research literature on clinical datasets3,5,14,36. This
approach uses a simple multilayer perceptron similar to obtain a
prediction for each tile, and then averages the predictions across
all tiles for a given slide. The architecture of the multilayer
perceptron (classifier network) is (512 × 256), (256 × 2). In contrast,
the attention-based MIL model (attMIL33) has the following
architecture: (512 × 256), (256 × 2) with an additional attention
mechanism37. Finally, we use hyperbolic tangent (tanh) as an
activation layer to obtain a prediction score.
The core method of our in-house image analysis pipeline

“marugoto” is to combine an SSL feature extractor with an
attMIL aggregation model. To benchmark both of the models
against a baseline, we combine feature extraction and aggrega-
tion models in four different ways: ImageNet+attMIL, ImageNet
+avgPool, SSL+ attMIL, and SSL+ avgPool. Lastly, we com-
pared these new techniques to our previous in-house pipeline
DeepMed38 which implements the approach proposed by
Coudray et al.3. In this approach, the deep layers of a Resnet18
are fine-tuned on image tiles, as described before5. We apply all
five approaches to the mutation prediction task in colorectal
cancer (train on TCGA-CRC, test on CPTAC-CRC) and compare the
results (Supplementary Fig. 3A). Based on these, we choose
SSL+ attMIL for all other experiments.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
TCGA images are from https://portal.gdc.cancer.gov/, CPTAC images are from https://
wiki.cancerimagingarchive.net/display/Public/CPTAC+ Pathology+Slide
+Downloads. Genetic data are available at https://www.cbioportal.org/.

CODE AVAILABILITY
Our pipeline is available under an open source license (https://github.com/
KatherLab/marugoto).
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