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Integrated molecular and clinical analysis of BRAF-mutant
glioma in adults
Karisa C. Schreck 1,2,7✉, Pinky Langat3,7, Varun M. Bhave3, Taibo Li1, Eleanor Woodward3, Christine A. Pratilas2,4,
Charles G. Eberhart2,5 and Wenya Linda Bi 3,6✉

BRAF mutations are a significant driver of disease in pediatric low-grade glioma, but the implications of BRAF alterations on the
clinical course and treatment response in adult glioma remain unclear. Here, we characterize a multi-institutional cohort of more
than 300 patients (>200 adults) with BRAF-mutated glioma using clinical, pathological/molecular, and outcome data. We observed
that adult and pediatric BRAF-mutant gliomas harbor distinct clinical and molecular features, with a higher prevalence of BRAFV600E

(Class I) and BRAF fusions in pediatric tumors. BRAFV600E alterations were associated with improved survival in adults with glioma
overall, though not in glioblastoma. Other genomic alterations observed within functional classes were consistent with the putative
roles of those BRAF mutation classes in glioma pathogenesis. In our adult cohort, BRAFV600E alterations conferred sensitivity to
targeted therapies. Overall, this large cohort of BRAF-altered adult gliomas demonstrates a broad range of molecular alterations
with implications for treatment sensitivity and survival.
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INTRODUCTION
BRAF (v-raf murine viral oncogene homolog B1), a member of the
RAF family of serine/threonine protein kinases that signal to MEK-
ERK kinases, has been identified as an oncogene driver in multiple
cancers. BRAF mutations have been classified into three categories
by their functional impact on BRAF kinase activity, dimerization,
and RAS dependency1,2. The most common BRAF alteration (Class
I), p.V600E, functions as a monomer to promote ERK signaling.
Less common Class II alterations facilitate ERK signaling through
increased homo- and hetero-dimerization of BRAF and do not
require upstream activation by RAS or receptor tyrosine kinases
(RTKs)3. Class III BRAF alterations are functionally inactivating
alterations that increase the proclivity of BRAF to dimerize with
CRAF, thereby increasing downstream ERK signaling4. Class I
alterations are targetable with FDA-approved small molecule
inhibitors, while novel drugs against other BRAF alterations and
pathway components are under development5.
The role of BRAF alterations has been a topic of focused interest

in pediatric glioma given the high prevalence of p.V600E (Class I)
and BRAF-KIAA1549 fusions (Class II)6,7, with early evidence of
success by BRAF-targeted therapy in this group8–10. BRAF
alterations are also observed in adults with low- (5%) and high-
grade glioma (3%)5, prompting considerable interest in targeting
oncogenic BRAF alterations in adults11,12. To date, our under-
standing of the spectrum of BRAF alterations and their implica-
tions for disease trajectory and treatment response in adults
remains limited.
Recent efforts to elucidate the co-occurrence of BRAF alterations

with other genomic mutations and patient outcomes in adult
gliomas are limited by case numbers or a particular focus on
specific alterations, such as canonical BRAFV600E mutations and
BRAF amplifications13–16. Studies have not investigated the range
of BRAF mutations, co-occurring alterations, and their clinical

implications across a large set of sequenced genes, nor have there
been robust comparisons of BRAF alteration types between adult
and pediatric gliomas.
In this study, we retrospectively characterize a large multi-

institutional cohort of adults with BRAF-mutated gliomas. We
identify the clinical phenotypes, genomic signatures, and mole-
cular features associated with different functional classes to assess
prognostic implications and guide therapeutic approaches.

RESULTS
Patient cohort
We obtained clinical and molecular data from 296 patients with
BRAF-altered glioma (151 males, 145 females), including 206 adults
(median 43 years, range 18–85 years) and 90 children (age <18
years, median 10 years, range 0–17 years). Subsets of this cohort
had molecular (n= 267) and clinical outcomes (n= 216) data, with
the majority of patients (n= 187) having both (Fig. 1a). Most
samples were obtained at initial diagnosis (n= 220), with 56 from
a follow-up resection or at an unknown time (n= 20).
The spectrum of histologic grades, pathology, and specific BRAF

alterations in adults contrasted with that in children (Fig. 1b and
Table 1). The most common histopathologic diagnosis in adults
was glioblastoma (n= 108, 36%) (Table 1 and Fig. 1b, c). By
contrast, low-grade gliomas, especially pilocytic astrocytomas,
predominated in pediatric BRAF-altered cases (p= 0.0003). BRAF
fusions and Class I mutations were most prevalent in children,
while adult gliomas harbored a broad range of BRAF alterations,
including oncogenic Class II/III alterations, copy number altera-
tions, and otherwise unclassified alterations, all of which were rare
in pediatric glioma.
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Fig. 1 Characteristics of adults with BRAF-altered gliomas. a Study schematic demonstrating the source of cases and six cohorts into which
BRAF alterations were categorized based on their known or presumed function. b Proportion of tumors with key pathological features among
glioma samples from 206 adults and 90 pediatric patients. c Composition and clinical features of adult glioma classes by BRAF alteration
including age at diagnosis, clinical histo-pathologic diagnosis, tumor grade, and overall survival (when known).
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Landscape of BRAF alterations in adult glioma
We explored the distribution of BRAF alterations across age and
histopathologic groups, along with associations with other
common alterations (IDH1/2, EGFR, TERT, ATRX, H3K27M,
CDKN2A/B, NF1, KRAS, HRAS). While the most common SNV in
BRAF was at p.V600E in both adult and pediatric gliomas,
alterations at other sites known to affect BRAF dimerization or
increase ERK signaling (Class II/III) were more common in adult
samples (Fig. 2a, b). In addition to the previously described Class II
and III alterations3,4, we observed a small number of alterations in
close proximity to those nucleotides which likely occur in
functional domains but have not yet been validated (within
kinase domain: Q461E, I463M, V471I, G474R, V482G, L584I, S614P,
S614P; within receptor-binding domain: R188K, G209S). Other
alterations distant from the kinase domain may be functionally
insignificant and incidental. For this analysis, samples were
included in the BRAF Class II and III cohorts only if the SNV was
previously shown to be ERK-activating1.
Approximately half of adults in our cohort had Class I BRAF

alterations (n= 103/206; median age at diagnosis 39 years, range
18–86 years; 57% female). GBM was the most common
histopathologic diagnosis (51%, n= 52), followed by low-grade
glioma (22%), and PXA (18%), among others (Table 1). Overall
survival across adults with Class I alterations was 165 months

(Fig. 1c). In total, 2% (n= 2) had mutations in IDH1/2, 28% (n= 29)
had loss of CDKN2A/B, 3.9% (n= 4) had alterations in ATRX, none
had alterations in H3K27 or NF1. We found 24% of BRAFV600E-
mutant GBMs (n= 10/41) had mutations in the TERT promoter,
22% (n= 9) had chromosome 7p gain and 10q loss, and none had
EGFR amplification. A subset of gliomas across all ages with Class I
BRAF mutations harbored no other alterations, including a subset
histologically defined as GBMs (Fig. 2c).
Class II alterations (3.9%; median age 44 years, range 28–76

years; Figs. 1c and 2c) were seen in eight adult and no pediatric
patients. The alterations occurred at three amino acids (p.L597R,
p.G469R/V/A, and p.K601E) previously described in melanoma3.
Histopathology was predominantly GBM, though there were four
grade 2 gliomas as well—one diffuse astrocytoma (IDH-WT), one
oligodendroglioma (IDH-mutant, 1p/19q co-deleted), and two
astrocytomas, IDH-mutant. Median survival was 20 months.
While Class II alterations are not dependent on RAS activation,

we did observe NF1 alterations in three specimens (38%). Of note,
three specimens had concurrent IDH1/2 mutations, two of which
were known oncogenic alterations (Fig. 2).
Nine (4.3%; median age 55 years, range 28–76 years) patients in

our adult cohort had Class III alterations (Fig. 1c and Table 1).
These included p.G466R/E, p.G469E, p.N581S, p.D594G/N, and
p.G596D. All but one tumor with Class III BRAF alterations were
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Other
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Other
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Fig. 2 Genomic landscape of adult and pediatric BRAF-altered gliomas. Lollipop plot depicting the location of BRAF single-nucleotide
variants (SNVs) identified in the a adult or b pediatric glioma cohort, with color denoting alteration class. c Co-mutation plot grouped by BRAF
alteration class for all samples with genomic profiling data.
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glioblastomas, while the remaining one was a grade 3 IDH-mutant
astrocytoma. Median survival was 47 months. One pediatric
patient with a grade 3 HGG harbored a Class III alteration.
Given their dependence on RAS activity, Class III alterations

commonly co-occur with RTK alterations, NF1 loss, or RAS-
activating alterations. We observed mutations in RTK, RAS, or
ERK pathway components in all adults with Class III altered
gliomas (n= 9). Specifically, seven had NF1 alterations, two had
activating EGFR alterations, and one had an alteration in MET.
Additionally, two had TERT-promoter mutations, four had CDKN2A/
B losses, and one had an IDH1/2 alteration (Fig. 2).
BRAF rearrangements are common in pediatric LGG, particularly

pilocytic astrocytoma, and linked with favorable survival7. Twenty
adult patients (9.7%; median age 42 years; range 18–76 years) had
tumors harboring BRAF rearrangements (Fig. 1c and Table 1). Of
these, 10 (50%) were PA, 6 (30%) were GBM, 2 (10%) were low-
grade glioma, and 2 (10%) were astrocytoma, IDH-mutant (one
grade 2 and one grade 4). The most common BRAF rearrangement
partner was KIAA1549 (n= 11) (Fig. 1b). Two BRAF-rearranged
gliomas had TERT promoter mutations and five had loss of
CDKN2A/B, all of which were grade 4. Median survival in the entire
cohort was 71 months; 33 months in patients with GBM and not
reached in those with PA.
In the pediatric cohort, BRAF rearrangements dominated

(n= 55; 61%). The majority of rearrangements were KIAA1549-
BRAF rearrangements (n= 47; 85%), with only one tumor each
harboring BCAS1, CCDC6, GIT2, or PTPRZ11 as a fusion partner
(Fig. 1b). Clinically, all but two (1.8%) patients were diagnosed with
a pilocytic astrocytoma, with the remaining being grade 2 PXA or
LGG (Supplementary Fig. 1).
Twenty-seven adults had tumors with BRAF copy number gains.

Age at diagnosis was bimodal with a peak at 35 years and second
peak at 75 years. The majority of patients (70%, n= 19) had
glioblastoma, while 9 tumors (33%) had IDH mutations. Median
survival in this cohort was 39 months. Only one pediatric patient
had a BRAF gain; histopathologic diagnosis was GBM, IDH-WT and
clinical deterioration was rapid.
Tumors with unclassified BRAF alterations comprised 19% of the

adult cohort (n= 39) and 6% of pediatric cases (n= 5) (Figs. 1b
and 2c). In adults, median age at diagnosis was 49 years (range
21–78). Seventeen (44%) were female. The majority of alterations
in this cohort were SNVs (n= 30, 77%), with 4 intragenic
rearrangements, 2 having focal loss of BRAF, and 3 damaging
mutations (Fig. 2c). Median overall survival in this cohort was
42 months.
Interestingly, a subset of unclassified adult tumors (n= 13,

6.3%) had increased tumor mutation burden across the genome,
consistent with a hypermutated phenotype (Fig. 2c). Three
hypermutated tumors had known pathogenic IDH mutations,
while four had IDH mutations of unknown significance. Nine were
newly diagnosed gliomas and 4 were recurrent tumors. Of four
patients with detailed clinical treatment data, all received
temozolomide prior to the surgical specimen for which NGS was
obtained.

Association of molecular alterations with BRAF class
We next evaluated associations between different BRAF alteration
classes and other molecular characteristics. We performed
unsupervised clustering using genomic data, which identified 3
clusters. Gliomas with BRAF gains (Cluster 2) were more closely
associated with one another than gliomas with BRAF Class I–III
mutations or fusions (Fig. 3a and Supplementary Table 1). A small
cluster (Cluster 3) of primarily high-grade gliomas contained
mostly unclassified BRAF alterations. Gliomas with BRAF gains
commonly had concomitant gains in MET, SMO, EZH2, and CDK6
(p < 0.001 each; Supplementary Table 2), along with other genes
on 7q, which may reflect larger chromosomal duplications

(Fig. 3b). Interestingly, HRAS, MYC, and TP53 alterations were also
enriched in the gains cohort (p < 0.00001).
In BRAFV600E-altered gliomas, we found no significant co-

occurring oncogenes when compared with other alteration
classes. However, Class I alterations were negatively correlated
with alterations in NF1, EGFR, TP53, and MET (Fig. 3b, c). As
anticipated, concurrent alterations in RAS pathway components
were rarely observed (Fig. 2c).
Several other correlations were observed between classes, some

anticipated based on known activity (Fig. 3b, c and Supplementary
Table 2). Tumors with Class II and III alterations were enriched for
NF1 alterations (Fig. 3a; p < 0.00001). EGFR and FGFR4 alterations
were associated with unclassified BRAF alterations after excluding
hypermutated samples (p= 0.0003). Notably, CDKN2A/B loss, ATRX,
and PTEN mutations were observed across all groups.
BRAF rearrangements were not associated with other molecular

alterations in our panel. Within the BRAF rearranged cases, non-
KIAA1549 rearrangements were associated with higher pathologic
grade. Of note, all rearrangements in adult glioma were
intrachromosomal rearrangements on the long arm of chromo-
some 7, while in pediatric glioma several interchromosomal
rearrangements were observed (Fig. 3d).
To further explore differences between tumors with distinct

BRAF alterations, we analyzed RNA sequencing data from 18 TCGA
samples in our cohort. These tumors harbored Class I alterations
(n= 4), BRAF gains (n= 10), or unclassified alterations (n= 4).
Compared to other BRAF-altered gliomas, tumors with Class I
alterations had elevated expression of several well-known tumor
microenvironment marker genes (Fig. 3e). Notably, gliomas with
Class I alterations were enriched for transcripts associated with
MEK functional activation (e.g., ETV4, LZTS1), which can also be
markers of MEK inhibitor sensitivity17,18. They also demonstrated
increased expression of EREG (an EGFR ligand) and the EPHA2
receptor, which are associated with resistance to treatment with
EGFR or BRAF inhibitors19,20. This finding is consistent with recent
observations that BRAF-mutant GBM have distinct expression
profiles compared with non-BRAF-mutant GBM16. Meanwhile,
tumors with BRAF gains were enriched for genes associated with
transcriptional regulation compared to other samples (Supple-
mentary Fig. 2).

Impact of BRAF class on clinical outcome
We evaluated the impact of clinical and molecular features on
outcomes in this retrospective cohort of 187 patients (127 adults,
60 children) with combined data. Diagnosis of pilocytic astro-
cytoma, oligodendroglioma, and younger age at diagnosis were
associated with more favorable prognoses, while age >50 years,
GBM pathology, IDH-WT status, and higher tumor grade were
associated with inferior prognoses (p < 0.001) (Fig. 3f).
Molecular features such as CDKN2A/B loss, PTEN, and TERT

promoter mutations were associated with inferior prognoses
(p < 0.001). Other alterations associated with worse prognosis
across pediatric and adult patients included alterations in AGK,
MET, CREBBP, STAG2, PARK2, CCND2, DNMT3A, PRDM1, and IKZF1
(p < 0.05; Fig. 3f). Some alterations associated with worse
prognosis (PTEN, EGFR, NF1) correlated with increased age
(p < 0.0005; Supplementary Table 2). The only alteration associated
with improved survival was KIAA1549, as expected given its
association with pilocytic astrocytoma.
Gliomas with distinct BRAF alteration types exhibited varying

survival (Fig. 1c). We found that overall survival was significantly
prolonged in adults with Class I alterations compared to other
alterations (p= 0.032; Fig. 4a). This appears to be partially driven
by grade, as no survival difference was observed between GBM
patients with Class I BRAF alterations and those with non-Class I
alterations (p= 0.67, Fig. 4b), with median survival of 22 months
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across patients with GBM. This analysis did not control for the type
or number of lines of therapy.
Notably, our cohort demonstrated a significant difference in

survival between pediatric and adult patients with either BRAF
Class I alterations or rearrangements (p= 0.0012; Fig. 4c), under-
scoring the large difference in prognosis between adult and
pediatric tumors, even with the same molecular alteration.
Younger age remained associated with improved survival in 71
adult GBMs with survival data (p < 0.0001, Fig. 4d).
Additionally, we observed similar survival between adult patients

with Class I alterations and rearrangements (Fig. 4c). When adults
with rearrangements were separated by grade, there was a survival
difference between grade 1 and grade 4 gliomas, suggesting grade
serves as a more accurate prognostic indicator than the presence of
a BRAF rearrangement alone (Fig. 4e). In adults with grade 3–4
astrocytoma, BRAF/MEK-targeted therapy was associated with
improved overall survival (Fig. 4f) compared with grade 3–4 patients
who did not receive targeted therapy, suggesting targeted therapy
has the ability to impact disease trajectory.

Effect of targeted therapy in adults with BRAF mutant glioma
Thirteen adults with recurrent gliomas received BRAF/MEK-
targeted therapy (Fig. 5a), two of whom have been previously
described21,22. Eleven had Class I mutations and 2 had non-Class I
alterations. Median age at diagnosis was 26 years and 38% (n= 5)
were female. Targeted therapy consisted of BRAF inhibition
(vemurafenib, n= 3; vemurafenib followed by dabrafenib, n= 1),
MEK inhibition (trametinib, n= 1), or a combination (dabrafenib
and trametinib, n= 8). BRAF and/or MEK inhibition was first-line
therapy in two patients. However, the majority of patients had
BRAF and/or MEK inhibition either initiated as second-line therapy
following radiation with or without concurrent temozolomide
(n= 5, 38%), or initiated after multiple lines of therapy (n= 6,
46%). Six patients had stable disease for four or more months on
targeted therapy. Median time to progression while on targeted
therapy was 5.0 months. Overall survival for all patients receiving
targeted therapy was 165 months and 53 months for patients with
GBM. Four patients (31%) in the cohort were continuing targeted
therapy at the time of last follow-up. Reasons for discontinuation
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of therapy were treatment-related side effects (n= 4), radiological
evidence of progression (n= 2), death (n= 2), or unknown (n= 1).
The complexities of BRAF targeted therapy are highlighted by

one patient whose case has been partially described previously
(Fig. 5b)21. She was diagnosed at 23 years of age with epithelioid
glioblastoma and treated with radiation and concurrent temozo-
lomide, followed by 12 cycles of adjuvant temozolomide. Her
cancer recurred 5 years after diagnosis, at which time she
underwent repeat resection with carmustine wafer placement.
Two years later, she had a second recurrence and started
dabrafenib plus trametinib for 44 months before discontinuing
therapy due to neutropenia. She was monitored clinically with no
evidence of recurrence for 14 months, before another radio-
graphic recurrence prompted repeat resection, carmustine wafer
placement, and initiation of encorafenib with binimetinib. She
remained on therapy for 6 months before discontinuation due to
colitis and then remained disease-free for another 6 months
before recurrence.

DISCUSSION
While BRAF alterations are significant and potentially targetable in
glioma, the frequency, spectrum, and clinical implications of BRAF
alterations in adult glioma have not been previously characterized
due to their rarity. In comparison to prior studies, this multi-

institutional cohort has improved coverage of clinical outcomes and
NGS data. This allowed characterization of non-canonical mutations
in BRAF present in adult gliomas; improved estimates of relative
frequencies and composition of BRAF alteration types; and integrated
clinical-genomic analyses to potentially aid in prognostication.
In this cohort, several important characteristics of BRAF

alterations in adult glioma emerge. First, BRAF alterations co-
occur with alterations similar to those observed in other cancers,
suggesting they may portend similar functional effects in glioma.
Second, while overall survival in all patients with Class I alterations
was improved relative to other classes, there was no improved
survival in GBM. Third, the spectrum of BRAF alterations is different
between pediatric and adult glioma, with important ramifications
for clinical outcomes. Lastly, BRAF-targeted therapy can benefit a
subset of patients with targetable BRAF alterations.
As in other cancers, most Class I BRAF alterations occurred in the

relative absence of additional oncogenic alterations, suggesting they
are the primary oncogenic drivers in these tumors. We also observed
a transcriptional signature of ERK-dependence in tumors with Class I
alterations18,23, suggesting potential sensitivity for targeted therapy.
Concurrent alterations in other RAS pathway members (NF1, EGFR,
etc.) occurred in Class II/III tumors, consistent with the proposed
mechanism of ERK activation, while also suggesting ERK-dependence
is the primary oncogenic driver in these cancers3,4. Interestingly,
gliomas with BRAF gains often exhibited focal chromosome 7q gains,
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suggesting either an advantageous amplification or that BRAF is a
passenger amongst other genes promoting glioma progression24. Of
note, 14 tumors in our cohort had hypermutated phenotypes, most
commonly with unclassified BRAF alterations. A subset of hypermu-
tated gliomas (23%) had IDH-mutations, which have a known
predilection toward hypermutation following temozolomide che-
motherapy25. BRAF alterations in hypermutated tumors may be
passenger alterations or, as observed recently, may confer a growth
advantage26.
Associations between BRAF alteration class and outcome in adults

were mixed. Across all patients with Class I alterations, we observed
improved overall survival compared to other classes. However, there
was no survival advantage among GBM patients with Class I
alterations compared to other patients with GBM, suggesting the
transition to GBM allows cells to compensate for any growth
disadvantage of BRAF-driven ERK dependence27. This phenomenon
was also demonstrated in patients with BRAF fusions. While BRAF
fusions are associated with an indolent course in pediatric patients, in
adults there was a bimodal survival distribution of pilocytic
astrocytomas and other higher-grade pathologies with a more
aggressive clinical course. This observation underscores the impor-
tance of pathologic grade and other clinical features rather than
BRAF-alteration alone for prognostication28–31. Age, CDKN2A/B loss,
and molecular markers of GBM were correlated with a worse
prognosis, regardless of BRAF alteration, emphasizing their impor-
tance for guiding the timing and type of treatment29. Given the
retrospective nature of our cohort, most patients did not receive
targeted therapy, so it is unclear whether BRAF-targeted therapy has
changed the outcomes of patients with GBM11,12. Another nuance to
the role of BRAF alterations in glioma prognosis is the broad range of
alterations present in adult glioma. Further mechanistic work is
necessary to understand whether the BRAF classes observed imply
functional pathway dependency and whether they could be
exploited with specific therapeutic strategies.
Identification of a targetable BRAF alteration provides patients

with novel therapeutic opportunities. In our small retrospective
cohort of patients treated with targeted therapy, we observed
clinical benefit in a subset of patients. In prospective clinical trials,
response rates of 70% and 33% have been observed among adults
with low or high grade glioma, respectively11,12. Clinical trials of
dimer-disrupting BRAF inhibitors with potential efficacy in addi-
tional BRAF-altered classes are ongoing in adults with glioma
(NCT05503797). Additionally, improved blood brain barrier penetra-
tion may provide additional benefit to patients with central nervous
system involvement (NCT04543188). Given the growing list of
therapeutic options, accurate identification of BRAF alterations is
critical for patient care. Molecular profiling has proven value for
accurate tumor diagnoses and is becoming widespread in adults
with brain tumors29. In cases where a tissue sample is not feasible,
liquid biopsy shows promise to accurately identify targetable
alterations such as BRAF from plasma samples32,33.
This landscape of BRAF alterations in adult glioma provides an

invaluable resource to clinicians evaluating the functional
implications of various BRAF alterations in adults with glioma.
Further work is necessary to prospectively validate outcomes and
identify the role of other BRAF alterations in patients with glioma.
In patients with targetable alterations (Class I–III), small molecule
inhibitors can have a significant clinical benefit, underscoring the
importance of accurately identifying and classifying BRAF altera-
tions in patients of all ages with glioma.

METHODS
Patient data collection
Patients aged ≥18 years at the time of diagnosis with a glioma
containing a BRAF alteration on sequencing were identified at
the Dana-Farber/Harvard Cancer Center (DFCI), Johns Hopkins

Hospital (JHH), and two public repositories: The Cancer Genome
Atlas Program (TCGA) and Project Genomics Evidence Neoplasia
Information Exchange (GENIE). A single glioma tissue sample
collected between 2008–2020 was included per patient (either
primary resection or recurrence). For comparison, 90 pediatric
(<18 years old) patients with gliomas harboring a BRAF alteration
in sequencing data were identified from DFCI, TCGA, and GENIE,
with demographic data available for a subset (n= 57). Clinical,
histopathologic, and molecular data from tumor tissue were
collected and analyzed retrospectively. Medical record review for
clinical characteristics and outcomes was performed under
protocols approved by the institutional review boards of DFCI
and JHH. A waiver of consent was obtained for this retrospective
study at Johns Hopkins given infeasibility of consent since many
patients were deceased (IRB00243637). Written informed patient
consent was obtained for all patients under Dana-Farber Cancer
Institute IRB protocol 10–417.

Clinical and pathologic annotation
Pathological diagnosis of tumors within this study was based on the
2021 WHO classification of CNS tumors to the extent possible;
however, many cases had insufficient information for precise
classification using this system and some broader categories were
also used29. Available information on tumor pathologies were
reviewed and samples were grouped into seven general pathological
categories for further analysis by a neuropathologist (CGE). These
categories included glioblastoma, IDH-wildtype (GBM, IDH-WT);
astrocytoma, IDH-mutant (Astro, IDH-mt, Grade 2–4); oligodendro-
glioma (Oligo, IDH-mt, Grade 2–3); pleomorphic xanthoastrocytoma
(PXA, Grade 2–3); and pilocytic astrocytoma (PA). A subset of tumors
did not fall into one of those diagnostic categories and were grouped
based on their grade: other high-grade glioma (HGG; Grade 3–4) and
other low-grade glioma (LGG; Grade 1–2). Overall survival (OS) was
obtained from public databases or calculated from electronic medical
records as time from radiographic diagnosis to date of death.
Records from 13 adult patients treated with BRAF-targeted therapy
were further reviewed to determine treatment type(s), duration,
response, and time to progression(s).
We ran an optimal cut-point analysis using maximally selected

rank statistics to identify any age inflection points that signifi-
cantly corresponded with survival in our overall cohort and found
inflection points at 34 and 51 years (Supplementary Fig. 3).
Consequently, for the purposes of this study, we defined age
interval groups as <18, 18–34, 35–50, and >50 years of age.

Genomic characterization
Genomic mutation profiles were evaluated from panel-based next-
generation sequencing assays—which included 227–447 cancer-
associated genes (OncoPanel, versions 1–3)34,35 for DFCI samples and
27–435 genes (Neuropath NGS Panel and Solid Tumor Panel versions
2–4)36 for JHH samples—as well as from publicly available targeted
mutational profiling microarray sequencing data for 341–398 genes
(MSK-IMPACT)31 and exome sequencing data covering 1.06Mb of
cancer-associated genes37 for GENIE and TCGA samples, respectively.
Available mutation data were compiled, including single-nucleotide
variants (SNV), copy number variants (CNV), and structural rearrange-
ments. In genomic analyses, we incorporated missense mutations, in-
frame insertion-deletions (indels), splice site mutations, “truncating”
mutations (nonsense mutations, frameshift indels), high-level copy
number amplifications38, high-level copy number losses, and
structural rearrangements such as gene-gene fusions. Low-copy
gains, single-copy deletions, synonymous mutations, and intronic
variants were excluded. Genes covered in at least two targeted
panels and altered in at least 5% of patients in the combined dataset
were included in downstream analysis.
BRAF alterations were classified into six groups based on

previously defined functional classes. We used Class I to designate
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BRAFV600 alterations that activate ERK signaling and are oncogenic
as monomers2. Class II and Class III BRAF alterations activate ERK
signaling through dimerization that is independent or dependent
on upstream RAS activation, respectively3,4. Known pathogenic
BRAF rearrangements (“fusions”) and BRAF gene amplifications
(“gains”) were also classified into separate categories, with all
remaining alterations categorized as “unclassified”.
We parsed hypermutated samples into a distinct category

based on total mutational count cutoffs. Tumor mutational burden
(TMB) was estimated from targeted sequencing data as the total
number of nonsynonymous mutations and indels across the
coding regions covered by the gene panels (coverage range
between 0.7–1.3 Mb). For downstream analyses, hypermutated
samples were defined as those with greater than the 95th
percentile TMB (>55 total nonsynonymous mutations).

Statistical analyses
All statistical analyses were performed using R statistical software,
version 3.6.3 (R Foundation for Statistical Computing; www.r-
project.org). Clustering analysis was performed using 136 genes
with cross-coverage across all non-hypermutated samples with
genomic data. For each sample, genes were binarized as either
altered or non-altered. Logistic principal component analysis (PCA)
was implemented using the logisticPCA package (CRAN) to reduce
the dimensionality of the binary alterations matrix (genes x
samples) and k-means clustering was performed on the first 25
logistic principal components. We used the silhouette and elbow
methods to determine the optimal number of k-means clusters.
Correlations between BRAF alteration types, patient characteristics,

and other genomic alterations (binarized as present or absent for
each gene) were evaluated using Chi-squared test constructed from
pairwise contingency tables. Strength of association was assessed
using Cramer’s V statistic. Post hoc analysis was applied on significant
associations to dissect directions of effect.
Associations between clinical, histopathologic, and molecular

covariates of interest and overall survival were assessed by univariate
analysis using Cox proportional hazards models. Correction for
multiple comparisons was performed using the Benjamini–Hochberg
method. Variables with an adjusted false discovery rate (FDR) < 0.05
and altered in at least five individual patients were reported as
significant. Overall survival rates were compared by the Kaplan–Meier
method with censoring to date of last follow-up and significance
determined by log-rank test. All survival analyses were performed
using the survival (CRAN) and survminer (CRAN) packages.

RNA sequencing analysis
HTSeq counts matrices39 available for TCGA samples in the cohort
were obtained from the public glioblastoma (TCGA-GBM) and low-
grade glioma (TCGA-LGG) data repositories. Differential expression
analysis was performed using quasi-likelihood F-tests after
standard filtering, normalization, and dispersion estimation steps
in EdgeR. Pathway analyses were conducted using goseq. Volcano
plot and treemap figures were constructed using the Enhanced-
Volcano and rrvgo R packages. The Benjamini–Hochberg method
was used to account for multiple hypothesis testing in both
differential expression and pathway analysis.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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