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Artificial intelligence reveals features associated with breast
cancer neoadjuvant chemotherapy responses from multi-stain
histopathologic images
Zhi Huang 1,2,12, Wei Shao3,12, Zhi Han3,4,5,12, Ahmad Mahmoud Alkashash6, Carlo De la Sancha 6, Anil V. Parwani7, Hiroaki Nitta8,
Yanjun Hou9, Tongxin Wang10, Paul Salama2, Maher Rizkalla2, Jie Zhang11, Kun Huang3,4,5✉ and Zaibo Li 7✉

Advances in computational algorithms and tools have made the prediction of cancer patient outcomes using computational
pathology feasible. However, predicting clinical outcomes from pre-treatment histopathologic images remains a challenging task,
limited by the poor understanding of tumor immune micro-environments. In this study, an automatic, accurate, comprehensive,
interpretable, and reproducible whole slide image (WSI) feature extraction pipeline known as, IMage-based Pathological
REgistration and Segmentation Statistics (IMPRESS), is described. We used both H&E and multiplex IHC (PD-L1, CD8+, and CD163+)
images, investigated whether artificial intelligence (AI)-based algorithms using automatic feature extraction methods can predict
neoadjuvant chemotherapy (NAC) outcomes in HER2-positive (HER2+) and triple-negative breast cancer (TNBC) patients. Features
are derived from tumor immune micro-environment and clinical data and used to train machine learning models to accurately
predict the response to NAC in breast cancer patients (HER2+ AUC= 0.8975; TNBC AUC= 0.7674). The results demonstrate that this
method outperforms the results trained from features that were manually generated by pathologists. The developed image
features and algorithms were further externally validated by independent cohorts, yielding encouraging results, especially for the
HER2+ subtype.
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INTRODUCTION
Predicting patient outcomes based on features or grades derived
from tumor histopathologic images can help understand the
potential hazard factors and improve treatment planning towards
precision oncology1. In contrast to traditional image-based
quantitative analysis, artificial intelligence (AI)-based computa-
tional pathology utilizes multiple sources of histopathologic
images and automatic feature calculation approaches to extract
patterns and analyze features2. One of the objectives of such AI-
based computational pathology approaches is to predict the
treatment outcomes including overall survival. This has been
recently demonstrated by “so called” end-to-end deep learning
approaches3,4 and interpretable machine learning approaches
backed with morphologic feature extraction5–7. These studies
facilitated the applications of computational pathology for clinical
diagnosis and prognosis, as well as the interpretation of the roles
of different cellular components in the tumor immune micro-
environment such as tumor-infiltrating lymphocytes (TILs), which
have been discovered to play important roles in clinical outcomes
of cancers8.
Pathologic complete response (pCR) is a presumptive surrogate

for disease-free survival in breast cancer patients who have
received neoadjuvant chemotherapy (NAC)9,10. Predicting the pCR
in breast cancer patients based on pre-treatment biopsies brings

tremendous clinical and treatment impact. While the image-based
prediction for NAC treatment response in breast cancer patients
has been explored in both the areas of radiology11–14 and
pathology15–18, it is especially challenging when using pre-NAC
images than post-NAC images14. For example, when Qu et al.14

adopted a deep learning approach to predict breast cancer pCR
via MRI images, they observed an inferior AUC (0.553) using pre-
NAC data than 0.968 using post-NAC data.
Meanwhile, the association between pCR and tumor immune

micro-environment has been frequently but not systematically
studied in breast cancer. For example, higher pCR rates were
found in hormone receptor (HR)-negative tumors in multiple
trials19–21, and a high Ki-67 index (≥50%) was observed to be an
independent predictive factor for pCR in HER2-positive breast
cancer patients22,23. One recent study found that PD-L1 expression
was correlated with TILs and was a significant factor in predicting
pCR24. In addition to these univariate marker analyses, cellular
components of tumor immune micro-environment such as TILs
are also associated with response to NAC in breast can-
cer17,18,25–27. For example, a positive association between TILs
and pCR was confirmed17,25,28–35. Hwang et al.16 reported that
high pre-NAC TILs is a strong prognostic marker for pCR. In ref. 16,
pre-NAC TILs were calculated from the percentage of all mono-
nuclear cells (including lymphocytes and plasma cells) in stromal
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areas, and were scored as a categorical variable in 10%
increments36. Ali et al.15 extracted lymphocyte density from pre-
treatment biopsies and confirmed it is one of the strongest
predictors in logistic regression classifier. While Denkert et al.17

showed that the percentage of intratumoral lymphocytes (iTu-Ly)
was the most significant independent parameter for pCR in breast
cancer NAC rather than the percentage of stromal lymphocytes
(str-Ly), Zhang et al.37 evaluated the lymphocyte-to-monocyte
ratio in pre-NAC to predict pCR. Among most of these studies, TILs
and other histopathologic features were evaluated manually.
Meanwhile, the accuracy of NAC response prediction by machine
learning algorithm and its comparison with human assessments
are usually not reported. In addition, image-based statistical
features are not exploited completely via multiplexed histopatho-
logic images. To systematically study how TILs and other image-
based features in pre-NAC images can predict and explain pCR
outcomes from both the tumor immune micro-environment and
the immunohistochemistry response, it is both research and
clinical impactful to build an automatic and reproducible image-
based feature extraction procedure thus systematically evaluate
the association between tumor immune micro-environment
and pCR.
In this study, we leveraged the multi-stain histopathologic

images, proposed an automatic workflow for breast cancer pCR
prediction from pre-NAC biopsies. Multiplexed histopathologic
images can identify multiple markers simultaneously from a single
tissue section38. With our approach, IHC-stained information
including PD-L1, CD8+T cells, and CD163+ macrophages were
co-registered into H&E-stained tumor immune micro-environ-
ment, generated a combined feature set to predict the NAC
response. With all that mentioned, an automatic whole slide
image (WSI) feature extraction pipeline was constructed. By taking
the advantage of multiplexed histopathologic images, we
extracted 36 interpretable and meaningful histopathological
features, established three categories of quantitative features to
characterize different cellular components – namely the “area
ratio”, “proportion”, and “purity” – in our proposed pipeline, and
formally designated our pipeline as “IMage-based Pathological
REgistration and Segmentation Statistics”, or “IMPRESS” in short.
Sixty-two HER2+ and sixty-four TNBC female patients were
included in our cohort to examine whether a machine learning
model using IMPRESS would be able to predict pCR for NAC. We
found that the developed machine learning models utilized
IMPRESS and clinical features can accurately predict the response
to NAC in breast cancer patients (HER2+ AUC= 0.8975; TNBC
AUC= 0.7674), and outperformed the results learned by features
which were manually generated by pathologists. The developed
approach was further externally validated in two independent
cohorts for HER2+ and TNBC subtypes, yielding AUC= 0.90 for
HER2+, and AUC= 0.59 for TNBC. These results suggest pre-NAC
IMPRESS features and model can help predict post-NAC outcomes,
especially for HER2+ subtype. We also compared the prediction
accuracy between the model learned from IMPRESS and the
model learned from features which were manually generated by
pathologists. Additionally, we comprehensively evaluated those
automatically extracted features by feature importance analysis,
residual cancer burden analysis, and correlation analysis. These
results present promising insight into the tumor immune micro-
environment of breast cancer NAC patients, prompting the need
for multi-stained computational analysis before the NAC
treatment.

RESULTS
Clinical and histopathological characteristics of the cohorts
Sixty-two HER2-positive (HER2+) BC and sixty-four TNBC female
patients treated with NAC and surgical excision were included.

HER2+ BC patients were treated with doxorubicin/cyclopho-
sphamide/taxol together with anti-HER2 targeted therapy, includ-
ing 24 patients (39%) with residual tumors and the other 36
patients (61%) with pCR. TNBC patients were treated with
standard NAC (doxorubicin/cyclophosphamide/taxol) including
37 patients (58%) with residual tumors and the other 27 patients
(32%) with pCR. The clinical and histopathologic characteristics of
these patients were summarized in Table 1. In addition, the
external cohort characteristics for HER2+ and TNBC subtypes were
further reported in Table 1. The external cohort included 40
patients with histopathologically confirmed invasive breast
carcinoma who underwent NAC and follow-up surgery after
completing NAC. HER2 status was determined on biopsy speci-
mens using HER2 IHC and/or FISH in accordance with the criteria
of ASCO/CAP guidelines updated guidelines.

Workflow and feature construction
The workflow of this paper is presented in Fig. 1, including H&E
image acquisition and segmentation, IHC image acquisition and
segmentation, and H&E – IHC image registration. Given the input
paired H&E and IHC WSIs, the automatic non-rigid registration was
performed on each IHC WSI using the corresponding H&E WSI as
fixed reference. With deep neural network “DeepLabV3” trained by
pathologists labeled TCGA breast cancer H&E images39, H&E tissue
segmentation was performed and four regions of interest were
identified including stromal region (Stroma), tumoral region
(Tumor), lymphocytes aggregated region (Lymph), and excluded
region. All included regions (Stroma, Tumor, and Lymph) were
defined as all H&E regions (All). Figure 2a, b shows an example of
an H&E image and its segmentation result. The multiplexing IHC
markers including CD8 (green), CD163 (red), and PD-L1 (brown)
were identified via color-based K-means segmentation. Figure 2c,
d shows an IHC image and its segmentation result. All results were
reviewed and confirmed by two pathologists (A. Alkashash and
C. Sancha).
Next, an AI-based automatic, accurate, comprehensive, inter-

pretable, and reproducible WSI feature extraction pipeline was
constructed, and generated 36 IMage-based Pathological REgis-
tration and Segmentation Statistics (IMPRESS) features. Figure 2f
demonstrates how IMPRESS features were calculated by using CD8
as an example. The full list of features is shown in Supplementary
Table 1. The distribution of IMPRESS features’ expressions is
demonstrated in Supplementary Figure 1 in violin plots with
values ranging from 0 to 1.
In addition to IMPRESS features, clinical features and the status

of molecular markers (ER, PR, and HER2) were exploited. In HER2+
cohort, six features were adopted including age, estrogen receptor
status (ER+/−), estrogen receptor percentage (ER%), progesterone
receptor status (PR+/−), progesterone receptor percentage (PR%),
and the ratio of HER2 expression to chromosome 17 (HER2/
CEP17). In TNBC cohort, age was the only available clinical feature
since ER, PR, and HER2 were all negative.

Machine learning model using IMPRESS features predicts NAC
outcomes
LASSO-regularized logistic regression was adopted to evaluate the
prediction power of the proposed IMPRESS features. In this study,
four groups of features were compared, including all 36 IMPRESS
plus clinical features (IMPRESS), IMPRESS H&E image features plus
clinical features [IMPRESS (H&E only)] (Supplementary Table 1),
IMPRESS IHC image features plus clinical features [IMPRESS (IHC
only)] (Supplementary Table 1), and pathologists assessed IHC
image features plus clinical features (Pathologists).
We first compared IMPRESS with IMPRESS (H&E only) and

IMPRESS (IHC only). From Table 2 and Fig. 3a, we found IMPRESS
achieved significantly higher AUC than IMPRESS (H&E only; t-test
statistic= 62.69, P-value= 5.68e-40) and IMPRESS (IHC only; t-test
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statistic= 79.97, P-value= 5.83e-44) in HER2 cases. Similarly, from
Table 2 and Fig. 3b, we found IMPRESS achieved significantly
higher AUC than IMPRESS (H&E only; t-test statistic= 16.87, P-
value= 3.04e-19) and IMPRESS (IHC only; t-test statistic= 33.60, P-
value= 7.23e-30) in TNBC cases. The results suggested that
combining H&E and IHC histopathologic images can extract
additional features for improved response to NAC prediction.

IMPRESS features outperformed pathologists’ assessed
features for predicting NAC outcomes
Furthermore, IMPRESS features were compared to pathologists’
manually assessed IHCs image features for CD8, CD163, and PD-L1
and the details were described in the “Method” section.
In HER2+ cohort, we found IMPRESS achieved better perfor-

mances (AUC= 0.8975 ± 0.0038) than Pathologists’ assessed features
(AUC= 0.7880 ± 0.0065) significantly with t-test statistic= 64.59 (P-
value= 1.84e-40; Fig. 3a). In TNBC cohort, we found IMPRESS
achieved slightly better performances (AUC= 0.7674 ± 0.0209) than
Pathologists’ assessed features (AUC= 0.7626 ± 0.0095) with t-test
statistic= 0.94 (P-value= 3.54e-1; Fig. 3b). The detailed perfor-
mances are summarized in Table 2. These results suggested that
the AI-based features extracted from H&E and IHC histopathologic
images can achieve equal or better performances than pathologists’
assessed features, and are the preferred input to develop machine
learning algorithms to predict response to NAC in breast cancer
patients.

The developed logistic regression models with all feature inputs
were then directly applied to our external validation cohorts for
HER2+ and TNBC subtypes, each with 10 pCR and 10 residual
tumor patients. For HER2+ subtype, the AUC= 0.9005 ± 0.0060
(Supplementary Fig. 6a and Supplementary Table 8). For TNBC
subtype, the AUC= 0.5865 ± 0.0157 (Supplementary Fig. 6b and
Supplementary Table 8). Although a good AUC score was
observed in HER2+ subtype, both models presented inadequate
recall value (0.4000).

Feature importance analysis in machine learning model
To systematically evaluate the pivotal features that dominate the
prediction, we summarized the feature coefficients produced from
LASSO-regularized logistic regression in Fig. 3c (HER2+ cohort)
and Fig. 3d (TNBC cohort). The top important features are also
summarized in Supplementary Table 5. For the HER2+ cohort,
three out of the top five favorable prognostic markers (positively
associated with pCR) were related to lymphocytes aggregated
region, including CD8 ratio, CD163 ratio, and PD-L1 ratio. The
favorable clinical prognostic marker of HER2/CEP17 ratio was
ranked as the third, which echoes the finding in ref. 40 that
suggested a high HER2/CEP17 ratio is significantly associated with
pCR. In contrast, four out of the top five adverse prognostic
markers (negatively associated with pCR) were related to clinical
variables including age, ER ratio, PR positivity, and PR ratio. The
second strongest adverse prognostic marker was Stroma: CD8
proportion. For the TNBC cohort, the top five favorable prognostic

Table 1. Clinical and histopathological characteristics of HER2-positive and TNBC cases with neoadjuvant chemotherapy (NAC) in the study cohort
and external validation cohort.

Cohort Characteristics Study cohort External validation cohort

Case #/median %/Range Case #/median %/Range

HER2+ Total case number 62 – 20 –

Cases with residual tumor 24 38.71% 10 50.00%

Cases with pCR 38 61.29% 10 50.00%

Age (years) 56 30–76 43 30–69

Nottingham grade I 1 1.61% 0 0.00%

II 27 43.55% 2 10.00%

III 34 54.84% 18 90.00%

Nuclear grade I 0 0.00% 0 0.00%

II 10 16.13% 1 5.00%

III 52 83.87% 19 95.00%

Estrogen receptor (ER) positive 30 48.39% 13 65.00%

Progesterone receptor (PR) positive 19 30.65% 10 50.00%

HER2/CEP17 ratio 6.73 1.23–22.98 7.00 0.96–11.10

Residual cancer burden, if applicable 1.39 0.91–4.14 1.98 0.98–4.67

TNBC Total case number 64 – 20 –

Cases with residual tumor 37 57.81% 10 50.00%

Cases with pCR 27 42.19% 10 50.00%

Age (years) 51 26–74% 57 32–79%

Nottingham grade I 0 0% 1 5.00%

II 15 23.4% 3 15.00%

III 49 76.6% 16 80.00%

Nuclear grade I 0 0% 1 5.00%

II 9 14.1% 2 10.00%

III 55 85.9% 17 85.00%

Residual cancer burden, if applicable 2.01 0.80–4.27 2.14 0.77–3.61

For complete study cohort metadata, please refer to Supplementary Information.
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Fig. 1 Overview of our workflow. a H&E tissue segmentation based on DeepLabV3 model. The segmentation generates stroma region, tumor
region, and lymphocytes aggregated (lymph) region. b IHC markers segmentation. CD8, CD163, and PD-L1 were segmented. c H&E and IHC
non-rigid registration. First row: representative H&E patches; second row: corresponding IHC patches after registration. d IMage-based
Pathological REgistration and Segmentation Statistics (IMPRESS) feature construction. Totally 36 IMPRESS features were constructed.
e Neoadjuvant chemotherapy (NAC) prediction with logistic regression.
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markers were Lymph: PD-L1 ratio, Lymph: PD-L1 proportion, Tumor:
CD8 proportion, Tumor: CD8 purity, and Lymph: CD163 proportion.
The top five adverse prognostic markers were Stroma: CD8
proportion, age, Tumor: PD-L1 ratio, Stroma: CD8 ratio, and Lymph:
CD8 purity. Detailed feature importance ranking and coefficients
are listed in Supplementary Table 5. From these results, we
observed that features related to lymphocytes aggregated region
(Lymph) were the most favorable prognostic markers to pCR. In
addition, age, which plays an opposite role, is more critical in the
HER2+ cohort than in the TNBC cohort. Interestingly, we found
Stroma: CD8 proportion is one of the most adverse prognostic
markers in both cohorts, suggesting more CD8 in the stromal
region than in other regions is not a supportive sign for pCR.
The comparison of coefficient importance between HER2+ and

TNBC cohorts is shown in Fig. 3e. Some IMPRESS features agreed

in both HER2+ and TNBC cohorts. For example, Lymph: PD-L1 ratio
and Tumor: CD8 proportion act as common favorable features to
pCR; Age and Stroma: CD8 proportion act as common adverse
features to pCR. However, we also observed some disparities
between the HER2+ and TNBC cohorts: CD8 and CD163 played
more essential roles in HER2+ cohort (e.g., Lymph: CD8 ratio and
Lymph: CD163 ratio), whereas PD-L1 was more informative in the
TNBC cohort. Similar results can also be observed in the following
univariate analysis (Fig. 3f, g).

Univariate analyses with NAC response
As AI-based IMPRESS features outperformed pathologists’
assessed features in predicting pCR and were correlated with
RCB, we further performed univariate analyses to investigate the

Fig. 2 Tissue segmentation and image-level features extraction from registered H&E and IHC segmentation. a An example H&E tissue;
b H&E tissue segmentation result; c IHC tissue (aligned to a) after non-rigid registration; d IHC segmentation results, after non-rigid
registration. e Selected representative patches from b including (1) H&E patch, (2) H&E segmentation, (3) H&E segmentation (segm. in short)
fused with original patch, (4) IHC patch after registration, (5) IHC patch after registration fused with H&E patch, and (6) H&E, IHC segmentation
fused patch; f IMPRESS feature graphical demonstration. In f, each IHC marker produces 11 features (CD8 was shown as an example), H&E
region produces 3 features, totally 36 IMPRESS features. Figure best viewed in color.
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relationships between IMPRESS features and NAC responses and
to identify specific IMPRESS features which showed significant
differences in predicting NAC response between the HER2+ and
TNBC cohorts.
We compared each feature by using pCR cases against residual

tumor cases using the two-sided Student’s t-test. The top five
favorable/adverse features with the most significant differences
are presented in Fig. 3f for the HER2+ cohort and in Fig. 3g for the
TNBC cohort. Complete results are further presented in Supple-
mentary Table 6. We found that the most significantly different
features in pCR cases against residual tumor cases are highly
consistent with those identified by machine learning methods,
such as Lymph: CD163 ratio (adjusted P-value= 0.0163) and
Lymph: CD8 ratio (adjusted P-value= 0.0163), two top-ranked
favorable features for HER2+ cases, which were identified by both
univariate analysis and machine learning model. Nevertheless, a
few features identified by the univariate analysis were not concord
with machine learning results. For example, Tumor: CD163 purity
(adjusted P-value= 0.0298), one of the adverse features in HER2+
cases, was not identified in machine learning (Fig. 3c). Similar
inconsistencies were also found in TNBC cases, such as Lymph:
CD8 proportion (adjusted P-value= 0.0238).
To present an alternative point of view of the relationship

between IMPRESS features and pCR, Spearman’s rank correlation
coefficient (SCC) was used to evaluate the differences among the
features regarding their relationship to pCR. The results were
shown in Supplementary Fig. 4a (HER2+) and Supplementary Fig.
4b (TNBC). The SCC results were largely consistent with the
machine learning feature importance results (in Fig. 3c, d) and the
univariate analysis results (in Fig. 3f, g), especially for the features
related to lymphocytes aggregated regions and tumoral regions.
These results confirmed the important roles of pre-NAC TILs in
predicting pCR.
Furthermore, we found that several IMPRESS features expressed

significantly higher in HER2+ than in TNBC based on the
Mann–Whitney U test results in Supplementary Figure 3, such as
Stroma: PD-L1 purity (adjusted P-value= 1.02e-3), Lymph: CD163
ratio (adjusted P-value= 1.02e-3), etc. Some features expressed
significantly lower in HER2+ than TNBC, such as Tumor: CD8 purity
(adjusted P-value= 2.31e-3), Stroma: CD8 purity (adjusted P-
value= 2.31e-3), etc. These results suggested that IMPRESS
features distributed differently among different breast cancer
cohorts, providing a different perspective between two breast
cancer subtypes.

Relationships between IMPRESS features and residual cancer
burden
In addition to pCR, residual cancer burden (RCB) was calculated in
patients with residual tumor. The median RCB in the HER2+

cohort is 1.39 with a range of 0.91–4.14. The median RCB in the
TNBC cohort is 2.01 with a range of 0.80–4.27. RCB was defined as
0 for patients with pCR. The non-parametric statistics from SCC ρ
with two-sided P-values were used to examine the relationships
between IMPRESS features and RCBs. The top 5 most favorable
and most adverse IMPRESS prognostic features from machine
learning analyses listed in Supplementary Table 5 were further
compared with RCBs [Fig. 4a (HER2+) and Fig. 4b (TNBC)]. The
complete list is showed in Supplementary Table 7.
As demonstrated in Fig. 4a, HER2+ cases showed Lymph: CD8

ratio, Lymph: CD163 ratio, Lymph: PD-L1 ratio, and Lymph: CD8
proportion were negatively correlated with RCB significantly. In
contrast, Stroma: CD8 proportion and Tumor: CD163 purity were
positively correlated with RCB significantly. From the TNBC cohort
in Fig. 4b, Lymph PD-L1 proportion was negatively correlated with
RCB significantly. In contrast, Stroma: CD8 proportion was
positively correlated with RCB.
One study by Meisel et al.40 suggested that TILs associated with

RCB in HER2+ subtype breast cancer NAC patients. In our results,
we further demonstrated the association between TILs and RCB
using correlation analysis, especially the Lymph: PD-L1 ratio.
Furthermore, the inverse relations were detected between RCB
scores and CD8+ TIL in Miyashita et al.41, which also agreed with
our findings such as Lymph: CD8 ratio and Lymph: CD8 proportion
in the HER2+ subtype (Supplementary Table 7).
These results suggested that the AI-based IMPRESS features

from pre-NAC images can also predict RCB values in a quantitative
manner. For example, Lymph: PD-L1 ratio (favorable marker) and
Stroma: CD8 proportion (adverse marker) were two common
features that were significantly or highly correlated with RCB in
both the HER2+ and TNBC cohorts.

Correlation analyses disclose latent dependencies in IMPRESS
features
To fully investigate the relationships and unveil the latent
dependencies among IMPRESS features, pair-wised SCC were
analyzed (Fig. 5). These pair-wised SCC ρ demonstrated the latent
relationships between each pair of IMPRESS features. The overall
feature correlations present subtle differences between HER2+
cohort (Fig. 5a) and TNBC cohort (Fig. 5e).
All SCC ρ for area ratio features were positive. We were

particularly interested in those highly correlated area ratio features
from different IHC markers. For area ratio in HER2+ (Fig. 5b), the
most correlated ratio statistics from different IHC markers were
Stroma: PD-L1 ratio and All: CD163 ratio (ρ= 0.73, P-value= 2.29e-
11); Stroma: CD163 ratio and Stroma: PD-L1 ratio (ρ= 0.72, P-
value= 6.64e-11). For area ratio in TNBC (Fig. 5f), the most
correlated ratio statistics from different IHC markers were Stroma:
PD-L1 ratio and Stroma: CD8 ratio (ρ= 0.71, P-value= 3.82e-11);

Table 2. LASSO-regularized logistic regression performances in HER2+ and TNBC cohorts.

Cohort Features AUC F1 score Precision (PPV) Recall NPV

HER2+ IMPRESS (all features) 0.8975 ± 0.0038 0.8687 ± 0.0077 0.8716 ± 0.0115 0.8658 ± 0.0081 0.7897 ± 0.0110

IMPRESS (H&E only) 0.8118 ± 0.0048 0.8269 ± 0.0052 0.9059 ± 0.0009 0.7605 ± 0.0081 0.6977 ± 0.0070

IMPRESS (IHC only) 0.7746 ± 0.0057 0.7775 ± 0.0085 0.8454 ± 0.0023 0.7197 ± 0.0129 0.6399 ± 0.0105

Pathologists’ features 0.7880 ± 0.0065 0.7820 ± 0.0025 0.8696 ± 0.0061 0.7105 ± 0.0000 0.6446 ± 0.0026

TNBC IMPRESS (all features) 0.7674 ± 0.0209 0.7017 ± 0.0377 0.6903 ± 0.0286 0.7148 ± 0.0552 0.7714 ± 0.0344

IMPRESS (H&E only) 0.6795 ± 0.0103 0.5882 ± 0.0000 0.6250 ± 0.0000 0.5556 ± 0.0000 0.7000 ± 0.0000

IMPRESS (IHC only) 0.5975 ± 0.0087 0.5915 ± 0.0103 0.5637 ± 0.0061 0.6222 ± 0.0152 0.7018 ± 0.0085

Pathologists’ features 0.7626 ± 0.0095 0.6897 ± 0.0077 0.6454 ± 0.0135 0.7407 ± 0.0000 0.7878 ± 0.0042

PPV positive predictive value, NPV negative predictive value.
Experiments are repeated 20 times with different random seeds in leave-one-out cross-validation setting. mean value ± standard deviation are reported. Best
performed mean values are highlighted in bold face.
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Fig. 3 LASSO-regularized logistic regression machine learning model predicts NAC outcomes. a, b Receiver operating characteristic (ROC)
curve for HER2+ (a) and TNBC (b) cohorts in the logistic regression results. Blue line: IMPRESS plus clinical features; Purple line: IMPRESS (H&E
features only) plus clinical features; Pink line: IMPRESS (IHC features only) plus clinical features; Red line: pathologists assessed plus clinical
features. c, d Feature importance generated by logistic regression. Positive coefficients are associated with better prognosis (pCR) and vice
versa. Horizontal line in each bar stands for standard deviation. c HER2+ cohort; d TNBC cohort. e Comparison of IMPRESS and clinical
coefficient importance in machine learning results between HER2+ and TNBC cohorts, organized by HER2+ coefficients in descending order.
Coefficients in the horizontal bar plot were reported in absolute values, the positive values were defined as “favorable” prognostic markers
and vise versa for negative values. Figure best viewed in colors. Horizontal line in each bar stands for standard deviation. f, g Univariate
feature analysis in HER2+ cohort (f) and TNBC cohort (g) by comparing pCR cases against residual tumor cases. In f and g, top row showed five
most favorable features, bottom row showed five most adverse features. Two-sided P-values were calculated based on Student’s t-test,
followed with B&H procedure for multiple test adjustment (FDR= 0.05). For boxplot, the interior horizontal red line represents the median
value, the upper and lower box edges represent 75th and 25th percentile, and the upper and lower bars represent the 90th and 10th

percentiles, respectively.

Z Huang et al.

7

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2023)    14 



All: PD-L1 ratio and Stroma: CD8 ratio (ρ= 0.71, P-value= 3.64e-
11); All: PD-L1 ratio and All: CD8 ratio (ρ= 0.71, P-value= 6.88e-11).
The results of area ratio statistics suggested that the area ratio of
PD-L1 had the strongest association with CD163 in HER2+, but
had the strongest association with CD8 in TNBC.
For the proportion statistics in IMPRESS features, positive

correlations were observed within same H&E regions. In contrast,
negative correlations were observed across different H&E regions
(Fig. 5c, d). We were particularly interested in those features that
from different H&E regions with most negative correlations. In
HER2+ (Fig. 5c), the most negatively correlated proportion
statistics were Tumor: H&E proportion and Stroma: H&E proportion
(ρ=−0.92, P-value= 1.57e-25); Tumor: CD163 proportion and
Stroma: CD163 proportion (ρ=−0.83, P-value= 4.18e-17). In TNBC

(Fig. 5g), the most negatively correlated proportion statistics were
Tumor: H&E proportion and Stroma: H&E proportion (ρ=−0.95, P-
value= 3.01e-33); and Tumor: CD163 proportion and Stroma:
CD163 proportion (ρ=−0.88, P-value= 2.52e-21). The results of
proportion statistics suggested that CD163 was the most
negatively correlated IHC marker populated at either tumoral or
stromal region.
For the purity statistics in IMPRESS features, positive correlations

were observed within same IHC markers. In contrast, negative
correlations were observed across different IHC markers (Fig. 5d, h).
We were particularly interested in those features that from
different IHC markers with most negative correlations. In HER2+
(Fig. 5d), the most negatively correlated purity statistics from
different IHC markers were Lymph: CD163 purity and Lymph: CD8

Fig. 4 Scatter plot with Spearman’s rank correlation coefficient ρ and P-value between IMPRESS features and residual cancer burden
(RCB). a HER2+ cohort, first row: top 5 favorable IMPRESS features; second row: top 5 adverse IMPRESS features; b TNBC cohort, first row: top
5 favorable IMPRESS features; second row: top 5 adverse IMPRESS features. Dashed red lines represent the fitted linear regression slopes. All
P-values were adjusted with B&H procedure (FDR= 0.05).
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purity (ρ=−0.79, P-value= 1.96e-14); Stroma: CD163 purity and All:
CD8 purity (ρ=−0.73, P-value= 1.05e-11); Tumor: CD163 purity
and Tumor: PD-L1 purity (ρ=−0.73, P-value= 2.46e-11). In TNBC
(Fig. 5h), the most negatively correlated purity statistics from
different IHC markers were Stroma: CD163 purity and Stroma: CD8
purity (ρ=−0.77, P-value= 7.85e-14); Stroma: CD163 purity and All:
CD8 purity (ρ=−0.75, P-value= 7.18e-13). The results of purity
statistics suggested that CD163 and CD8 were two most distinct

IHC markers that populated against each other among various H&E
regions.

DISCUSSION
Recently, AI-based computational pathology methods based on
tumor morphology have been developed to predict the clinical
outcome including survival5,6. Additionally, evaluating cell-level

Fig. 5 Correlation analyses for IMPRESS features in HER2+ and TNBC cohorts. a HER2+ all IMPRESS feature correlation matrix; b HER2+
area ratio correlation matrix; c HER2+ proportion correlation matrix; d HER2+ purity correlation matrix; e TNBC all IMPRESS feature correlation
matrix; f TNBC area ratio correlation matrix; g TNBC proportion correlation matrix; h TNBC purity correlation matrix. Figure best viewed
in color.
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features in tumor immune micro-environment such as tumor-
infiltrating lymphocyte (TIL) in pre-treatment breast cancer
biopsies to predict NAC outcomes is also imperative and can
contribute to potential clinical guidelines and treatment interven-
tion. To the best of our knowledge, this is the unique study to
provide a whole slide image (WSI) feature extraction pipeline to
quantitatively evaluate the histopathological features extracted
from both H&E-stained and IHC-stained WSIs and predict NAC
outcomes using machine learning model based on features
derived from tumor itself and tumor immune micro-environment.
This study has several strengths and advantages. First, analyzing

histopathologic images is one of the most challenging machine
learning tasks, hindered by the large size of the microscopy
images42. Studies usually sliced WSIs into several small patches42,
but different choices of patch sizes can increase the uncertainties
of models and performances. In this paper, the AI-based IMPRESS
features were assessed on the WSI level, which is a more robust
and reproducible feature extraction pipeline. Second, this paper
fully utilized the paired H&E-stained and IHC-stained WSIs. Since
the image registration process was proved to be robust and
accurate, the extra information derived from IHC-stained WSIs can
provide detailed tumor immune micro-environment information
complementary to the tumor H&E images. Different from other
methods that solely relied on H&E WSIs to extract lymphocytes,
the identifications of CD8, CD163, and PD-L1 provide extra
information, which help us better characterize the tumor immune
micro-environment. Third, AI is suggested to be an automatic
approach for providing a potential clinical guideline. However,
many AI-based methods are limited by their poor interpretability
and unpredictable performance, especially when end-to-end
learning methods were used. Our experiments not only demon-
strated that the AI-based automatic feature extraction pipeline has
the capacity to generate interpretable IMPRESS features, but can
also predict NAC outcome equally or more accurate than the
model based on pathologists’ assessed features. Last but not the
least, many feature extraction methods were based on patholo-
gists’ manual assessments (e.g., Ali et al.15 Hwang et al.16). The
features assessed by pathologists conveyed rich interpretable
explanations, however, they were difficult to reproduce with
consistent quality. Instead, our automatic feature extraction
pipeline produced abundant reproducible interpretable features
(36 IMPRESS features), and also proved to outperform patholo-
gists’ assessment in HER2+ cohort (or have equal performances in
TNBC cohort) using the logistic regression model.
In current study, we also investigated the association of

clinicopathologic features from pre-treatment biopsies with
response to NAC in two different breast cancer subtypes, HER2+
BC and TNBC. Previous study43 found that the increased TIL
concentration can predict response to neoadjuvant chemotherapy
and survival but differences were observed between HER2+ and
TNBC subtypes. In our results, we found several common and
different feature behaviors across those two breast cancer
subtypes, suggesting that breast cancer is immunogenic43 and
TILs might target differently in different breast cancer subtypes.
Our study has also demonstrated the relationship between

several tumor immune micro-environment features and pCR. One
of the most interesting findings is PD-L1 expression in pre-
treatment tumor immune micro-environment, especially in TNBC
cohort. It has been reported that the upregulation of PD-L1 is
involved in various cellular processes in cancer cells as well as
interactions between cancer cells and immune cells44–46. It has
been conflicting whether PD-L1 expression is a favorable or
adverse prognostic factor for breast cancer patients’ survival47–54.
The conflicting conclusions may result from the differences in
composition of cohorts, PD-L1 antibody clones, or assessment
methods (most studies used manual assessment). In our study, PD-
L1 in lymphocytes aggregated region was found to associate with
a favorable response to NAC. Kong et al.55 suggested that PD-L1

expression at different locations had different impacts on survival
in colorectal cancer (CRC) patients, and showed that total PD-L1
expression was a favorable prognostic marker. In our study, we
observed similar behavior of high TIL and PD-L1 expression.
Furthermore, our data has also demonstrated that the most

important IMPRESS features identified from the logistic regression
model to predict pCR (such as CD8, CD163, and PD-L1 ratios in
lymphocytes aggregated region, and CD8 proportion in lympho-
cytes aggregated region) also correlated with RCB, at least
partially. The correlation analyses for IMPRESS features to
themselves (Fig. 5) revealed the highly and densely correlated
features, providing additional insights to morphologic and clinical
features which are important for therapy response in breast
cancers. The correlation analyses for IMPRESS features to residual
cancer burden (RCB; Supplementary Table 7) found more
significant features in HER2+ subtype (13 out of 36) than in TNBC
subtype (3 out of 36), suggesting IMPRESS features may well
characterize those residual tumors in HER2+ breast cancer
patients.
Several limitations remained in our study. First, due to the

limitation of the data source, the size of the cohorts is relatively
small. Second, the markers from IHC-stained WSIs were limited to
CD8, CD163, and PD-L1, which may not represent the entire tumor
immune micro-environment. In light of our results demonstrating
that AI-based IMPRESS features derived from pre-treatment H&E
and IHC histopathologic images can predict pCR outcome, we
would expect to see advanced machine learning studies with
additional immune IHC markers in the future, such as Ki67 or other
proliferation-associated markers. Third, TNBC cohort is not
performing that well in study cohort (0.7674 ± 0.0209), and had
deteriorated sharply in its external validation cohort
(0.5865 ± 0.0157). Encouraged by the facts that one-fourth of the
IMPRESS features were significantly differentially valued between
pCR and residual tumor cases (Supplementary Table 6), we argue
that the poor performance on TNBC cohort may be partially due to
the limited size of the study samples, and thus a simple linear
machine learning model was not capable to learn sample
heterogeneity. Compared with consistently good performances
on both the study cohort and the external validation cohort in
HER2+ subtype, it is also reasonable to suspect that the TNBC
cohort may harbor more heterogeneous and complex tumor
micro-environments than the HER2+ subtype. In addition, we
observed fair performances of negative predictive value (NPV) for
HER2+ (study cohort: 0.7897 ± 0.0110, external validation:
0.6250 ± 0.0000) and suboptimal NPV for TNBC (study cohort:
0.7714 ± 0.0344, external validation: 0.5582 ± 0.0166). These NPV
values suggest a considerable amount of false negatives, which is
insufficient to let the current model be in use in a clinical setting. If
more cases will be available, it is possible to train a more robust
and sophisticated machine learning model for the task and finally
become a useful clinical triage tool. Fourth, combining H&E and
IHC stain images requires an extra step of registration. Since they
are not from the same glass slide, nuclei are thus not one-to-one
mapped. Given the current technologies of multiplex slide images
such as Multiplex Ion Beam Imaging (MIBI) or co-detection by
indexing (CODEX), or even spatial transcriptomics, the prediction
of post-NAC outcomes can potentially be improved. Lastly,
although IMPRESS features can well characterize pCR and residual
tumor cases, the features are on the basis of whole slide image
statistics. If one can extract regional IMPRESS features from certain
types of micro-environments, it would be more clinically useful as
pathologists can trace back to a certain region that leads to a bad
outcome.
Compared to the classic clinical scores, AI can objectively

evaluate slides, not to mention the recent commercialization in
digital pathology. As further depicted by a pathology startup
Okwin56 in 2022, AI helps discriminate high and low risk of relapse
for early ER+ HER2- breast cancer. These emerging AI tools can
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enable an early rule-out with a decent amount of the cases.
However, as we shown from the TNBC cohort, the power of AI may
limited to several, not all, cancer subtypes. Thus, the prognosis
power we presented on HER2+ and TNBC subtypes may further
benefit the future research endeavors, including but not limited to
power analysis and model selection.
In summary, we constructed an automatic, accurate, compre-

hensive, interpretable, and reproducible WSI feature extraction
pipeline (IMPRESS) and used these IMPRESS features to develop
machine learning model to predict the response to NAC in breast
cancer patients. The machine learning models used combined
feature sets showed promising performances, especially for
HER2+ subtype. The univariate analyses identified pCR-
associated and RCB-associated image features, these tumor
immune micro-environment signals can be either served as
predictive markers or used for refining the choice of first-line
treatment, which can potentially be essential players toward
precision oncology.

METHODS
Hardware and software
This study was approved by the Ohio State University Institutional
Research Board. Written informed consent was obtained from all
individual patients included in the study.
All experiments were conducted on a high-performance

computing cluster. In particular, we took advantage of four
NVIDIA V100 graphics processing units (GPUs) and 1.6TB local
storage. We used OpenSlide57 (version 1.1.2) to access the WSI
files, and PyTorch (version 1.6.0, torchvision version 0.7.0) for data
loading, model training and testing. Machine learning and
statistical analyses were performed in python with scikit-learn
(version 0.23.2). We used pillow (version 7.2.0) and OpenCV
(version 4.4.0) for image processing in python. We used pandas
(version 1.0.5) for data processing.

Patients and specimens
This study included 62 HER2-positive breast cancer (HER2+)
female patients and 64 triple-negative breast cancer (TNBC)
female patients treated with neoadjuvant chemotherapy (NAC)
and follow-up surgical excision. In accord with STARD-2015
guideline, patients with histopathologically confirmed invasive
breast carcinoma who underwent NAC from January 2011 to
December 2016, those who had underwent surgery after
completing NAC were included. HER2 status was determined on
biopsy specimens using HER2 IHC and/or fluorescence in situ
hybridization (FISH) in accordance with the criteria of American
Society of Clinical Oncology (ASCO)/College of American Pathol-
ogist (CAP) guidelines updated guidelines58. In addition, two sets
of external validation datasets were further used to evaluate the
developed machine learning model (20 for HER2+, 20 for TNBC,
each with 10 pCR cases, 10 residual tumor cases).

Pathologic assessment of the response to neoadjuvant
chemotherapy
For neoadjuvant chemotherapy, all HER2+ patients received four
cycles of AC (doxorubicin/cyclophosphamide) together with Taxol
(paclitaxel/docetaxel) and trastuzumab except 7 patients (3 with
residual tumor, 4 without residual tumor) who received four cycles
of AC together with PTD (pertuzumab + trastuzumab +
docetaxel). Triple-negative breast cancer patients received AC
(doxorubicin/cyclophosphamide) together with Taxol (paclitaxel/
docetaxel).
After NAC, all study cohort patients underwent surgery and the

resection specimens were examined grossly and microscopically.
A pathologic complete response (pCR) was defined as no

detectable residual invasive carcinoma (excluding in situ carci-
noma) and absence of any metastatic tumor in lymph node, while
the presence of residual invasive carcinoma in breast or in lymph
node designated the incomplete response.
Residual cancer burden (RCB) was assessed in all cases with

incomplete response by comparing the pre-treatment core needle
biopsy with the post-treatment resection specimen. RCB value was
calculated based on tumor cellularity, tumor size change, and
lymph node metastasis as described previously59.

Multi-color multiplex immunohistochemistry with CD8,
CD163, PD-L1, and assessment by pathologists
Multi-color multiplex immunohistochemistry (IHC) with CD8 for
cytotoxic T lymphocytes (clone MRQ26, mouse, Ventana),
CD163 for macrophages (clone SP57, rabbit, Ventana), and
PD-L1 (clone SP263, rabbit, Ventana) was performed on freshly
cut whole sections from pretreatment biopsies as described
before60,61. A membranous PD-L1 staining in tumor cells or
immune cells was considered as specific staining. The immu-
nohistochemistry was evaluated with consensus viewing by two
pathologists (Y. Hou and Z. Li). The percentage of PD-L1
positively-stained cells were recorded and used for machine
learning models (features that generated by pathologists). The
parameters assessed were as follows: PD-L1 expression in tumor
cells (PD-L1 TC), PD-L1 expression in immune cells (PD-L1 IC),
PD1 expression in immune cells, intratumoral CD8+ immune
cells (IT-CD8+), peritumoral CD8+ immune cells (PT-CD8+),
intratumoral CD163+macrophages (IT-CD163+), and peritu-
moral CD163+macrophages (PT-CD163+).

Non-rigid image registration
All H&E-stained and IHC-stained slides were scanned into WSIs
using Hamamatsu scanner with 20x magnification. Although H&E-
stained slides and IHC-stained slides from each case are
continuous sections from paraffin-embedded tissue blocks, they
were not always well aligned in the same space (2-D Euclidean
space). In order to correctly assemble CD8 cytotoxic T-cells, CD163
macrophages, and PD-L1-expressing cells on H&E stained images,
non-rigid image registration was applied on IHC-stained images
using H&E-stained images as templates.
Specifically, we adopted a multi-step, automatic, and non-rigid

histological image registration method62,63 and applied it to our
dataset. First, the images were converted into grayscale, down-
sampled, and histogram equalized. Then an initial rigid registra-
tion was performed. Next, a non-rigid registration was performed.
The algorithm automatically selected the best nonrigid transfor-
mations according to various versions of demons algorithms64,
local affine registration65, or a feature-point-based thin-plate
spline interpolation. A few tissues in WSIs which had visually bad
registration results were excluded.

H&E region segmentation
The H&E region segmentation aims to automatically identify the
stromal tissue region, tumoral tissue region, and lymphocytes
aggregated tissue region. In this paper, we fully utilized the breast
cancer dataset from The Cancer Genome Atlas (TCGA)66 consisting
of 151 images39 as training data, where each image has a
segmentation map with 22 region classes labeled by multiple
pathologists. We sliced those images with 10% horizontal and
vertical overlapping, and generated 900 patches in total. Each
patch is in 20× magnification (around 0.5 micron per pixel) with
1024×1024 pixels in size.
We defined four segmentation classes, including (1) stromal

region (Stroma), (2) tumoral region (Tumor), (3) lymphocytes
aggregated region (Lymph), and (4) excluded region (Exclude).
The tumoral region includes invasive carcinoma and angioinvasion
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regions. The lymphocytes aggregated region includes lymphocytic
infiltration, lymphatics, and other immune infiltrate, as well as
considering the inflammation-rich area. The excluded region
contains background or other regions not of our interest (e.g.,
adipocytes).
The deep learning model “DeepLabV3” (https://arxiv.org/abs/

1706.05587) was adopted to learn the segmentation of the H&E
regions. In DeepLabV3, “atrous convolution” was introduced and
has the ability to capture larger field-of-view as well as control the
resolution of feature responses. In detail, the residual network
ResNet-101 (https://arxiv.org/abs/1512.03385) was employed into
DeepLabV3 and was implemented in PyTorch and torchvision with
auxiliary loss weight= 0.5. During the training, weighted mean
squared error loss criterion was used by adopting the inverse of
number of the pixels as class weights. Adaptive moment
estimation (Adam) optimizer (https://arxiv.org/abs/1412.6980)
was adopted with learning rate= 1e-4 and batch size= 2
throughout the experiments. We searched the number of epochs
as the hyper-parameter67 with five-fold cross-validation training
scheme. Dice coefficients

Dice ¼ 2 ´ TP
ðTP þ FPÞ þ ðTP þ FNÞ

was adopted to evaluate the model performance, where TP stands
for true positive pixels, TN stands for true negative pixels, FP
stands for false positive pixels, and FN stands for false negative
pixels, respectively. A higher dice coefficient suggests a better
performance.
We split 900 image patches into training, validation, and testing

sets. We firstly held out 10% of the image patches for testing
(these patches were not used for any training purposes). Next,
five-fold cross-validation training scheme was applied to the rest
of the 810 patches. Basically, in each fold, 80% of the data were
used for training, and 20% of the data were used for validation
(i.e., tuning the hyper-parameter). Patches cropped from the same
image will not be separated into different sets. Models were
evaluated every 20 epochs, the optimal number of epochs was
chosen according to the optimal mean dice coefficients among
the five folds. We found the number of epochs= 280 gives the
optimal validation performances. After the optimal number of
epochs was determined, the deep learning model were applied on
the entire training set for model training, and report the testing
performances on the 10% held out testing set.
All performances were measured in dice coefficients. The final

training performances are 0.9881 for stromal region, 0.9941 for
tumoral region, 0.9876 for lymph region, and 0.9911 for excluded
region. The mean dice coefficient for training is 0.9902. The final
testing performances are 0.8314 for stromal region, 0.8880 for
tumoral region, 0.7065 for lymph region, and 0.7996 for excluded
region. The mean dice coefficient for testing is 0.8064.
Finally, the trained DeepLabV3 model was then applied to our

study cohorts HER2+ and TNBC. The trained TCGA images and the
targeted HER2+ and TNBC WSIs are in same magnifications (20×
objective lens). We firstly sliced H&E WSIs into 1024×1024 pixels
patches with 200 pixels horizontal and vertical overlapping. Then,
during the feed-forward process in deep neural networks, the
predicted class probabilities in each pixel at overlapped regions
were averaged, and the class with highest probability in each pixel
was voted as the prediction result.

Immunohistochemistry markers segmentation
Segmenting the IHC markers including CD8, CD163, and PD-L1,
which amplified by several visually distinctive colors, is one of the
essential step for acquiring final image features. In this study,
Color-based K-means clustering was performed to segment CD8,
CD163, PD-L1, and other areas (background and area not of
interest).

Firstly, at most 10 image patches with 512×512 pixels in size
were selected from each IHC tissue with lowest excluded region
ratio (from H&E segmentation results) in HER2+ and TNBC
cohorts, respectively. Secondly, we convert all selected image
patches from RGB color space to L*a*b* color space, which
ensures the highest color contrast across three different IHC
markers. Thirdly, a K-means clustering was performed and
aggregates each pixels of selected patches in L*a*b* color space.
In detail, we set K= 15, number of initialization= 3, and maximum
number of iteration= 300 with tolerance= 1e-4. For external
validation, we remained the same parameter setting except
K= 30.
We compared each four 1024×1024 patches from HER2+ and

TNBC cohorts with two pathologists manually labeled IHC markers,
the dice coefficients were then reported.

IMPRESS feature extraction
In total 36 image-based features were extracted from the
proposed IMPRESS pipeline (Fig. 2f). All features were calculated
based on the WSI from each patient. Basically, each of CD8, CD163,
and PD-L1 IHC markers will produce 11 features, which are the
combination of “area ratio” (or “ratio” in short), “proportion”,
“purity” in Stroma, Tumor, Lymph, and All H&E regions. Here Lymph
stands for lymphocytes aggregated region. The proportion in All
H&E regions were excluded as it always equals to 1. In addition, 3
features from H&E region proportions were also exploited: (1) the
ratio of stromal region to all H&E regions; (2) the ratio of tumoral
region to all H&E regions; and (3) the ratio of lymphocytes region
to all H&E regions. Thus the total number of IMPRESS features is
3 × 11+ 3= 36.
The definition of the area ratio (e.g., Lymph: CD8 ratio) is the

ratio of the total number of pixels of an IHC marker (CD8) on a
certain H&E region (lymph) to the total number of pixels of that
H&E region (lymph). The area ratio can be interpreted as how
much of an IHC marker can be expressed on a certain type of
tumor microenvironments. The definition of the proportion (e.g.,
Lymph: CD8 proportion) is the ratio of the total number of pixels of
an IHC marker (CD8) on a certain H&E region (lymph) to the total
number of pixels of that marker (CD8) on all valid H&E regions. The
definition of the purity (e.g., Lymph: CD8 purity) is the ratio of the
total number of pixels of an IHC marker (CD8) to the total number
of pixels of all IHC markers (CD8, CD163, and PD-L1) on a certain
H&E region (e.g., Lymph).
The definition of “all H&E regions” (All) is the pixel sum of

stroma, tumor, and lymphocytes aggregated regions. The full list
of features was also presented in Supplementary Table 1.

Reliability and results of IMPRESS feature extraction pipeline
The H&E tissue segmentation produced four regions of interests:
stromal region (Stroma), tumoral region (Tumor), lymphocytes
aggregated region (Lymph), and exclude region (Exclude). Each
cohort has pathologist labeled 25 patches in 20× magnification,
each with 512×512 pixels. The dice coefficient in HER2+ cohort for
each class is 0.9312 (stromal region), 0.8413 (tumoral region),
0.7035 (lymphocytes aggregated region), and 0.8482 (exclude
region). The mean dice coefficient in HER2+ cohort is 0.8311. The
dice coefficient in TNBC cohort for each class is 0.9140 (stromal
region), 0.7576 (tumoral region), 0.7323 (lymphocytes aggregated
region), and 0.8752 (exclude region). The mean dice coefficient in
TNBC cohort is 0.8198. The confusion matrices for HER2+ and
TNBC cohorts were also reported in Supplementary Table 2.
The IHC marker segmentation produced four regions of interest:

CD8 region, CD163 region, PD-L1 region, and exclude region. Each
cohort has pathologist labeled 5 patches in 20× magnification,
each with 512×512 pixels. The dice coefficient in HER2+ cohort for
each class is 0.8422 (CD8 region), 0.7379 (CD163 region), 0.7669
(PD-L1 region), and 0.9506 (exclude region). The mean dice
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coefficient in HER2+ cohort is 0.7823. The dice coefficient in TNBC
cohort for each class is 0.8608 (CD8 region), 0.7500 (CD163
region), 0.7237 (PD-L1 region), and 0.9693 (exclude region). The
mean dice coefficient in TNBC cohort is 0.7782. The confusion
matrices for HER2+ and TNBC cohorts were also reported in
Supplementary Table 3.
A non-rigid registration process was performed on each tissue

for every pair of tissues in WSI. The total number of pathologists
labeled landmark correspondences were 516 for HER2+ cohort
and 304 for TNBC cohort. The evaluation performances including
mean and median of the distance (in µm) and median rTRE62

before and after registration were reported in Supplementary
Table 4. We consider the registration is adequate if the median
distance (µm) is ≤50 µm. From the results, we found the distances
before and after registration in HER2+ cohort are 374.01 µm and
33.31 µm in mean, or 278.73 µm and 18.23 µm in median. The
distances before and after registration in TNBC cohort are
627.66 µm and 47.78 µm in mean, or 48.14 µm and 27.13 µm in
median. Both results in HER2+ and TNBC cohorts suggest the
paired pathology images were aligned adequately. An example
H&E tissue and the corresponding IHC tissue with 36 landmark
correspondence pairs were demonstrated in Supplementary
Fig. 2A, B.
The top IMPRESS features with favorable or adverse prognostic

values were further exploited with their associated image patches.
In each cohort, the cases with highest image feature value were
selected, and their WSIs were sliced into patches with 1024×1024
pixels. Representative patches were presented within that specific
patient’s WSI and were shown in Supplementary Fig. 5.
Supplementary Fig. 5A presented representative patches in
HER2+ with top important features; Supplementary Fig. 5B
presented representative patches in TNBC with top importance
features. The adverse prognostic markers were highlighted in gray
backgrounds. These results helped to visualize typical image
patches where the top important features were enriched.

Machine learning settings for NAC outcome prediction
Due to the sample size, leave-one-out training and testing scheme
was adopted. Given N patients in the data cohort, each time 1
patients were held out for testing, and the remained N-1 patients
were used for training and validation. For the N-1 patients during
training, five-fold cross-validation was adopted. For each fold, 80%
of the data was used for training, and the rest 20% data was used
for model validation (i.e., finding the hyper-parameters of the
model). All features in training & validation set were standardized
to standard normal distribution, and the standardization was also
applied to the testing set.
Logistic regression model implemented in scikit-learn (version

0.23.2) was adopted to predict NAC outcome. The objective
function for LASSO-regularized logistic regression is

Minimize LðθÞ ¼ 1
N � 1

XN�1

i¼1
� α1y

ðiÞlog hθ xðiÞ
� �� ��h

þα2 1� yðiÞ
� �

log 1� hθ xðiÞ
� �� �Þ þ λ

PK
j¼1 θj

�� ���;

where x represents the feature values, y is the response (pCR),
hθ xð Þ ¼ xTθþ b is the linear function with weight θ and bias b.
N-1 is the number of training samples (1 sample for held out
testing), K is the number of features, λ is the LASSO regularization
penalty weight, α1 and α2 imposed the class weights. We set the
number of maximum iteration= 100, tolerance= 1e-4. The hyper-
parameters to be searched is the LASSO regularization penalty
weight λ from 0.1 to 1.0 with step= 0.1. The class weights α1 and
α2 were used for balanced learning by adjusting weights inversely
proportional to pCR frequencies in the input data.
We then adopted five measurements to evaluate the results,

namely, AUC (area under the ROC curve), F1 score, precision

(positive predictive value), recall, and negative predictive value.
AUC was evaluated in scikit-learn (version 0.23.2). F1 score,
precision, and recall were evaluated in scikit-learn with “macro”
average method. A well-discriminated model would have an AUC
close to 1. We considered an AUC > 0.85 being a well-performed
prediction, and an AUC > 0.75 being an adequate prediction.
Precision is the fraction of true positive classification among the
positive results classified by algorithm and reflects how likely it is
that a patient will have pCR. The higher precision indicates an
algorithm’s result is reliable. Recall is the fraction of true positive
classification among all the true samples and shows the ability of
the model to correctly identify the patients with pCR. Note that
during this calculation, “positive” stands for a pCR. The F1 score is
formulated as

F1 ¼ 2 precision ´ recallð Þ
precisionþ recall

;

which is the harmonic mean of the precision and recall, reflecting
the learning accuracy. To compare the performances between
IMPRESS features and pathologists’ assessed features (both
include clinical features), LASSO-regularized logistic regression
was used for both features. The model and training schemes as
well as evaluation metrics were remained same as before.

Statistical analyses
We compared the distributions of IMPRESS and clinical features
between HER2+ and TNBC cohorts using Mann–Whitney U test.
The fold change was calculated by the ratio of the median feature
values between HER2+ and TNBC cohorts. Student’s t-test was
adopted for comparing pair-wised AUCs from different trials.
Spearman’s rank correlation coefficients was adopted for calculat-
ing the relationships between features and pCR, the relationships
among IMPRESS features, and the relationships between IMPRESS
features and residual tumor sizes. It provides a correlation
coefficient ρ and a P-value. All P-values were two-sided, followed
with B&H procedure for multiple test adjustment (FDR= 0.05);
Adjusted P-values < 0.05 were deemed statistically significant.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
IMPRESS data and features extracted from H&E-stained and IHC-stained whole-slide
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CODE AVAILABILITY
The entire pipeline is available from GitHub at https://github.com/huangzhii/
IMPRESS. Detailed software versions are: OpenSlide (version 1.1.2), PyTorch (version
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