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Expanded genetic testing of GIST patients identifies high
proportion of non-syndromic patients with germline
alterations
Diana Mandelker 1,4, Antonio Marra 1,4, Nikita Mehta1, Pier Selenica1, Zarina Yelskaya1, Ciyu Yang1, Joshua Somar1, Miika Mehine2,
Maksym Misyura1, Olca Basturk1, Alicia Latham3, Maria Carlo3, Michael Walsh3, Zsofia K. Stadler3, Kenneth Offit3,
Chaitanya Bandlamudi2, Meera Hameed1, Ping Chi3, Jorge S. Reis-Filho 1✉ and Ozge Ceyhan-Birsoy 1✉

Traditional genetic testing for patients with gastrointestinal stromal tumors (GISTs) focus on those with syndromic features. To
assess whether expanded genetic testing of GIST patients could identify hereditary cancer predisposition, we analyzed matched
tumor-germline sequencing results from 103 patients with GISTs over a 6-year period. Germline pathogenic/likely pathogenic (P/LP)
variants in GIST-associated genes (SDHA, SDHB, SDHC, NF1, KIT) were identified in 69% of patients with KIT/PDGFRA-wildtype GISTs,
63% of whom did not have any personal or family history of syndromic features. To evaluate the frequency of somatic versus
germline variants identified in tumor-only sequencing of GISTs, we analyzed 499 de-identified tumor-normal pairs. P/LP variants in
certain genes (e.g., BRCA1/2, SDHB) identified in tumor-only sequencing of GISTs were almost exclusively germline in origin. Our
results provide guidance for genetic testing of GIST patients and indicate that germline testing should be offered to all patients
with KIT/PDGFRA-wildtype GISTs regardless of their history of syndromic features.
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Gastrointestinal stromal tumors (GISTs) are the most common
mesenchymal tumors of the gastrointestinal system1. Up to
85–90% of GISTs harbor activating mutations in KIT or PDGFRA
and respond to imatinib or sunitinib therapies2,3. The remaining
10–15% are KIT/PDGFRA-wildtype and may have somatic loss-of-
function (LOF) mutations in succinate dehydrogenase (SDH)-
complex subunits (SDHA/B/C/D) or NF1, activating mutations in
BRAF, FGFR1, or NTRK translocations, or may be driven by germline
alterations1,3–5. Germline pathogenic variants in SDH-complex
genes6–8, NF19, KIT10,11, and PDGFRA12,13 have been associated
with the development of GISTs. Currently, no standard guidelines
exist for germline testing in GIST patients. Previous studies on
germline contribution to GISTs focused on patients with KIT/
PDGFRA-wildtype tumors, particularly those with syndromic
features, and targeted selected genes4,5,7, given the assumption
that GISTs resulting from germline alterations are frequently
syndromic3,4. Recent studies, however, demonstrated that syn-
dromic features may be absent in a large proportion of patients
with hereditary cancer predisposition1,14,15.
Owing to the restrictive pre-selection of patients and genes for

genetic testing, the contribution of germline variants to GIST
development remains to be fully characterized. To assess whether
expanded genetic testing of unselected GIST patients could
identify individuals with hereditary predisposition, we analyzed
matched tumor-germline sequencing results from 103 patients
with GISTs treated at Memorial Sloan Kettering (MSK) Cancer
Center (MSKCC) over a 6-year period (Supplementary Fig. 1).
Testing was performed using MSK Integrated Mutation Profiling of
Actionable Cancer Targets (MSK-IMPACT)16 and included 76–90
cancer predisposition genes (Supplementary Table 1).

Overall, of the 103 patients with GISTs in this cohort, 24 (23%)
had a germline pathogenic/likely pathogenic (P/LP) variant in a
GIST-associated gene. The cohort of 103 patients included 58 with
somatic mutations in KIT, 10 with somatic mutations in PDGFRA,
and 35 with KIT/PDGFRA-wildtype GISTs (Fig. 1, Supplementary
Table 2). Strikingly, 69% (24/35) of individuals with a KIT/PDGFRA-
wildtype GIST harbored a germline P/LP variant in a GIST-
associated gene (Fig. 2a, Supplementary Fig. 1). These included
16 patients with SDH-complex gene (seven SDHA, seven SDHB,
two SDHC), seven with NF1, and one with KIT germline P/LP
variants, accounting for 46%, 20%, and 3% of patients with KIT/
PDGFRA-wildtype GISTs, respectively. Seven (20%) of the patients
with KIT/PDGFRA-wildtype GISTs had other somatic driver muta-
tions: four with NF1 biallelic, one with SDHA biallelic LOF, and two
with BRAF activating mutations. Three tumors from patients
without germline P/LP variants had monoallelic SDHB or SDHD
mutations, and due to the limitations in detecting LOH or a
second mutation, were considered as inconclusive for somatic
mutation status. One patient had neither germline nor somatic
mutations identified in GIST-associated genes. SDHC promoter
methylation17 was tested and ruled out in tumors without
conclusive driver mutations. Overall, germline P/LP variants in
GIST-associated genes were identified in 96% (24/25) of patients
with somatic driver-negative tumors.
Germline P/LP variants in cancer predisposition genes not

known to be associated with GISTs were identified in eight
patients, all of whom had KIT/PDGFRA-mutant GISTs. These
included alterations affecting TP53, MLH1, BRCA2, and RECQL in
one patient each, as well as two patients with APC p.Ile1307Lys
low-penetrance variant and two with monoallelic MUTYH variants
(Supplementary Table 2). Loss-of-heterozygosity (LOH) or a second
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somatic mutation in these genes were not observed in the tumors.
The patient with MLH1 alteration had a microsatellite-stable tumor
and homologous recombination deficiency signature was not
detected in the patient with BRCA2 alteration, suggesting that
these variants likely constitute incidental findings.
Patients with germline GIST-associated variants had a younger

median age-of-onset (39.5 vs 52 years, p= 0.01), and were more
likely to have metastatic disease (50% vs 20%; p= 0.01) and
multifocal lesions (50% vs 18%, p= 0.01) at the time of testing
compared to those lacking P/LP variants in these genes
(Supplementary Table 3).
Most patients with germline P/LP variants in GIST-associated

genes did not present with syndromic features. Of the 16 patients
with germline SDH-complex gene defects, only one had
syndromic presentation (history of paraganglioma), and another
had family history (father with paraganglioma), whereas 88% (14/
16) had no personal or family history of syndromic features at the
time of testing. Thirteen patients had SDHB immunohistochem-
istry performed, and tumors demonstrated absence of SDHB
expression. While 86% (6/7) of patients with germline NF1
alterations had a history of NF1 features, for one patient,
identification of the germline NF1 variant led to the recognition
of café-au-lait spots and mild axillary/inguinal freckling, consistent
with mild neurofibromatosis15. Additionally, one (1%) of 103
patients had a pathogenic germline KIT variant (p.Lys509Ile)18,19.
Overall, 63% (15/24) of patients with germline GIST-associated

variants did not have personal or family history of syndromic
features, suggesting that a significant proportion of KIT/PDGFRA-
wildtype GISTs appearing to be sporadic may have underlying
germline alterations.
Tumor-only sequencing is commonly performed to assess

somatic alterations and may reveal germline variants. To
determine the frequency of somatic versus germline variants
identified in tumor-only sequencing of GISTs, we analyzed a
cohort of de-identified 499 GISTs that received paired tumor-
normal sequencing using MSK-IMPACT, including tumors from the
103 patients in the initial analysis and 396 patients who did not
consent to germline testing (Supplementary Fig. 1). To mimic a
tumor-only sequencing analysis approach, the sequencing data
from these tumors was used in an unmatched manner, without
subtracting the variant calls detected in the paired normal
sequencing data. For distinguishing germline versus somatic
variants in the tumor sequencing data, variant allele fraction (VAF)
thresholds for predicting germline variants in tumor sequencing
recommended by the European Society of Medical Oncology (VAF
of >30% for single nucleotide variants (SNVs) and >20% for
insertions and deletions (indels))20 were applied to P/LP variants
identified in the tumors. The matched normal blood sequencing
data was used to confirm the germline versus somatic origin of
the variants detected in tumors. These VAF thresholds correctly
distinguished all true germline and somatic P/LP variants
identified in the tumors, as determined by comparison with the
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matched normal blood sequencing data. Of the 69 KIT/PDGFRA-
wildtype GISTs in this cohort, 33 (48%) were found to harbor
germline P/LP variants in GIST-associated genes, consistent with
our findings in the cohort who received germline testing. P/LP
variants identified in tumor-only sequencing of GISTs were almost
exclusively germline in certain genes, such as BRCA1, BRCA2 (4/4
variants), and SDHB (10/11 variants). Conversely, P/LP variants in
genes such as KIT (430/431 variants) and RB1 (9/9 variants) were
primarily somatic (Fig. 2b). These observations can help identify
the subset of GIST patients to offer germline testing based on
tumor-only sequencing results.

This study has limitations. Detailed clinical assessments could
only be performed for 103 patients who consented to germline
testing. Additionally, limitations exist in detecting certain variants
such as structural variants or low-level mosaicism.
Despite these limitations, our results support that germline

testing should be offered to all patients with KIT/PDGFRA-wildtype
GISTs, regardless of their history of syndromic features, and should
target all GIST-associated genes at minimum. In our cohort of 103
patients with GISTs who consented to germline analysis, 23% had
a germline P/LP variant in a GIST-associated gene, and an
additional 8% had a germline P/LP variant in an additional cancer
susceptibility gene, suggesting that all GIST patients, regardless of
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their tumor testing status, could benefit from germline testing.
Germline alterations in GIST-associated genes may also confer
high risk for other cancers, such as paragangliomas and
pheochromocytomas for SDH-complex genes and nerve sheath
tumors, breast cancer, and gliomas for NF1. Therefore, their
identification has critical implications for future cancer surveillance
and clinical management of the patients, as well as appropriate
care of their at-risk family members. Determining the somatic and
germline alterations underlining tumor development is also
critical for appropriate targeted therapy selections, as SDH-
deficient and NF1-related tumors are known to respond poorly
to traditional imatinib therapy and differentiating the different
genetic alterations in KIT/PDGFRA-wildtype GISTs can guide
treatment choices3,4. Finally, our analysis on 499 tumor-normal
pairs suggests that the identification of P/LP variants in certain
genes in tumor-only sequencing of GISTs may indicate germline
testing. Additional large-scale studies on the phenotypic spectrum
of GIST-associated genes will help in developing clinical guidelines
for expanded genetic testing in GIST patients.

METHODS
Patient cohort
The de-identified cohort consisted of tumor-normal pairs from 499
consecutive patients with GIST who were treated at MSKCC and
had MSK-IMPACT (ClinicalTrials.gov identifier, NCT01775072)
paired tumor-blood DNA sequencing test21,22 between April
2015 and June 2021. Germline analysis cohort consisted of 103
patients with GIST, who were a subset of the larger cohort and
prospectively consented to germline analysis as part of MSK-
IMPACT. Patients were ascertained through their treating physi-
cians and referral was at the discretion of the physicians. The
presence/absence of personal/family history of syndromic features
were determined based on review of pre-testing and post-testing
clinical geneticist and oncologist physical examination and family
history assessments that included inquiry about features related to
genetic disorders associated with the development of GISTs. All
patients provided written informed consent for testing under a
Memorial Sloan Kettering Cancer Center Institutional Review
Board (IRB)-approved protocol (IRB#12-245).

MSK-IMPACT testing
MSK-IMPACT is a New York State Department of Health approved
assay and was performed in our CLIA-approved laboratory. Next-
generation sequencing was performed on DNA isolated from
matched blood and tumor specimens, as described16,21–23. DNA
fragments were captured using custom-designed biotinylated
probes (NimbleGen) and sequenced on an Illumina HiSeq 2500 as
paired-end 100 bp reads21,22. Tumor testing included 341, 410, or
505 genes, depending on the panel used for testing. Germline
testing included 76, 88, or 90 hereditary cancer predisposition
genes for 18, 71, and 14 patients, respectively (Supplementary
Table 1)16,22. Variants were called using MuTect24 and Genome
Analysis Toolkit (GATK) Haplotype caller25. Copy number variants
(deletions and duplications of single or multiple exons) were
detected and analyzed using an in-house developed pipe-
line16,22,23, which identifies copy number aberrations by compar-
ing sequence coverage of targeted regions to standard diploid
normal. Variants were filtered using 25% (for SNVs) and 15% (for
indels) variant allele fraction and 20× coverage thresholds. All
variants with <1% population frequency in the Genome Aggrega-
tion Database (gnomAD)26 were reviewed and classified by clinical
molecular geneticists and molecular genetic pathologists based
on the American College of Medical Genetics and Genomics
(ACMG) guidelines27.

LOH, microsatellite instability (MSI), and mutation signature
analyses
LOH was determined using segmented allele-specific copy
number calls from FACETS tool28, an open-source software that
utilizes aligned sequence bam files from next-generation sequen-
cing and performs analysis for joint segmentation of total- and
allele-specific read counts and integer copy number calls
corrected for tumor purity, ploidy and clonal heterogeneity to
estimate LOH. Segments with a minor allele copy number of 0
were classified as having LOH. The allele undergoing LOH was
determined based on the VAF of the germline variants in the
tumor. MSI status of the tumors were assessed using clinically
validated MSIsensor program29, which computes length distribu-
tions of microsatellites per designated regions in paired tumor
and normal sequence data and identifies the percentage of
microsatellite loci that are unstable in the tumor genome as
compared to its matched normal. Evidence of MSI at ≥10% of
analyzed loci was considered as MSI-high, ≥3 to <10% was
considered as indeterminate MSI status, and <3% were considered
as microsatellite stable. Tumor mutation signatures were deter-
mined based on MSK-IMPACT data by assigning the mutations in
each sample to constituent mutation signatures from a set of
30 signatures described previously23,30,31.

SDHC promoter methylation testing
DNA isolated from tumor tissues were subjected to bisulfite
treatment, followed by PCR and PyroSequencing, and SDHC
promoter methylation status was evaluated as described17.
Samples were run with in-house unmethylated DNA as negative
control and CpGenome Human Methylated DNA standard (EMD
Millipore Corp., MA, USA) as positive control. Genomic DNA was
treated with bisulfite conversion using EpiTect Bisulfite Kit
(Qiagen, Hilden, Germany). Each PCR amplification reaction of
bisulfite-treated DNA was performed in 50 µl reaction consisting of
35 µl SIGMA JumpStart REDTaq ReadyMix PCR reaction Mix
(Sigma–Aldrich Inc., MO, USA), 1 µl 10 µM forward primer (5’-
GAAAATAATTAGTAAATTAGTTAGGTAG-3’), 1 µl 10 µM biotinylated
reverse primer (5’- ACTAAAATCACCTCAACAACAAC-3’), 11 µl of
PCR grade water, and 100 ng bisulfite-treated DNA. PCR cycling
conditions were initial step 96 °C for 5 min, followed by 36 cycles
with denaturation at 94 °C for 30 sec, annealing at 55 °C for 45 sec,
and elongation at 72 °C for 60 sec, with a final extension at 72 °C
for 5 min. Bisulfite pyrosequencing was performed on a PyroMark
Q24 pyrosequencer system (Qiagen) with Streptavidin Sepharose
Beads (GE Healthcare Bioscience, Uppsala, Sweden), PyroMark
Gold Q24 reagents kit (Qiagen), PyroMark workstation buffers
(Qiagen), and sequencing primer (5’- GTTATATGATATTTTTAATTT-
3’). Data analysis was performed using PyroMark Q24 Software 2.0
(Qiagen) with CpG analysis mode.

Immunohistochemistry
Immunohistochemistry for SDHA and SDHB proteins was
performed as part of clinical assessment of tumors on formalin-
fixed, paraffin-embedded tissue sections using AB14715 (Abcam,
Cambridge MA, USA) and HPA002868 (Sigma–Aldrich, St. Louis,
MO, USA) antibodies, respectively. Briefly, 4 μm thick sections from
representative tissue blocks were processed using the Ventana
Discovery XT system with antigen retrieval (CC1 solution, 60 min),
primary antibody (1:6400 dilution for SDHA (AB14715) and 1:800
dilution for SDHB (HPA002868) antibodies), and OptiView DAB
immunohistochemistry detection steps (Ventana Medical Systems,
Tucson, AZ, USA).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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