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The landscape of therapeutic vulnerabilities in EGFR inhibitor
osimertinib drug tolerant persister cells
Steven W. Criscione 1,4✉, Matthew J. Martin2,4, Derek B. Oien1,4, Aparna Gorthi1,3, Ricardo J. Miragaia2, Jingwen Zhang1,
Huawei Chen1, Daniel L. Karl1, Kerrin Mendler1, Aleksandra Markovets1, Sladjana Gagrica2, Oona Delpuech2, Jonathan R. Dry1,
Michael Grondine1, Maureen M. Hattersley1, Jelena Urosevic2, Nicolas Floc’h2, Lisa Drew1, Yi Yao 1✉ and Paul D. Smith 2✉

Third-generation EGFR tyrosine kinase inhibitors (EGFR-TKIs), including osimertinib, an irreversible EGFR-TKI, are important
treatments for non-small cell lung cancer with EGFR-TKI sensitizing or EGFR T790M resistance mutations. While patients treated
with osimertinib show clinical benefit, disease progression and drug resistance are common. Emergence of de novo acquired
resistance from a drug tolerant persister (DTP) cell population is one mechanism proposed to explain progression on osimertinib
and other targeted cancer therapies. Here we profiled osimertinib DTPs using RNA-seq and ATAC-seq to characterize the features of
these cells and performed drug screens to identify therapeutic vulnerabilities. We identified several vulnerabilities in osimertinib
DTPs that were common across models, including sensitivity to MEK, AURKB, BRD4, and TEAD inhibition. We linked several of these
vulnerabilities to gene regulatory changes, for example, TEAD vulnerability was consistent with evidence of Hippo pathway turning
off in osimertinib DTPs. Last, we used genetic approaches using siRNA knockdown or CRISPR knockout to validate AURKB, BRD4,
and TEAD as the direct targets responsible for the vulnerabilities observed in the drug screen.
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INTRODUCTION
Single agent targeted cancer therapies frequently induce tumor
regression, but rarely result in the elimination of disease due to
the emergence of drug resistance1. Two non-mutually exclusive
mechanisms are frequently proposed to explain drug resistance.
The first mechanism is that resistance can emerge from the
selection of a pre-existing resistant subclone within a hetero-
genous tumor. The second mechanism is that drug resistance
emerges de novo and is acquired from a therapy insensitive
residual disease state2. Supporting this second mechanism, long-
term drug treatment studies of cancer cell lines or tumor
xenografts led to the characterization of drug tolerant persisters
(DTPs), a reversible therapy insensitive cell population3,4. Exploring
DTPs using cancer models can improve our understanding of
post-treatment tumors and may identify drug combinations to
target therapy insensitive tumors in the clinic.
Approximately 15–20% of non-small cell lung cancer (NSCLC)

patient tumors have activating epidermal growth factor receptor
(EGFR) mutations5, of which exon 19 deletions (E746-A750, ~54%)
and L858R mutations (~41%) are predominant6. The first-
generation EGFR inhibitors erlotinib and gefitinib displayed
benefit in patients with these activating mutations, but the
duration is limited due to the acquisition of secondary resistance
mutations. Osimertinib is a third-generation EGFR inhibitor that
was developed to overcome the EGFR T790M gatekeeper
resistance mutation, observed in ~60% of patients6; and has
shown clinical benefit in the first-line and second-line therapy
setting7–9. Despite this efficacy, development of resistance to
osimertinib can still occur, including, notably, via the EGFR C797S
resistance mutation at the covalent binding site for osimertinib10.
However, there is no dominant resistance mechanism analogous
to T790M and there is inter- and intra-patient heterogeneity in the

range of acquired mutations. Further, ~40–50% of patients that
progress on osimertinib do not present with a validated resistance
mutation1. One potential strategy to delay or abolish resistance is
to intervene with combinations that target the therapy insensitive
cells and prevent or reduce the chance for de novo acquired
resistance to emerge.
Cancer DTPs are characterized as a therapy insensitive cell

subpopulation with a slower cell cycle that forms after continuous
drug dosing3. Beyond EGFR inhibitors, multiple drugs with diverse
mechanisms have been shown to induce DTP cells in a wide range
of cancer models11. One hallmark is that, unlike cells with acquired
resistance, DTP cell populations recover following drug withdrawal
and respond to drug when rechallenged3. Another hallmark of
DTPs is they have a distinct chromatin state and are sensitive to
drugs targeting epigenetic regulators3,12. DTP cell populations are
also observed in tumor xenograft studies and DTPs have been
proposed as a model to study therapy insensitive cancer cells in
patients4,13.
Identifying mechanisms of drug tolerance and adaptive

resistance is critical to enhance the efficacy of targeted therapies
in the clinic. Here we integrated RNA-seq and ATAC-seq to
characterize the gene regulatory patterns of osimertinib DTPs. We
also conducted systematic drug screens to identify therapeutic
vulnerabilities in osimertinib DTPs using either upfront or a
sequential dosing strategy. We identified several drugs that
displayed sensitivity in osimertinib DTPs including inhibitors
targeting MEK, AURKB, BRD4, and TEAD. We subsequently
explored pathways associated with these drug screen hits and
identified regulatory features that might explain the observed
sensitivity. We found osimertinib DTPs downregulate MEK
activation gene signatures, whereas MEK compensatory resistance
gene signatures were increased. The DTPs displayed increased
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nuclear YAP localization consistent with Hippo pathway turning
off. We also observed features consistent with an epithelial-to-
mesenchymal transition and dynamic alterations in chromatin
accessibility. Last, we used genetic knockout by CRISPR or
knockdown by siRNA to validate AURKB, BRD4, and TEAD as the
targets for vulnerabilities identified in the drug screens.

RESULTS
Osimertinib DTPs show distinct gene expression changes from
acute treatment
We profiled osimertinib DTPs in four EGFR mutant, NSCLC cell lines
using RNA-seq to identify common gene regulatory changes. Cell
lines were treated acutely with osimertinib for 24 hours or treated
21 days to generate DTPs. We also conducted a short-term
(24 hours) or long-term (3–10 days chosen by cell line regrowth)
drug washout (Fig. 1a upper panel, Supplementary Table 1).
Western blot data confirmed that the 21-day treatment led to
suppression of phospho-EGFR and phospho-p42/p44. Interest-
ingly, cell regrowth time points chosen for long washouts
(3–10 days) occurred before phospho-EGFR and phospho-p42/
p44 recovery at 11 days (Fig. 1b). In the RNA-seq, we identified
clusters of gene expression changes with similar trends across
time (Fig. 1a, lower panel). We found several interesting patterns,
such as cluster 3, which contained genes upregulated in
osimertinib DTPs, but not in acute treatment, that persisted in
drug washout time points (Fig. 1a lower panel, Supplementary Fig.
1A). Cluster 3 genes enriched for epithelial-to-mesenchymal
transition (EMT) related pathways including wound healing
(Supplementary Fig. 1B). In cluster 1, genes were downregulated
in osimertinib acute treatment, gradually recovered in osimertinib
DTPs, and continued recovery in drug washout. The pattern in
cluster 1 correlated with cell regrowth and enriched for cell cycle
and DNA replication genes (Supplementary Fig. 1B). Principal
component analysis (PCA) identified that a large source of gene
expression variation was from cell line (Fig. 1c upper panel). By
performing PCA separately in each cell line, we observed more
gene expression variation from drug treatment, with osimertinib
DTPs and washout time points grouped separately from DMSO
and acute treatment (Fig. 1c lower panel). Clustering and PCA
suggested that the DTP selection bottleneck yielded pronounced
gene expression changes that differ from acute treatment and
persist in drug washout time points.
We further explored differences between acute treatment and

osimertinib DTPs (Supplementary Fig. 2). Osimertinib DTPs and
acute treatment both displayed decreased cell cycle-related gene
expression compared to DMSO (Supplementary Fig. 3A, B). A
subset of cell cycle-related pathways and genes returned closer to
baseline levels in drug washouts (Supplementary Fig. 3C). The
DNA strand elongation pathway, for example, decreased in
osimertinib acute treatment, continued suppression in DTPs but
to a lesser extent, and recovered gradually in drug washouts (Fig.
1d upper panel, Supplementary Fig. 3D). We also observed distinct
pathway changes in osimertinib DTPs versus acute treatment
when compared to DMSO, including changes to lysosome and cell
metabolism pathways (Supplementary Fig. 3A, B). To further
identify alterations specific to DTPs, we directly compared
osimertinib DTPs to acute treatment. This comparison displayed
more variation between the cell lines (Supplementary Fig. 2C);
however, we identified increases to extracellular matrix secretion
(ECM) signatures, YAP1 signatures, SMAD signatures, and
decreases to cell metabolism pathways (Fig. 1d lower panel, Fig.
1e). Notably, the ECM-related signatures upregulated in DTPs
remain high in drug washouts, despite cell-cycle pathways
returning closer to baseline levels. This may explain why drug
washouts group closer to osimertinib DTPs in PCA, even though
they are in the process of regaining proliferative capacity.

Osimertinib DTPs display chromatin accessibility alterations
Due to the extensive gene regulatory changes in osimertinib DTPs,
we performed ATAC-seq to examine chromatin accessibility. The
ATAC-seq data were high quality (Supplementary Table 2); and
comparison of peaks across cell lines showed distinct and
overlapping chromatin accessibility peaks in the three models
profiled (Supplementary Fig. 4A, left panel). Differential peak
analysis of osimertinib DTPs versus DMSO identified ~7–15% of
peaks either increasing or decreasing in HCC2935, PC9, and H1975
(Supplementary Fig. 4A, right panel). We identified specific regions
that gained or lost chromatin accessibility that were significant
and reproducible in each cell line (Fig. 2a, b, Supplementary Fig.
4B–G). Regions that decreased accessibility displayed slightly
larger effect sizes, suggesting potentially more chromatin silen-
cing in osimertinib DTPs (Fig. 2b). Gained accessibility regions
enriched for EMT-related pathways including wound healing,
whereas decreased accessibility regions enriched for tyrosine
kinase signaling and transcriptional processes (Supplementary Fig.
5A, B). We observed multiple consistent changes across models
(Supplementary Fig. 5C), for example, a striking decrease to
chromatin accessibility upstream of MAPK13 that was concordant
with RNA expression (Fig. 2c, Supplementary Fig. 5D). The gene
MAPK13 encodes for mitogen-activated protein kinase p38δ and
was confirmed to also decrease at the protein level (Fig. 2d).
Globally, decreased accessibility regions enriched at gene body
and distal intergenic regions as opposed to promoters, and a
similar trend was seen for regions that increased accessibility (Fig.
2e). We also observed higher percent enrichment of distal
enhancers, annotated in ENCODE SCREEN, for gained or lost
chromatin accessibility regions relative to all peaks (Fig. 2f). These
findings suggest that rewiring of enhancer-gene regulation in
osimertinib DTPs may drive chromatin-mediated gene expression
changes including downregulation of MAPK13.
We next applied ActivePathways14, a multiomics method for

pathway analysis, to further integrate RNA-seq and ATAC-seq. We
also explored Causal Reasoning: a network method to infer
upstream regulators from downstream RNA-seq perturbations15.
When we examined genes upregulated across ATAC-seq and RNA-
seq in osimertinib DTPs versus DMSO, we identified multiple
interrelated pathways as significantly enriched including ECM and
EMT-related pathways, TGF-β pathway, and YAP signatures (Fig.
2g). Interestingly, SMAD2 (Pollard p value= 5.11E-05) and SMAD3
(Pollard p value= 7.31E-09), were also identified among top-
ranked transcription factors inferred to increase activity by Causal
Reasoning (Fig. 2h, Supplementary Fig. 5E). The TGF-β/SMAD
signaling pathway was previously implicated as a regulator of EMT
signaling in lung epithelial cells16. In H1975, we found increased
total and phosphorylated SMAD1, SMAD2, and SMAD3 by Western
blot in osimertinib DTPs (Fig. 2i). We examined EMT marker genes
and EMT regulatory transcription factors and observed increases
to ZEB1, ZEB2, and SLUG (SNAI2) in H1975 in osimertinib DTPs
(Supplementary Fig. 5F). The increase of SLUG in osimertinib DTPs
is consistent with previous reports of SLUG increasing in EGFR/
MEK inhibited DTPs13. We also observed increased levels of
expression of mesenchymal marker Fibronectin (Supplementary
Fig. 5F). Collectively, these data suggest EMT transition is a feature
of osimertinib DTPs and SMAD/EMT-related transcription factors
including SLUG (SNAI2) may play a role in this transition.

Osimertinib DTPs are vulnerable to BRD4, AURKB, and TEAD
inhibitors
Next, we conducted long-term drug screens in PC9 osimertinib
DTPs to identify therapeutic vulnerabilities using compounds with
understood pharmacology targeting diverse protein functions in
two screen formats (Fig. 3a, Supplementary Data 1–2). In the first
screen, we dosed compounds upfront in combination with
osimertinib to reduce formation of DTPs. In the second screen,
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we dosed osimertinib and compounds sequentially to identify
dosing regimens that decreased DTP survival. We defined
combination activity as the difference in area under the curve
(AUC) between osimertinib DTPs and combination regimens. We
compared drug combinations to monotherapy activity, defined as
the difference between DMSO and drug monotherapy AUC. We
filtered for combinations where combination activity in osimerti-
nib DTPs was at least twice the effect of drug monotherapy to
define screen hits. In the PC9 upfront screen we observed multiple
combinations as hits including AZ6102 and XAV-939 Tankyrase

(TNKS) inhibitors, selumetinib and trametinib MEK inhibitors,
quisinostat HDAC inhibitor, and K-975 TEAD inhibitors (Fig. 3b). In
the PC9 sequential screen we also observed additional drug
screen hits including RSL3 and ML210 GPX4 inhibitors, AZD5153
BRD4 inhibitor, and AZ6102 TNKS inhibitor (Fig. 3c). Reassuringly,
many of these hits are among previously described vulnerabilities
to EGFR inhibitor DTPs including MEK and TEAD inhibitors13,17. We
next expanded the drug screen, screening six additional EGFR
mutant cell lines using inhibitors that showed evidence of some
activity in PC9 cells (Supplementary Data 1–2). In the expanded

Fig. 1 Osimertinib DTPs and acute treatment show distinct gene expression changes. a Upper panel: Experimental design of osimertinib
DTP RNA-seq time-course. Four EGFR mutant cell lines were treated with DMSO, osimertinib for 24 hours (acute), or osimertinib for 3 weeks
(DTPs), followed by short or long washout (see Methods). Lower panel: The top 2000 genes (ranked by FDR) identified to change significantly
in 3 of 4 cell line models in any experimental comparison using a moderated F-statistic. Gene expression values were Z-score normalized by
cell line and patterns were identified by K-means clustering (K= 4) and subclustered by Euclidean distance. b Western blot of phospho-EGFR
and phospho-p42/44 in H1975 cells treated with osimertinib acutely for 24 hours or 14 days to form DTPs with or without drug washouts.
c Upper panel: Principal component analysis (PCA) of normalized log2 transcripts per million (TPM) gene expression after removing lowest
quantile of least variable genes. Lower panel: Same as c upper panel, using only PC9 or H1975 cells. d Upper panel: gene set variation analysis
(GSVA) scores for Reactome DNA strand elongation pathway (two-sided t test, p value * < 0.05, ** < 0.01, *** < 0.001). Boxplot is quartiles with
range bar as minimum or maximum data values within 1.5 times the interquartile range. Lower panel: Same as d upper panel, GSVA scores for
GO extracellular matrix pathway. e Top-ranked pathway changes in osimertinib DTPs versus acute treatment, selected by lowest FDR of cell
line covariate differential GSVA analysis, compared to comparisons done separately in each cell line. The pathways are ordered by cell line
covariate log2 fold change, color indicates the specific comparison, and shape indicates FDR status.
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upfront DTP combination screens, we identified common screen
hits, in at least three of seven cell lines, including AURKB, CDK4/6,
SRC, FGFR, TNKS, PRMT5, HDAC, and TEAD inhibitors (Fig. 3d). In
the sequential screen we observed combination activity for TNKS,
SRC, PIK3CA/B, and BRD4 inhibitors (Fig. 3e). The sequential screen
identified fewer combinations and the strength of activity was less
than upfront dosing.
We next closely examined the full drug response patterns. We

found that the BRD4 inhibitor AZD515318,19 primarily displayed
combination activity when dosed sequentially in PC9, HCC827,
and II-18 cell lines, with little or no activity upfront (Fig. 3f,
Supplementary Fig. 6A). In contrast, most other hits displayed
more activity as an upfront combination including the AURKB
inhibitor AZD2811 (Fig. 3g, Supplementary Fig. 6B), the HDAC
inhibitor quisinostat (Supplementary Fig. 7A), and the TNKS
inhibitor AZ6102 (Supplementary Fig. 7B). Tankyrase inhibitors
have been reported to stabilize AMOT, a negative regulator of
YAP, and suppress YAP co-factor activity with TEAD20. A more

direct inhibitor of TEAD, the TEAD inhibitor K97521, also displayed
combination activity when dosed upfront (Fig. 3h, Supplementary
Fig. 7C). We also examined the TEAD inhibitor K-975, BRD4
inhibitor AZD5153, and TNKS inhibitor AZ6102 in a TEAD luciferase
reporter assay. We observed potent TEAD reporter activity
suppression by K-975, modest suppression by AZD5153 and
AZ6102, and no activity for osimertinib and erlotinib negative
controls (Supplementary Fig. 7D).

The BRD4 inhibitor AZD5153 displayed a dose-dependent
vulnerability in DTPs
The functional evidence provided by the drug combination
screens prompted closer evaluation of gene regulatory changes
associated with drug hits. We profiled the sequential treatment of
BRD4 inhibitor AZD5153 in osimertinib DTPs using ATAC-seq
(Supplementary Fig. 8). In most cell lines AZD5153-treated DTPs
displayed additional chromatin accessibility changes, rather than
reversing chromatin accessibility alterations observed in DTPs

Fig. 2 Osimertinib DTPs display altered chromatin accessibility. a Significantly increased peaks in PC9 osimertinib DTPs in normalized
counts per million (fold change > 2 and FDR < 0.005) in a 500 bp window centered on peak start site (PSS) to peak end site (PES) ± 0.5
kilobases. b Same as a, significantly decreased peaks in PC9 osimertinib DTPs. c Genome browser view of chromatin accessibility decreases in
osimertinib DTPs identified upstream of MAPK13 (signal is normalized counts per million). d p38δ (MAPK13) Western blot in H1975 cells
treated with osimertinib for 72 hours or 3 weeks to form DTPs with or without a 72 hour washout. e Proportion of peaks annotated by gene
features for all consensus ATAC-seq peaks, peaks increasing significantly, or peaks decreasing significantly. f Percent overlap of ENCODE
SCREEN regulatory elements for peaks increasing or decreasing chromatin accessibility subtracted by percent overlap in all consensus peaks
(dELS distal enhancer like, pELS proximal enhancer like, PLS promoter like). g ActivePathways integrated ATAC-seq and RNA-seq cell line meta-
analysis identified EMT-related pathways as enriched for significant alterations in osimertinib DTPs versus DMSO (FDR < 0.01). h SMAD2 was
inferred to increase transcription factor activity by Causal Reasoning (Pollard p value= 3.7 × 10−6) from gene expression changes in
osimertinib DTPs versus acute treatment. The edge color shows expected direction, node fill shows observed direction, and node outline
displays whether observed matches expected direction. i Western blot of SMAD signaling pathway proteins in H1975 cells treated with
osimertinib for 72 hours or 3 weeks with or without a 72 hour washout.
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(Supplementary Fig. 8). The only exception was H1975, where
AZD5153-treated DTPs showed some reversal of chromatin
accessibility decreases in the DTPs, although H1975 was not
sensitive to AZD5153 in the drug screen (Supplementary Fig. 8C).
Pathway enrichment of increased accessibility regions in
AZD5153-treated DTPs indicated changes to EGFR and MEK
pathways (Supplementary Fig. 8G), whereas EMT-related pathways
including wound healing and apoptosis regulatory pathways
decreased (Supplementary Fig. 8H).
We also explored the BRD4 AZD5153 inhibitor dose needed for

optimal vulnerability in osimertinib DTPs. In cell lines, we observed
a robust vulnerability when DTPs were switched to 100 nM
(HCC4006) or 200 nM (PC9) dose of AZD5153 in combination with

osimertinib, compared to AZD5153 monotherapy switch or lower
dose combination (Supplementary Fig. 9A, B). When we explored
the combination in vivo, in an H1975 xenograft model, we
observed delayed regrowth when 3 weeks osimertinib treatment
was switched to a combination with 2.5 mg/kg AZD5153
(Supplementary Fig. 9C left panel). We rechallenged several
tumors from this study and observed they were still sensitive to
osimertinib combination with 2.5 mg/kg AZD5153 after drug
holiday (Supplementary Fig. 9C right panel). We also examined
lower doses of AZD5153 in vivo. In a small study using an EGFR
exon 19-deleted patient derived xenograft model (CTG-2531) we
observed delayed tumor regrowth using a combination with
0.5 mg/kg AZD5153 (Supplementary Fig. 9D). However, in a larger

Fig. 3 Osimertinib DTP drug combination screens identified vulnerabilities to BRD4, AURKB, and TEAD inhibition. a Schematic of
osimertinib DTP sequential or upfront drug combination screens. Combination activity was defined as the difference between AUCs for
osimertinib DTPs and drug combination DTPs. Hits in the screen were also required to show at least twice the effect of monotherapy activity,
defined as the difference between AUC DMSO and AUC monotherapy. b PC9 upfront DTP combination screen. Blue highlights screen hits
(combination activity >10,000 and >2× monotherapy activity) and red highlights hits with <2× monotherapy activity. c Same as b, for the
PC9 sequential DTP combination screen except >7500 combination activity was used to define hits. d Upfront DTP combination screens from
PC9 and 6 additional EGFR mutant cell lines. Drugs defined as screen hits (combination activity >10,000 and >2× monotherapy activity) in at
least 3 of 7 EGFR mutant cell lines are labeled. For drugs defined as screen hits, we also show if they were a hit with <2× monotherapy activity
in another cell line using a triangle shape. e Same as d, for the sequential DTP combination drug screens. f Percent confluency of PC9 cells in
upfront or sequential DTP screen with BRD4 inhibitor AZD5153 (300 nM). The dotted line indicates washout in upfront combination or drug
crossover in sequential combination and error is s.e.m. The significance is a two-sided t test comparing the individual replicate drug
combination AUC versus osimertinib monotherapy control (p value * < 0.05, ** < 0.005, *** < 0.001). g Same as f, for AURKB inhibitor AZD2811
(100 nM) in H1975 cells. h Same as f, for the TEAD inhibitor K-975 (100 nM).
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H1975 xenograft study we observed more variability with a
0.5 mg/kg AZD5153 combination that did not replicate delays in
tumor regrowth observed using a 2.5 mg/kg AZD5153 combina-
tion (Supplementary Fig. 9E). These observations suggest that the
vulnerability of osimertinib DTPs towards the BRD4 inhibitor
AZD5153 is dose-dependent.
Next, we tested whether BRD4 genetic knockdown could

recapitulate the phenotype observed in osimertinib DTPs. We
treated cells with osimertinib to generate DTPs, removed drug,
replated surviving cells and transfected with two siRNAs targeting
BRD4. We observed a delayed regrowth for DTPs treated with
siRNAs targeting BRD4 versus non-targeting control (Supplemen-
tary Fig. 10A–C). We also examined apoptotic regulation, a
pathway with gene regulatory changes identified by ATAC-seq
in AZD5153-treated DTPs (Supplementary Fig. 8H). This led us to
identify that AZD5153-treated DTPs upregulated the pro-
apoptotic family member BIM (Supplementary Fig. 10D). We
tested whether the AZD5153 vulnerability in DTPs was dependent
on BIM upregulation using a BIM knockout PC9 model. Using two
CRISPR guides targeting BIM, we observed that BIM knockout
rescued the decreased cell confluency of AZD5153-treated DTPs
(Supplementary Fig. 10E, F). Together these data suggest that the
vulnerability of DTPs to AZD5153 is driven by the direct target
BRD4, and BIM upregulation plays a role in the vulnerability to
BRD4 inhibition.

The AURKB inhibitor AZD2811 delayed tumor regrowth to
osimertinib
We explored AURKB inhibitor AZD2811 as an upfront hit from the
osimertinib DTP drug screen in vivo. We examined an EGFR exon
19-deleted LU5221 PDX model and observed that upfront
combinations with osimertinib and AURKB inhibitor AZD2811
(25 mg/kg) or sequential combination delayed tumor regrowth
relative to monotherapy (Fig. 4a, Supplementary Fig. 11A). We
observed a similar benefit to AZD2811, especially to upfront
combination, using a PC9 tumor xenograft study in delaying
tumor regrowth (Supplementary Fig. 11B). In an H1975 tumor
xenograft study, we observed more variability in tumor regrowth
and did not observe delayed tumor regrowth (Supplementary Fig.
11C). We validated the vulnerability was driven by AURKB using
knockdown by siRNA of AURKB upfront with osimertinib. We
observed that knockdown of AURKB, using two independent
siRNAs, led to reduced confluency upon drug removal (Fig. 4b)
and verified AURKB knockdown by Western blot (Supplementary
Fig. 11D). These findings support AURKB as a vulnerability in

osimertinib DTPs, consistent with a recent study that identified
AURKB as an EGFR inhibitor resistance target22.

Osimertinib DTPs display altered MEK signaling downstream
of EGFR
Next, we examined MEK activation and MEK compensatory
resistance signatures23,24, because MEK pathway suppression is
an expected consequence of EGFR inhibition. The MEK inhibitor
selumetinib was also identified in the upfront combination drug
screens (Fig. 3d) and MEK inhibitor combinations were previously
shown to prevent EGFR inhibitor resistance13,17,25. We examined
the gene signatures in the RNA-seq and characterized patterns
using K-means clustering (Fig. 5a). We found cluster 1, enriched for
MEK activation genes that decreased expression in osimertinib
acute treatment and DTPs, and trended towards reactivation in
drug washouts (Fig. 5a). We also observed cluster 3 enriched for
MEK inhibitor compensatory resistance genes that increased in
osimertinib DTPs relative to DMSO but did not change in acute
treatment (Fig. 5a). Pathway scoring using gene set variation
analysis (GSVA) supported a significant decrease in MEK activation
signature in osimertinib DTPs, whereas MEK compensatory
resistance genes increased significantly (Fig. 5b).
We tested whether chromatin accessibility changes may drive

changes to MEK activation and MEK compensatory resistance
genes. We compared genes with significant RNA and chromatin
accessibility changes across multiple cell lines to identify robust
chromatin-mediated gene expression changes in DTPs (Fig. 5c,
Supplementary Fig. 12A–C). Several MEK activation genes
displayed concordant decreased chromatin accessibility and RNA
expression including ETV4, DUSP4, and PHLDA1 (Supplementary
Fig. 13A–C). The MEK activation gene DUSP4 also decreased
protein levels (Supplementary Fig. 13G). In contrast, the MEK
compensatory resistance gene SERPINE1 (PAI-1) displayed con-
cordant increased chromatin accessibility and RNA expression (Fig.
5d) and PAI-1 protein levels also increased (Fig. 5e). Beyond MEK
signature genes, this analysis also identified several other
concordant changes, including concordant decreases of EPCAM,
and conversely increases for MAP2 and IGFBP3 (Supplementary
Fig. 13D–F). We confirmed that EPCAM protein decreased,
whereas IGFBP3 and MAP2 protein increased (Supplementary
Fig. 13G).
Last, we performed ChIP-seq against H3K27ac, a marker of

active enhancers and promoters in H1975 cells, as a complemen-
tary approach to measure gene regulatory changes. In H3K27ac
ChIP-seq data, we identified a very consistent pattern to ATAC-seq

Fig. 4 The AZD2811 AURKB inhibitor combination regimens with osimertinib delayed tumor regrowth in vivo. a Average tumor volume of
a patient derived xenograft LU5221 EGFR exon 19-deleted tumor regrowth model dosed with osimertinib or osimertinib in upfront
combination with AZD2811 (dosed IV 25mg/kg once weekly), or osimertinib monotherapy followed by AZD2811 combination (error is s.e.m.
and the legend significance is from a two-sided t test versus osimertinib monotherapy endpoint, p value * < 0.05, ** < 0.005, *** < 0.001).
b Percent confluency of an upfront knockdown of AURKB using two siRNAs in combination with osimertinib in H1975 cells (error is s.e.m. and
the legend significance is from a two-sided t test versus osimertinib non-targeting control endpoint, p value * < 0.05, ** < 0.005, *** < 0.001).
The dotted line indicates osimertinib washout.
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with gains and losses of H3K27ac levels in H1975 (Supplementary
Fig. 14A, B). Comparisons of H3K27ac versus RNA expression
revealed similar patterns to the comparisons with ATAC-seq
(Supplementary Fig. 14C). For example, the MEK activation gene
DUSP4, like in ATAC-seq, displayed decreased H3K27ac (Supple-
mentary Fig. 14D). Conversely, MEK compensatory resistance gene
SERPINE1 displayed a pattern consistent with a super-enhancer,
gaining accessibility and increasing H3K27ac levels (Supplemen-
tary Fig. 14E). In summary, we identified several chromatin-
mediated gene expression changes in osimertinib DTPs that were
robust across cell line models, including decreases to MAPK13,
EPCAM, DUSP4, PHLDA1, and ETV4 and increases to IGFBP3, MAP2,
and SERPINE1. The changes to MEK signatures suggest that
upfront combination with a MEK inhibitor may be more effective

than sequential dosing; because once the DTPs are established
there is an upregulation of MEK compensatory resistance genes.
Notably, we did not observe the MEK inhibitor selumetinib as a
combination hit in the sequential drug screens.

Hippo pathway regulatory switch is a characteristic of
osimertinib DTPs
In osimertinib DTPs we observed combination activity for TEAD
inhibitors and increased YAP gene expression signatures (Fig. 1e,
Fig. 3h). To further examine a role for Hippo pathway, we
performed transcription factor motif analysis on the ATAC-seq
regions that gained or lost chromatin accessibility. In regions that
gained accessibility, we identified a robust enrichment of TEAD
motifs in all four cell lines (Fig. 6a, Supplementary Fig. 15A, B). We

Fig. 5 MEK gene signatures display chromatin-mediated gene expression changes in osimertinib DTPs. a Gene expression patterns for
MEK activation and MEK compensatory resistance genes (MEK activation 6 is a subset of MEK activation23,24. Gene expression log2TPM values
were Z-score normalized by cell line and patterns were identified by K-means clustering (K= 3) and subclustered by Euclidean distance.
b Upper: GVSA scores of MEK activation genes grouped by treatment (osimertinib DTPs versus DMSO, two-sided t test p value < 0.001).
Boxplot is quartiles with range bar as minimum or maximum value within 1.5 times the interquartile range. Lower: GVSA scores of MEK
compensatory resistance genes grouped by treatment (osimertinib DTPs versus DMSO, p value < 0.001). c Comparison of RNA-seq gene
expression fold changes (from cell line covariate analysis) versus consensus peak average fold changes across cell lines that changed
significantly in both assays (FDR < 0.005). Concordant up (dark red) genes change at least two-fold up in both assays, concordant down (dark
blue) do the opposite. MEK activation genes are dark green and MEK compensatory resistance genes are purple. d Genome browser view of
SERPINE1, an example MEK compensatory resistance gene, showing coordinated increased chromatin accessibility and increased RNA
expression (signal is normalized counts per million). e Western blot of PAI-1 (SERPINE1) protein in H1975 cells treated with osimertinib for
72 hours or 3 weeks to form DTPs with or without a 72 hour drug washout.
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also observed enrichment for GATA-family motifs in PC9 and
HCC2935, RUNX-family motifs in H1975, and SMAD-family motifs
in H1975 and HCC2935 (Fig. 6a, Supplementary Fig. 15A, B).
Decreased accessibility regions displayed more consistency with
AP-1 motifs components, such as FOS and JUN, and forkhead
motifs, such as FOXA1 and FOXM1, displaying top enrichments
across cell lines (Supplementary Fig. 15C–E). Causal Reasoning also
identified the TEAD co-factor YAP1 to increase (Pollard p value=
0.00056), suggesting increased activity of YAP1 and TEAD in
osimertinib DTPs (Fig. 6b).
Causal Reasoning led us to hypothesize that Hippo pathway

might turn off in osimertinib DTPs leading to YAP depho-
sphorylation, translocation to the nucleus, and increased YAP
and TEAD activity. Consistent with Hippo pathway turning off,
upfront knockout of TEAD using a CRISPR guide targeting a
conserved region of TEAD1-4 in DTPs led to decreased confluency
after osimertinib withdrawal (Fig. 6c, Supplementary Fig. 15F–H).
We also examined YAP protein nuclear localization using
immunofluorescence in H1975 and HCC827 osimertinib DTPs.
We observed significantly higher percentage of nuclear YAP
protein in both HCC827 and H1975 osimertinib DTPs when
compared to DMSO (Fig. 6d, e, Supplementary Fig. 15I, J).
However, we noted that there were cell line differences in
baseline YAP expression. In HCC827 osimertinib DTPs, YAP protein
has low baseline expression and total YAP protein is increased,
whereas in H1975 total YAP protein only increased modestly from

higher baseline levels (Supplementary Fig. 15K). While total YAP
levels display cell line differences, percent nuclear YAP protein
increased in both cell lines, suggesting more YAP co-factor activity
in osimertinib DTPs. As an independent approach, we confirmed
in HCC827 that YAP nuclear localization increased, and cytoplas-
mic localization decreased using subcellular fractionation (Supple-
mentary Fig. 15L). Taken together, these data and the drug screen
provide compelling evidence for inactivation of Hippo pathway in
osimertinib DTPs resulting in vulnerability to TEAD inhibition.

DISCUSSION
Drug tolerance in cancer models was characterized by Sharma
et al. over a decade ago and the term “drug-tolerant persisters
(DTPs)” was used to describe these cells3. The DTP cell state was
shown to be reversible; DTPs reestablish proliferative capacity
after a drug holiday and respond to a drug rechallenge. DTPs are
also marked by chromatin-mediated changes and driven by a
nongenetic survival mechanism. In the clinical setting, DTPs are
hypothesized to be a minimal therapy insensitive disease state
that could be a founder cell population for drug resistance4,26. A
better understanding of osimertinib DTPs could inform rationale
selection of drug combinations to drive deeper responses and
prevent drug resistance in the clinic.
In this study, we characterized the gene regulatory landscape of

osimertinib DTPs using ATAC-seq and RNA-seq and identified

Fig. 6 The Hippo pathway turns off in osimertinib DTPs. a TEAD transcription factor motifs were enriched for gained accessibility peaks in
ATAC-seq (top 15 selected by lowest FDR, label is FDR value) in H1975 osimertinib DTPs. b YAP1 was inferred to have increased transcription
factor activity in osimertinib DTPs (Pollard p value= 0.00056) by Causal Reasoning analysis of genes upregulated in DTPs versus acute
treatment (cell line covariate RNA-seq comparison). The edge color shows expected direction, node fill shows observed direction, and the
node outline displays whether expected matches the observed direction. c PC9 cell confluency for cells treated with osimertinib in
combination with upfront knockout of pan-TEAD (CRISPR guide designed against conserved region of TEAD1-4) followed by drug washout
(dotted line). Error is s.e.m. and the legend significance is from a two-sided t-test versus osimertinib sgControl endpoint (p value * < 0.05,
** < 0.005, *** < 0.001). d Representative images of YAP nuclear immunofluorescence in HCC827 treated with osimertinib for 72 hours,
osimertinib DTPs, or osimertinib DTPs with or without a 72 hour washout. e Quantitation of the percentage YAP nuclear immunofluorescence
(YAP nuclear/ total YAP) in HCC827 treated with osimertinib for 72 hours, osimertinib for 16 days to form DTPs, or osimertinib DTPs with or
without a 72 hour washout (two-sided Wilcoxon signed-rank test, p value **** < 0.0001).
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therapeutic drug vulnerabilities using drug combination screens.
One key component of this study was the use of multiple EGFRm
NSCLC models, which enabled identification of robust changes in
DTPs. Another distinction was that we could disentangle DTP-
specific changes from cell cycle effects by including a 24 hour
acute osimertinib treatment in the RNA-seq. In the ATAC-seq, we
identified that osimertinib DTPs displayed gains and losses to
chromatin accessibility. We observed that decreased chromatin
accessibility regions displayed more robust fold changes than
gains, consistent with prior studies that described an increased
repressive state in DTPs12. Guler et al. also described that the
increased repressive state of DTPs does not change the total
number of unique genes expressed. In our study, this can be
explained by increased gene expression observed from SMAD
signaling, YAP signatures, and EMT-related pathways while cell
cycle and MAPK signaling are turned off.
We identified several genes with concordant chromatin-

mediated gene expression changes including genes in MEK
signatures. For example, SERPINE1, a MEK compensatory resis-
tance gene was upregulated, whereas the MEK activation genes
ETV4, DUSP4, and PHLDA1 were downregulated. The increase in
MEK compensatory resistance genes in DTPs may explain why
sequential dosing of osimertinib with the MEK inhibitor selume-
tinib was less effective than upfront drug combinations. Beyond
MEK signatures, we identified the gene MAPK13, which encodes
p38δ protein, to be concordantly downregulated in osimertinib
DTPs. The protein p38δ is an important stress response kinase
with context-specific tumor suppressive or tumor promoting
roles27,28. In line with previous reports that show loss of p38δ
might counteract stress-triggered cell death27,28, we observed
p38δ protein levels decrease in osimertinib DTPs. Overall, we
identified multiple robust chromatin-mediated gene expression
changes, that could be further validated for potential use as
marker genes for in vivo identification of osimertinib DTPs.
Beyond defining concordant gene regulatory changes, we

applied integrative network and pathway methods to identify YAP
signatures, SMAD signaling, and epithelial-to-mesenchymal transi-
tion (EMT) signatures as features upregulated in osimertinib DTPs.
Notably, both Hippo pathway and SMAD signaling have previously
been described to play a role in EMT phenotypes and cellular
plasticity associated with cancer metastasis, so many of these
changes may be inter-related29,30. Western blot and immuno-
fluorescence data supported the importance of these pathways,
with increased levels of phosphorylated SMAD1-3, increased levels
of EMT-related transcription factor SLUG (SNAI2) and increased
YAP1 nuclear localization found in osimertinib DTPs.
We also performed systematic drug screens for osimertinib

DTPs using two assay formats. In the expanded screen we
included testing in seven EGFRm NSCLC models. Again, the use of
multiple cell lines enabled the identification of inhibitors with
robust combination activity. Importantly, the drug screen inde-
pendently identified several promising combinations with EGFR
inhibitors previously reported including AURKB, MEK, TEAD, and
TNKS inhibitors13,17,22. We validated the AZD2811 AURKB combi-
nation benefit in vivo in two of three models tested, with robust
delayed tumor regrowth observed in an upfront drug combina-
tion. We also found that siRNA knockdown of AURKB reduced cell
confluency of osimertinib DTPs indicating combination benefit
was likely driven by the direct target of AZD2811.
We also identified sequential drug combination partners with

osimertinib, including the BRD4 inhibitor AZD5153. Knockdown of
BRD4 also produced a comparable response in DTP cells. Further
exploration of combination regimens in vitro found that osimerti-
nib followed by AZD5153 in combination with osimertinib showed
the most robust prevention of DTP regrowth. Similar observations
were made in vivo using an H1975 xenograft model with delayed
tumor regrowth observed using 2.5 mg/kg AZD5153 in combina-
tion with osimertinib, but not at lower doses of 0.5mg/kg

AZD5153. The CTG-2531 PDX model, however, responded to a
combination of 0.5mg/kg AZD5153 and osimertinib, which
suggests a varied response by model at lower AZD5153 doses.
All these monotherapy and combination doses were well tolerated
in mice. However, clinical tolerability of AZD5153, up to 30mg
once per day31, suggests that the lower doses may be more
applicable and that translation of the combination with AZD5153
may be a challenge due to dose-limiting toxicities observed for
AZD5153 in the clinic. Together, these efforts identified several
promising vulnerabilities, including a dose-dependent vulnerability
to BRD4 inhibition, that warrant further study.
Recently, other studies have highlighted the Hippo Pathway as

one mechanism underpinning DTP survival, consistent with the
activity we observed for the TEAD inhibitor K-975. In melanoma
cells, DTP-associated transcriptional changes to BRAF inhibitors
were partially mediated by transcription factor activity including
TEAD32. Kurppa et al. also reported that YAP-mediated transcrip-
tional changes rewired apoptotic pathway to mediate survival of
combined EGFR/MEK inhibited DTPs13. Kurppa et al. suggest that
MEK inhibition combined with EGFR inhibition is needed to
observe the changes to the Hippo pathway in DTPs. In our study,
EGFR suppression alone seemed to be sufficient to cause a
vulnerability to TEAD inhibition in some cell lines. Our data show
there may also be cell line variation in the tendency of osimertinib
DTPs to rely on Hippo pathway for survival, with differences
observed in YAP baseline levels between HCC827 and H1975.
Collectively, our study and others highlights TEAD as a vulner-
ability in osimertinib DTPs and the need for further study of
potential crosstalk between Hippo and MAPK signaling.
The DTP state is considered to be an active transition4 that is

chromatin-mediated and was previously found to be sensitive to
HDAC inhibition3. Our screens also identified several epigenetic
inhibitors as DTP vulnerabilities including the HDAC inhibitor
quisinostat and the BRD4 inhibitor AZD5153. This is consistent with
an important role for chromatin-mediated changes in regulating
the DTP state33. We showed using ATAC-seq that AZD5153-
treatment induced chromatin accessibility changes in osimertinib
DTPs. We also found that BIM upregulation played a role in the
decreased cell confluency observed for AZD5153-treated osimerti-
nib DTPs. However, more study is necessary to determine how
BRD4-mediated chromatin changes, in certain cell lines such as
PC9, cause osimertinib DTPs to upregulate BIM. One interesting
observation was that AZD5153 displayed robust combination
activity when dosed sequentially. This highlights the need for
better time-resolved and single-cell studies to understand the
heterogeneity and timing of chromatin-mediated adaptation.
Notably, recent single-cell efforts have described metabolic
reprogramming in osimertinib DTPs and an increased reliance on
fatty acid oxidation34. Chromatin modifying enzymes are impacted
by the availability of co-factor metabolites, and chromatin and
metabolic reprogramming of DTPs may also be linked.
In summary, this study highlights several key gene regulatory

features and pathways modulated in osimertinib DTPs and
multiple potential therapeutic drug combinations to target DTPs
including MEK, TEAD, AURKB, and BRD4 inhibitors that warrant
further mechanistic study.

METHODS
Cell lines
PC9, H1975, HCC827, II-18, HCC4006, HCC2279, and HCC2935
human NSCLC adenocarcinoma cells were obtained from Amer-
ican Type Culture Center and were grown in RPMI 1640,
supplemented with 10% FBS, 2 mM L-glutamine, and 1%
penicillin-streptomycin. All cells were maintained and propagated
as monolayer cultures at 37 °C in a humidified 5% CO2 incubator.
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DTP compound screen
The doses of compounds in the screen were selected as the highest
dose which did not significantly inhibit the parental cells (>50%) as a
monotherapy, or 1 µM, whichever was lowest. To conduct the screen,
cells were plated at a density of 20,000–30,000 cells/well in 48-well
dishes. The following day (Day 0), cells were treated with compounds
at the indicated doses using an HP D300e digital dispenser with the
following dosing strategies: DMSO control or (A) test compound
monotherapy, (B) osimertinib monotherapy, (C) osimertinib and test
compound upfront combination, and (D) osimertinib monotherapy
step of a sequential combination. Cell growth was monitored
regularly using the IncuCyte live-cell imaging system (Sartorious)
using cell confluence as the endpoint. Wells were washed with PBS
and replaced with drug-containing medium every 3–4 days to
remove dead cells. When the experiment reached the established
DTP stage (10–21 days depending on the cell line and experiment),
the dosing strategy was altered as follows: (A) switched to drug-free
media, (B) switched to drug-free media, (C) upfront combination
switched to drug-free media, and (D) sequential combination
switched from osimertinib dosing to test compound. When
osimertinib monotherapy controls grew to full confluence after drug
removal, the experiment was concluded, at which time confluence
was plotted and Area Under the Curve (AUC) calculated using PRISM
software (Supplementary Data 1). A subset of compounds tested in
upfront and sequential screen had experimental triplicates, for these
compounds the median replicate AUC was used. Combination
activity was defined as the difference between AUC DTPs (B) and
AUC DTP combination (C, D). Hits in the screen were also required to
show at least twice the effect of monotherapy activity, defined as the
difference between AUC DMSO control and AUC monotherapy (A)
(Fig. 3a, Supplementary Data 2).

In vivo tumor studies
Animal studies were conducted in accordance with the AstraZe-
neca Global Bioethics policy or Institutional Animal Care and Use
Committee guidelines and reported following the ARRIVE (Animal
Research: Reporting In Vivo experiments) guidelines35. For all
studies, mice were older than 5 weeks at time of the study.
The 2.5mg/kg AZD5153 BRD4 inhibitor study was performed as

follows: 4 × 106 H1975 cells in 50% Matrigel (Corning) were
implanted subcutaneously (SC) into female NCr mice (Charles River
Laboratory, US). Tumors were allowed to grow to an average volume
of 125mm3 before randomization into treatment groups. Tumor
volume measurements were collected over time as described
previously36,37. Briefly we collected tumor volume as follows: tumor
volume was monitored twice weekly by bilateral calliper measure-
ments and volume was calculated using ellipsoid volume formula (π/
6 ×width2 × length). AZD5153 was formulated in 0.5% HPMC/0.1%
Tween80 and administered by oral gavage once daily (QD) at 10mL/
kg final dose volume for monotherapy and 5mL/kg final dose
volume for combination treatment. Osimertinib was formulated in
0.5% HPMC and administered by oral gavage once daily (QD) at
10mL/kg final dose volume for monotherapy and 5mL/kg final dose
volume for combination treatment.
The LU5221 study was performed as follows: Female NSG (NOD.Cg-

Prkdcscid Il2rgtm1Wjl/SzJ) mice were purchased from Jackson
Laboratories (Bar Harbor ME). LU5221 EGFR Exon 19-deleted non-
small cell lung cancer PDX model was procured from Crown
Bioscience. The LU5221 PDX model is passaged by dissociation
utilizing Miltenyi Human Tumor Dissociation Kits (Miltenyi no. 130-
095-929) and a Miltenyi gentleMACS Octo Tissue Dissociator (Miltenyi
no. 130-096-427). Xenografts were established using 5 × 105 LU5221
tumor cells suspended in a mixture of PBS and Matrigel (50/50) and
implanted subcutaneously (SC) into the right flank of female NSG
mice. Mice were randomized based on tumor volumes and enrolled
when mean tumor size reached ~500mm3. Osimertinib was
formulated in 0.5% HPMC, adjusting for salt content and administered

by oral gavage once daily (QD) at 10mL/kg final dose volume.
AZD2811 was formulated in saline and administered intravenously
once weekly (QW) at 5mL/kg final dose volume. Tumor growth was
monitored twice weekly as was described in the previous study.
All other studies were performed as follows: PC9 and H1975

xenografts were established by subcutaneous implantation of
5 × 106 cells per animal, in 100 µl of cell suspension including 50%
Matrigel, into the dorsal left flank of female SCID or nude mice,
respectively. In the CTG-2531 (Champions Oncology) PDX models,
tumor fragments from donor mice inoculated with primary human
lung cancer tissues were harvested and inoculated subcutaneously
into the left of female nude mice. For PC9, H1975, and CTG-2531
studies tumor growth was monitored twice weekly as was
described in the study above. Mice were randomized based on
tumor volumes and enrolled when mean tumor size reached
~200mm3. For AZD5153 and osimertinib treatments, mice were
dosed as described above, except a final dose of 0.5 mg/kg
AZD5153 was used instead. For AZD2811 studies, mice were dosed
daily by oral gavage for the duration of the treatment period with
vehicle, 25mg/kg osimertinib and combination regimens used a
weekly intravenous gavage for the duration of the treatment
period with 25mg/kg weekly AZD2811 nanoparticle.

RNA-seq
The NSCLC EGFR mutant cell lines (PC9, H1975, HCC827, and
HCC2935) were treated with 500 nM osimertinib for 21 days
(osimertinib DTPs). Cells were either harvested immediately or
washed twice with PBS and then replaced with drug-free media
for a further 24 hours (short washout), or for a longer time point
(long washout) until exponential cell proliferation resumed (long
washout PC9: 7 days; H1975: 3 days; HCC827: 4 days; HCC2935:
10 days) and then harvested. In parallel, parental cell lines were
grown in drug-free media for 21 days then treated with 500 nM
osimertinib for 24 hours (osimertinib acute) or vehicle DMSO
control for 24 hours (DMSO control). Cells were lysed in RLT buffer
(Qiagen), and RNA extracted using the Qiacube HT according to
manufacturer’s instructions, and RNA concentration quantified
using the Qubit fluorometer. Illumina mRNA TruSeq library was
used and sequenced on an Illumina HiSeq 4000 with paired-end
150 bp reads by the Cancer Research UK Genomics Core Facility.

ATAC-seq
The NSCLC EGFR mutant cell lines (PC9, H1975, HCC827, and
HCC2935) were treated with 500 nM of osimertinib for 24 days
(osimertinib DTPs) or treated with 500 nM of osimertinib for 21 days
followed by 150 nM of AZD5153 for 3 days (osimertinib DTP
AZD5153 sequential combination). In parallel, parental cell lines were
grown in drug-free media for 21 days then treated with vehicle
DMSO control for 3 days (DMSO control). ATAC-seq was performed
as described previously38. Briefly we analyzed ATAC-seq as follows:
100,000 cells were cryopreserved in media containing 10% DMSO
and FBS. Cryopreserved cells were sent to ActiveMotif to perform
ATAC-seq. Cell pellets were resuspended, spun to pellet, and
subsequently tagmented using the Nextera Library Prep Kit
(Illumina). The MinElute PCR purification kit (Qiagen) was used to
purify the tagmented DNA. The tagmented DNA was amplified using
10 cycles of PCR. Agencourt AMPure SPRI beads (Beckman Coulter)
were used to purify the amplified DNA. The DNA yield was measured
by KAPA Library Quantification Kit (KAPA Biosystems) and then the
ATAC-seq libraries were sequenced with 42 bp paired-end reads on
an Illumina NextSeq 500.

ChIP-seq
H1975 cells were treated with 500 nM of osimertinib with same
treatment regimen and controls as was done for ATAC-seq. Cells
(10 million) were fixed with 1% formaldehyde for 15min and

SW Criscione et al.

10

npj Precision Oncology (2022)    95 Published in partnership with The Hormel Institute, University of Minnesota



quenched with 0.125 M glycine. Cells pellets were sent to Active
Motif to perform the ChIP-seq assay using their standard protocol.
Briefly, chromatin was isolated by the addition of lysis buffer,
followed by disruption with a Dounce homogenizer. Lysates were
sonicated and the DNA sheared to an average length of
300–500 bp. Genomic DNA (Input) was prepared by treating
aliquots of chromatin with RNase, proteinase K and heat for de-
crosslinking, followed by ethanol precipitation. Pellets were
resuspended and the resulting DNA was quantified on a NanoDrop
spectrophotometer. Extrapolation to the original chromatin
volume allowed quantitation of the total chromatin yield.
An aliquot of chromatin (30 µg) was precleared with protein A

agarose beads (Invitrogen). Genomic DNA regions of interest were
isolated using 4 µl of antibody against H3K27ac (Active Motif cat#
39133, lot# 16119013). Complexes were washed, eluted from the
beads with SDS buffer, and subjected to RNase and proteinase K
treatment. Crosslinks were reversed by incubation overnight at
65 °C, and ChIP DNA was purified by phenol-chloroform extraction
and ethanol precipitation. Quantitative PCR (qPCR) reactions were
carried out in triplicate on specific genomic regions using SYBR
Green Supermix (Bio-Rad). The resulting signals were normalized
for primer efficiency by carrying out qPCR for each primer pair
using Input DNA. lllumina sequencing libraries were prepared
from the ChIP and input DNA by the standard consecutive
enzymatic steps of end-polishing, dA-addition, and adaptor
ligation. After a final PCR amplification step, the resulting DNA
libraries were quantified and sequenced with 75 bp single-end
reads on an Illumina NextSeq 500.

Western blots
Cell lines were treated with osimertinib for 72 hours or 2–3 weeks to
form DTPs with and without a 72 hour drug removal washout. Cells
were scraped and lysed with 1% SDS buffer or by NE-PER Nuclear
and Cytoplasmic Extraction Reagents (ThermoFisher) when subcel-
lular fractions were done. Protein lysates were normalized after BCA
protein quantification (ThermoFisher) and combined with NuPage
containing Sample Reducing Agent (ThermoFisher) sample buffer.
Protein lysates were separated in 4–20% TGX gels (Bio-Rad),
transferred to PVDF membrane (Invitrogen), blocked, and probed
overnight with primary antibodies (Supplementary Table 3). Bands
were visualized with secondary antibodies (Li-Cor, Lincoln, NE) and
imaged using an Odyssey Fc system (Li-Cor), or by HRP secondary
antibodies (Cell Signaling) imaged using an Amersham 600 Imager
(GE Healthcare) or with Amersham Hyperfilm. All blot sets were
derived from the same experiment and processed in parallel. The
uncropped Western blots are contained in Supplementary Figs.
16–19. Western Blot antibody vendor, item number, and dilutions are
available in Supplementary Table 3.

Immunofluorescence
Parental cells were seeded next to DTP cells after 2–3 weeks
generation in a CellCarrierUltra 96-well plate (PerkinElmer). DTP cells
and parental cells were then either dosed for 72 hours with
osimertinib or DMSO vehicle. Plates were fixed with paraformalde-
hyde and blocked with 1% BSA/0.3% TritonX-100 in PBS. Primary
antibodies for YAP Alexa Fluor 488 (Abcam) were added at 1:100
dilution for cold overnight incubation. Nuclei were visualized by
Hoechst 33342 stain (Abcam). Protein detection was imaged by an
Operetta CLS High-Content Analysis System (PerkinElmer) and
nuclear versus cytoplasm fractions were quantified using the
Harmony 4.9 software. Nuclear YAP percentage was calculated as
the percent nuclear YAP fraction versus total nuclear and cytoplasmic
YAP signal for individual cells.

RNA-seq data analysis
RNA-seq was analyzed as previously described39. Briefly we
analyzed RNA-seq as follows: we used the toolkit bcbio (https://
github.com/bcbio/bcbio-nextgen) to implement an RNA-seq
analysis pipeline using human hg38 reference genome and
hg38 Ensembl transcripts (Ensembl version 79). We aligned RNA-
seq data to human hg38 reference genome using HISAT2 (ver.
2.1.0)40. Standard data quality metrics were examined with FastQC
(https://github.com/s-andrews/FastQC) and multiQC41. All experi-
mental samples passed standard data quality metrics (Supple-
mentary Table 1). Ensembl transcripts were quantified from RNA-
seq reads using Salmon (ver. 0.8.2)42. The R package tximport was
used to create a gene by sample matrix of salmon gene counts
(using option countsFromAbundance= “lengthScaledTPM”) and a
log2 transcripts per million, log2(TPM+ 0.01), abundance matrix43.
The tximport step aggregated protein coding gene RNA expres-
sion with detectable expression in at least two samples.
The Voom and Limma R package were used to conduct differential

gene expression analysis on the gene counts matrix44. Differential
pathway analysis on RNA-seq gene expression was performed using
gene set variation analysis (GSVA) and Limma R package using a
curated subset of the Molecular Signatures Database (MSigDB: C2,
C3, C5, and C6)45,46. For hypergeometric pathway enrichment
clusterProfiler was used instead47. For both differential gene and
pathway analysis we compared drug treatments using experimental
contrasts within each cell line or across cell lines using a covariate
(with model equation ~0 + treatment + cell line). The analysis
determines log2 fold changes and FDR adjusted p values for genes or
pathways within a cell line, or in the case of covariate analysis across
cell lines. For the cell line comparisons, we also looked for genes that
changed significantly in any comparison using a moderated
F-statistic as described in the Limma vignette.

ATAC-seq data analysis
ATAC-seq analysis was performed using the toolkit bcbio (https://
github.com/bcbio/bcbio-nextgen) with the hg38 reference genome.
Briefly, reads were aligned to hg38 using bwa mem (version 0.7.17).
Mitochondrial reads were removed, and alignments were sorted
(samtools v1.9), deduplicated (biobambam v2.0.87 bamsormadup),
and tn5-shifted (deeptools v3.4 alignmentSieve). ATAC-seq data
quality was addressed with FastQC (https://github.com/s-andrews/
FastQC), multiQC, and ataqv41,48 (Supplementary Table 2). Fragments
smaller than 100 bp were extracted to generate a nucleosome free
(NF) alignment bam file used for consensus peak calling. Narrow-
Peaks were called using MACS2 (v2.2.6) for both NF aligned reads
and separately for all aligned reads49. Consensus peaks were
determined as described in Corces et al.50. Briefly, for all NF
NarrowPeaks, a 500 bp window was selected around each peak
summit. A set of non-overlapping consensus peaks were determined
using the maximal scoring peaks as calculated by MACS2 (BEDOPS
v2.451). Consensus peak counts were then determined using
featureCounts (v2.0.0) counting mapped reads under consensus
peak regions52. Consensus peak counts were filtered by requiring a
maximum log2 counter per million ≥ 2 in any experimental group
and peaks called in triplicate in at least one experimental group
(removing low depth and non-reproducible peaks). Lastly, we
annotated peaks with nearest gene using ChIPseeker and focused
downstream analysis on peaks within 100 kilobase pair of a gene
transcription start site53. Bigwig signal files of normalized counts per
million were also generated using deeptools bamCoverage (v3.4)54.

ChIP-seq data analysis
ChIP-seq analysis was performed as described for ATAC-seq with
the following changes, alignments were not Tn5-shifted, and all
alignments were used for MACS2 NarrowPeaks peak calling with
IgG sample as a control.
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Downstream and integrative analysis of ChIP/ATAC-seq
Differential peak analysis of ChIP-seq and ATAC-seq was performed
using the Voom and Limma R package44. Cross cell line meta-
analysis of H1975, PC9, and HCC2935 differential ATAC-seq peaks
was done by intersecting the differential results for individual cell
lines using Genomic Ranges55. Intersected meta-analysis of ATAC-
seq peaks were summarized, for peaks changing consistently
across the three cell lines, by their average fold change and
combined adjusted p value using Fisher’s method. We compared
ChIP-seq and ATAC-seq to RNA-seq by comparing the fold changes
of significant differential peaks, to the fold changes of significantly
changing gene expression, for the nearest gene. Pathway analysis
on ATAC-seq was done using hypergeometric test using Cluster-
Profiler47. Comparison of differential or consensus peaks to
ENCODE SCREEN repository of regulatory elements was done by
performing overlaps using Genomic Ranges56.

Causal reasoning analysis
Causal Reasoning analysis was implemented using a commercially
available R toolkit called Computational Biology Methods for Drug
Discovery (CBDD, Clarivate Analytics, v16.1.0)57. MetaBase, a
manually curated database (also from Clarivate Analytics) was
used as the knowledgebase for causal inference. The top 500
differentially expressed genes, ranked by lowest FDR value in the
osimertinib DTPs versus acute comparison were used as input.
Transcriptional regulators immediately upstream of the observed
gene expression changes (one level up from downstream gene)
were prioritized from causal reasoning analysis.

ActivePathway analysis
The list of differentially expressed genes (RNA-seq) or differentially
accessible peaks (ATAC-seq) in the osimertinib DTP vs. DMSO
comparison were filtered to an effect size of at least two-fold
change and adjusted p value of less than 0.005. The resulting lists
were merged and used as input to ActivePathways versus a
curated list of pathway signatures (MSigDB: C2, C3, C5, and C6)14.
Results were visualized using Cytoscape58.

TEAD reporter assay
Commercially available MCF7 cells containing a luciferase TEAD
reporter were acquired from BPS Bioscience and used per the
vendor’s instructions. Briefly, cells were seeded in white 96-well
plates and incubated overnight. Cells were treated with drugs as
indicated for 72 hours. Cells were lysed and luciferase was
detected using Bright-Glo (Promega) and detected with a Neo
Synergy plate reader (BioTek).

Knockout/knockdown validation
CRISPR Cas9 (Life Technologies) and TEAD gRNA (5’-TCAGAC-
GAGGGCAAGATGTA-3’ custom sequence covering TEAD1-4) or
BCL2L11 gRNA (#1 5’-TTCTGATGCAGCTTCCATG-3’, #2 5’-GCAGGTT
CAGCCTGCC-3’), BRD4 siRNAs (Horizon Discovery LQ-004937-00-
0020, siRNA#1: J-004937-06 and siRNA#2: J004937-08, targeting
BRD4 Entrez ID 23476, sequences not disclosed), or AURKB siRNA
(s17611 4392421 targeting CTACAACTATTTTTATGACCG and
s17612 4390826 targeting GTGGACCTAA AGTTCCCCGCT, Ambion)
were added to cells prior to electroporation. For BRD4, DTP cells
were generated by 16-day 500 nM osimertinib treatment prior to
adding reagents and electroporation. Electroporation was per-
formed in a 4D Nucleofector (Lonza) with the EN-150 program and
SG buffer. Cells were diluted in recovery medium and seeded into
96-well plates for IncuCyte experiments or 6-well plates for
efficiency detection.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The RNA-seq, ATAC-seq, and ChIP-seq data used in this study are available through
the NCBI GEO database under accession code GSE193259. The remaining data used
in this study, including drug screens results, are available in the supporting
Supplementary Data.

CODE AVAILABILITY
No custom code was used in this study. RNA-seq was analyzed using bcbio (v1.2.3),
HISAT2 (v2.1.0), Salmon (v0.8.2), and Limma, Voom, ActivePathways, and ClusterPro-
filer R packages. ChIP-seq and ATAC-seq were analyzed using bcbio (v1.2.3), bwa
mem (v0.7.17), samtools (v1.9), biobambam (v2.0.87), deeptools (v3.4), MACS2
(v2.2.6), BEDOPS (v2.4), featureCounts (v2.0.0), ChIPseeker (v1.29.1) and Limma,
Voom, ActivePathways, and ClusterProfiler R packages. All statistical analyses were
performed in R version 4.1.1.
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