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SRC-RAC1 signaling drives drug resistance to BRAF
inhibition in de-differentiated cutaneous melanomas
Eliot Y. Zhu1,2,3,4, Jesse D. Riordan1,2, Marion Vanneste2,5, Michael D. Henry2,5, Christopher S. Stipp2,6 and Adam J. Dupuy 1,2✉

Rare gain-of-function mutations in RAC1 drive drug resistance to targeted BRAF inhibition in cutaneous melanoma. Here, we show that
wildtype RAC1 is a critical driver of growth and drug resistance, but only in a subset of melanomas with elevated markers of de-
differentiation. Similarly, SRC inhibition also selectively sensitized de-differentiated melanomas to BRAF inhibition. One possible
mechanism may be the suppression of the de-differentiated state, as SRC and RAC1 maintained markers of de-differentiation in human
melanoma cells. The functional differences between melanoma subtypes suggest that the clinical management of cutaneous melanoma
can be enhanced by the knowledge of differentiation status. To simplify the task of classification, we developed a binary classification
strategy based on a small set of ten genes. Using this gene set, we reliably determined the differentiation status previously defined by
hundreds of genes. Overall, our study informs strategies that enhance the precision of BRAFi by discovering unique vulnerabilities of the
de-differentiated cutaneous melanoma subtype and creating a practical method to resolve differentiation status.
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INTRODUCTION
Cutaneous melanoma largely depends on MAPK-signaling, with
roughly half of patients harboring the V600E/K activating mutation
in BRAF protein. Targeted inhibition of oncogenic BRAFV600 along
with MEK, which is directly downstream of BRAF, is a mainstay of
treatment for cutaneous melanoma with mutated BRAF. However,
clinical response is not uniform, and most patients progress within
two years of treatment1. A potential mechanism of drug resistance
is through RAC1, a member of the Rho family of small signaling
GTPases. RAC1 is a signaling hub and contributes to many
biological processes2. Hyperactive RAC1, for example, RAC1P29S, is a
previously-described driver of drug resistance to BRAF inhibition
(BRAFi)3–6. However, this mutation is rare—present in around 5% of
samples in the 448 TCGA skin cutaneous melanoma samples7,8.
Nonetheless, heterogeneity in the degree of RAC1 signaling may
explain the variation in response to BRAFi. For instance, we have
previously demonstrated that amplifying RAC1 signaling through
overexpression of its GEF, VAV1, drives drug resistance to BRAFi in
cutaneous melanoma. We have also shown that RAC1 expression
can be used to predict response to BRAFi9–11.
The mechanism by which RAC1 drives resistance to BRAFi is not

fully understood. PAK1, RAC1’s canonical downstream target, has
been described to drive drug resistance12. Alternatively, RAC1
drives the formation of dendritic actin, which leads to decreased
dependence on MAPK in cutaneous melanoma6. RAC1’s ability to
regulate actin is consistent with RAC1’s ability to elicit a
mesenchymal switch in cutaneous melanoma through the
recruitment of the SRF/MRTF transcription factor, whose activity
is regulated by actin dynamics13. SRF/MRTF cooperate with other
master regulators of the mesenchymal program and have been
implicated in drug resistance to BRAFi14. While melanoma cells are
neither epithelial nor mesenchymal, they can be classified based
on the expression programs that typify these states15,16. Mesench-
ymal melanomas, driven by various mesenchymal-related

transcriptional factors, such as Zeb1, TGF-β, AP-1, and Yap/Taz,
have been shown to be more resistant to BRAFi13,17–21. These
observations led us to speculate that wildtype RAC1 signaling can
drive innate resistance to BRAFi.
We found that RAC1 is a driver of growth and innate drug

resistance to BRAFi in some melanoma cell lines and that the
reliance on RAC1 was associated with the de-differentiated
phenotypic state. De-differentiation was also predictive of response
to the co-inhibition of SRC and BRAF. We shed light on this
connection by showing that RAC1 and SRC critically maintain
melanoma de-differentiation. While our study is focused on drug
resistance to BRAFi, our findings could also inform strategies that
overcome drug resistance to immune checkpoint inhibition (ICI). The
association between de-differentiation and ICI-resistance has been
emphasized in several studies22,23. Given that SRC and RAC1
maintain de-differentiation, it remains to be seen whether targeting
these pathways could also influence sensitivity to ICI.
The unique vulnerabilities of the de-differentiated subtype may

inform strategies that sensitize these melanomas to BRAFi or ICI.
Unfortunately, prior reports identify de-differentiated melanomas
using large gene sets derived from transcriptome analysis15,16,24,25.
This approach is not readily translated to a clinical setting where
pathological subclassification of tumors typically relies on a small
number of markers. To address this limitation, we construct a binary
classification using a small set of genes based on melanocyte
differentiation. We evaluate the accuracy and clinical relevancy of our
classification strategy using cell line and patient datasets.

RESULTS
RAC1 drives growth of melanoma cells in standard conditions
or during BRAF inhibition
To test the importance of RAC1 for drug resistance, we knocked
down RAC1 in a panel of nine BRAFV600E cutaneous melanoma cell
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lines and assessed their growth in the presence or absence of a
targeted inhibitor of BRAFV600E, vemurafenib (VEM). Most of the
cell lines we studied belonged to the NCI-60 panel. Three cell lines,
PDX10, vRPP1, and vRPP3 were generated in-house (see
“Methods”). Importantly vRPP1 and vRPP3 are VEM-resistant
derivatives of A375. vRPP3 served as a positive control as it
harbors a heterozygous N92I mutation in RAC1, confirmed via
Sanger sequencing (Supplementary Fig. 1a). N92I is a known gain-
of-function mutation for RAC14,26. We confirmed that RAC1N92I

drives drug resistance to VEM as does RAC1P29S (Supplementary
Fig. 1b). vRPP1 has wildtype RAC1. Another important considera-
tion is that neither vRPP1 nor vRPP3 harbor NRAS mutations or
BRAF genomic alterations, which drive drug resistance through
MAPK-reactivation9,27. Lastly, the panel of cell lines we profiled
differed in their sensitivity to BRAFi. RPMI7951, A2058, vRPP1,
vRPP3 were among the most drug-resistant and proliferated even
in >1 μM of VEM (Supplementary Fig. 2).
Knockdown of RAC1 was confirmed via western blot. We

achieved variable knockdown in the panel of cell lines (Fig. 1a, b).
However, the growth of the intrinsically drug-resistant melanomas
(A2058, RPMI7951, vRPP1, and vRPP3) was reduced by RAC1-
knockdown either in standard conditions (RPMI7951, vRPP1,
vRPP3) and/or during BRAFi (A2058, vRPP3). Among the BRAFi-
sensitive cell lines, only two out of the five cell lines (A375 and
451Lu) were further sensitized to VEM by RAC1-knockdown
(Fig. 1c and Supplementary Figs. 2 and 3).
To determine if this result was reproducible, we repeated the

knockdown of RAC1 with the same shRNA and another RAC1-
targeting shRNA and determined the impact of RAC1-knockdown
using a dose-response assay. We performed this experiment on six
cell lines used previously (A2058, 451Lu, A375, SKMEL28, UACC257,
and PDX10). Again, we achieved variable RAC1-knockdown across
the panel of cell lines (Fig. 1d). Nonetheless, the outcome of the
dose-response experiments was consistent with our prior observa-
tion that RAC1-knockdown sensitized a subset of cutaneous
melanomas to BRAFi (Fig. 1c, e). Finally, we expressed an shRNA-
resistant form of RAC1 in A375 expressing either RAC1-KD1 or
RAC1-KD2 shRNAs. The shRNA-resistant cDNA rescued RAC1
protein levels and increased drug resistance to BRAFi (Fig. 1f).
We were curious why some of the melanoma cell lines we

studied were not sensitized to BRAFi upon RAC1-knockdown.
Hyperactive RAC1-signaling is a well-established driver of drug
resistance, but we wondered if this mechanism works in the cell
lines where RAC1-knockdown had minimal impact on cell
proliferation. To test this, we enforced expression of hyperactive
RAC1, RAC1P29S, in the three melanoma cell lines (SKMEL28,
UACC257, PDX10) where RAC1-knockdown had little impact. As
positive controls, we also expressed RAC1P29S in two BRAFi-
sensitive melanomas (A375 and 451Lu) in which RAC1-knockdown
did impact sensitivity to BRAFi. We confirmed enforced expression
via western blot (Fig. 2a, b). To determine whether the modified
cell lines have increased RAC1-signaling, we measured levels of
p-MEK_S298 in parental empty vector and modified cell lines. The
S298 site on MEK is a well-established target of PAK1, which is a
direct target of RAC128,29. Indeed, this marker of PAK1 activity was
elevated in cell lines with enforced expression of RAC1P29S relative
to that of empty vector (Fig. 2a, b). We found that RAC1P29S could
drive BRAFi resistance in all five melanoma cell lines (Fig. 2c).
However, RAC1P29S unexpectedly slowed the growth of three
melanomas that were not impacted by RAC1-depletion (Fig. 2c).
RAC1P29S also greatly altered the morphology of these three
melanoma lines (Supplementary Fig. 4).
Overall, these data highlight the importance of RAC1 in driving

growth or innate drug resistance to BRAFi in cutaneous melanoma
cells. Moreover, our findings suggests that melanomas differ with
respect to utilization of RAC1-signaling.

Reliance on RAC1 is linked to melanoma differentiation
Several studies have identified gene expression signatures
correlated with clinical outcomes in cutaneous melanoma patients.
Notably, the de-differentiated melanoma subtype typified by a
MITFlo/AXLhi or MITFlo/NGFRhi transcriptional state is well-described
to be more resistant to BRAFi16,30–36. To determine whether these
subtypes relate to RAC1-dependence, we queried CCLE gene
expression data for markers of melanocyte differentiation and de-
differentiation in the cell lines we studied (Fig. 3a). AXL, EGFR, and
WNT5A are markers and/or drivers that are elevated in inherently
drug-resistant cutaneous melanomas19,35,37–39. Indeed, the cell
lines affected by RAC1-knockdown showed elevated expression of
de-differentiated genes and decreased expression of melanocyte
differentiation genes.
To find other markers of the de-differentiated state, we mined

RPPA protein array data and identified proteins that separated de-
differentiated from differentiated melanomas. We found that Cav1
and E-cadherin (CDH1) were upregulated in de-differentiated or
differentiated melanomas, respectively (Supplementary Fig. 5a, b).
E-cadherin is under the direct control of MITF, while CAV1 is a
downstream target of the TEAD family of transcription factors40,41.
Next, we estimated the melanoma differentiation states of the cell
lines we studied by western blot. We found that the cell lines that
depended on RAC1 in the presence and/or absence of BRAFi had
elevated Cav1 and AXL and no E-cadherin (Fig. 3b).
Lastly, we wondered whether intrinsic or enforced

RAC1 signaling regulates melanoma differentiation. We found
that knockdown of RAC1 decreased AXL and/or Cav1 (Fig. 3c).
Conversely, overexpression of RAC1P29S increased these genes in
both differentiated and de-differentiated melanomas (Fig. 3d). The
latter observation has been previously demonstrated in mouse
melanocytes13. To further interrogate the role of RAC1 in
maintaining de-differentiation, we performed RNAseq on A375
and 451Lu with shRNA-depleted RAC1 and respective controls
(Supplementary Data). Interestingly, depleting RAC1 resulted in
the downregulation of several previously reported markers of de-
differentiation (Fig. 3e). Globally, genes differentially expressed
upon RAC1-knockdown negatively enriched for the Undifferen-
tiated melanoma gene set defined by Tsoi et al. (Fig. 3f). RAC1-
knockdown also influenced other pathways as demonstrated by
enrichment of GSEA Hallmark gene sets shown in Fig. 3g.
Overall, these findings suggest that even without gain-of-

function mutations. RAC1 helps de-differentiated melanomas
grow and/or withstand BRAFi and helps maintain the de-
differentiated state.

RAC1-dependence is correlated with distinct pharmacologic
vulnerabilities
Our results imply that de-differentiated melanomas would be
vulnerable to compounds that inhibit RAC1. Unfortunately, RAC1
is a small signaling GTPase and cannot be targeted directly due to
the lack of specificity and/or potency of proposed strategies42.
Instead, we sought to indirectly inhibit RAC1 signaling by blocking
upstream or downstream components of RAC1 signaling. We
narrowed our focus on drugs that have been previously reported
to sensitize melanomas to BRAFi9,10,17,20,32,43–46. These included
saracatinib, JNK-IN-8, and MK-2206, which are selective inhibitors
of SRC kinases, Akt, and JNK, respectively. We also included
Fasudil, a ROCK inhibitor, since Rho signaling has also been linked
to BRAFi resistance14. We treated four de-differentiated and three
differentiated melanomas with VEM alone or in combination with
the inhibitors mentioned above. We found that only de-
differentiated cell lines were sensitized to BRAFi by SRC inhibition
(SRCi), while the differentiated melanomas only showed a modest
decrease in the AUC compared to that of VEM alone (Fig. 4a, b and
Supplementary Fig. 6).
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To inform the mechanism by which SRCi sensitizes melanoma
cells to BRAFi, we performed RNAseq on A375 treated with 1 uM
saracatinib (Supplementary Data). The genes differentially expressed
upon SRCi negatively enriched for the Tsoi undifferentiated gene

set. These genes were also negatively enriched for a set of genes
downregulated by RAC1-knockdown in both A375 and 451Lu. We
call this collection of genes the RAC1-responsive gene set (Fig. 4c
and Supplementary Data). Only genes with absolute log2FC

Fig. 1 RAC1 signaling is a non-uniform driver of growth and drug resistance to BRAFi. a Western blot of RAC1 in cell lines transduced with
RAC1-shRNA or non-targeting control. Color emphasizes that vRPP1 and vRPP3 are sublines of A375 (NT non-targeting, KD knockdown).
b Fold change of RAC1 protein levels in KD compared to NT. c Viability of cell lines with RAC1-knockdown relative to NT-control in VEM or
vehicle (VEH) after 34–72h. The timepoints shown correspond to the maximum signal intensity recorded over 72h (see Supplementary Fig. 2
for experimental details). d Confirmation of RAC1-knockdown via western blot for the indicated cell lines four days after transduction of viral
shRNA vector (NT non-targeting, KD1/2 RAC1-targeting shRNA 1 or 2). e 72h dose-response curves for cells transduced with either NT, KD1, or
KD2 shRNAs. Cells were seeded 48h post-transduction and either VEH or drug were added 24h later. Viability is normalized to VEH. f (Top)
Western blot of RAC1 in different modified versions of A375 (NT non-targeting shRNA, EM empty vector, KD1/2 RAC1-targeting shRNAs, OE
overexpression of shRNA-resistant RAC1). (Bottom) 72h dose-response curves for variants of A375 described above. Error bars in this figure
denote the standard deviation. Asterisk denotes unpaired two-tailed Student’s t test adjusted p value of <0.05.
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of < −2 were used to generate this gene set. Moreover, around
60% of genes that are significantly differentially expressed with
SRCi are shared by RAC1-knockdown (Fig. 4d).
These results suggest that SRCi can partially suppress the

output of RAC1, reduce de-differentiation, and increase sensitivity
to BRAFi in cutaneous melanoma.

A practical approach to resolving differentiation status in
cutaneous melanoma
Given the selective sensitivity to SRCi, divergence in RAC1
utilization, and association with drug resistance in de-
differentiated melanomas, we aimed to create a practical
strategy to determine melanoma differentiation status. Mela-
noma differentiation subtypes proposed by Hoek, Veraillie, or
Tsoi use hundreds of genes, which is not feasible for a clinical
test. We sought to find a small set of genes, with comparable
performance to the larger gene sets, that is suitable for a cheap
and practical clinical test. We intentionally excluded MITF from
our gene set because MITF is a transcription factor and its
transcriptional competency and stability are regulated by
multiple mechanisms47. Instead, we reasoned that MITF target
genes may serve as more specific indicators of melanocyte
differentiation.
The basis for our small gene set is a study performed by

Veraillie et al., which revealed that TEADs and AP-1 transcription
factors maintains melanoma de-differentiation and the MITF and
SOX10 transcription factors maintains melanoma differentia-
tion24. Interestingly, melanomas dependent on TEAD1 tended to
also depend on RAC1 according to Depmap CRISPR dependency
scores (Supplementary Fig. 7).

Existing gene signatures used to define melanoma differentia-
tion rely on the expression of hundreds of genes15,16,25,48. Instead,
we sought to use genes that are confirmed TEAD and MITF/SOX10
targets to reduce the risk of overfitting (Fig. 5a). This strategy
differs from that of melanoma clinical diagnostic scoring systems,
such as DecisionDx, which utilize genes that best explain relevant
metrics, such as progression-free survival49.
Using TCGA SKCM RNAseq data, we separated tumors into two

classes based on a reduced set of de-differentiation/differentia-
tion genes that cluster tightly among themselves. We took this
approach to achieve the cleanest separation of the two
subtypes. A t-SNE visualization using this set of ~400 de-
differentiation/differentiation genes showed the separation of
these two states (Fig. 5b).
Next, we sought to reduce the number of genes used in the

classifier by selecting TEADs- or MITF- regulated genes that, on
their own, could separate the two classes using a random-forest
based analysis. We also selected genes with expression values
comparable to that of cutaneous melanoma cell lines in the CCLE
dataset to prevent selecting genes that are mostly expressed by
stromal cells (Fig. 5c). To simplify the classification, we converted
the expression of each gene to a binary value where samples
within the top tertile of expression for a given gene was set to
one, and zero otherwise. We settled on five genes representative
of the de-differentiated and differentiated class that showed high
specificity (Fig. 5d). A visualization of the binary version of the
TCGA SKCM gene expression dataset using just the ten genes we
have identified is shown in Fig. 5e.
We then fed these genes into the Naïve Bayes machine learning

algorithm to build a model that could classify a melanoma based
on the binary expression of our ten genes. Intuitively, the

Fig. 2 RAC1P29S affects the growth of cutaneous melanoma cells in standard conditions or during BRAFi. a (Left) Western blot of RAC1,
MEK1/2, and p-MEK1_s298 in cell lines stably transfected with empty vector or RAC1P29S expression vector (EM empty vector, OE
overexpression of RAC1P29S). b Fold change of RAC1 (left) and MEK_S298 (right) protein levels in OE compared to EM-modified cells. c Dose-
response curves of cell lines with enforced expression of RAC1P29S or empty-vector control in VEM over 3–5 days. Viability is normalized to
vehicle-treated cells. (Bottom right) Viabilities of the dose-response curves shown in c at a fixed concentration of 310 nm VEM. Error bars in
this figure denote the standard deviation. Asterisk denotes unpaired two-tailed Student’s t test adjusted p value of <0.05.
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Fig. 3 Melanoma differentiation state correlates with RAC1 dependence and is modulated by RAC1 signaling. a Min-max normalized
expression of select differentiation-associated genes across BRAFV600 melanomas. b Western blot of proteins reflecting differentiation status
across melanoma cell lines profiled in this study. c Western blot of melanoma differentiation markers in de-differentiated melanoma cell lines
72h post-transduction with either a non-targeting control or different shRNAs targeting RAC1, denoted by NT, KD1, or KD2, respectively.
d Western blot of melanoma differentiation markers in five melanoma cell lines with enforced expression of either empty vector or RAC1P29S

(EM empty vector, OE overexpression of RAC1P29S). e Min-max normalized expression of select de-differentiation genes altered by knockdown
of RAC1. Data represent three biological replicates of cells transduced with NT or KD1. f Enrichment plot of Tsoi undifferentiated melanoma
gene set in genes differentially expressed upon RAC1-knockdown. g Hallmark gene sets enriched in genes differentially expressed upon RAC1-
knockdown. Only pathways with adjusted p-value of <0.05 are shown.
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algorithm generates a statistical model that computes the
probability of being in each class given the expression for a set
of genes based on the associations between each gene and class
(Fig. 6a). Our training data was the TCGA SKCM gene expression
dataset, and the test data was the CCLE cutaneous melanoma
gene expression dataset. Our model achieved a balanced accuracy
of 87% (Fig. 6b).
Finally, to highlight the clinical value a binary differentiation-

based classification system, we profiled drug response to BRAFi in
de-differentiated vs. differentiated melanomas. We found that de-
differentiated melanomas tended to be the most innately drug-
resistant (Fig. 6c). Furthermore, in 5/6 patients of a previously
published dataset, de-differentiated genes increased in cancers
that progressed on BRAFi compared to pre-treatment (Fig. 6d)34.
With respect to ICI, one study derived a cancer cell ICI drug

resistance program using large-scale scRNAseq data and com-
puted the enrichment of this signature in CCLE melanoma cell
lines50. When we compared these scores across the two subtypes,
we again found that the de-differentiated subtype tended to be
more drug-resistant (Fig. 6e). Previous gene expression profiling
of patient tumors that responded to ICI vs. those that progressed
found that AXL and E-cadherin correlated or anti-correlated with
ICI-resistance, respectively51. However, our curated gene set
could not separate responsive from progressive disease using the
same dataset (Fig. 6f).

DISCUSSION
The de-differentiated subtype of cutaneous melanoma is a
recurrent transcriptional state linked to drug resistance to BRAFi.
Several studies have shown that melanomas belonging to the
de-differentiated state have increased expression of many
markers that either drive or associate with resistance to BRAFi.
Notable examples include, AXL, NGFR, EGFR, PDGFRB, WNT5A,
ZEB1, SOX914,18,32,35,37–39,52. This subtype was originally
described by Hoek et al. as the invasive subtype within their
invasive/proliferative classification system15. Veraillie et al. elu-
cidated that the AP-1/TEAD served as master regulators of the
de-differentiated state.
Here, we show that RAC1 tends to be more important in de-

differentiated melanomas for growth in standard conditions and/
or during BRAFi. This pattern of dependence may owe to wildtype
RAC1’s ability to maintain the de-differentiated state. This knowl-
edge is important as targeting the RAC1-pathway may sensitize an
intrinsically therapy-resistant subtype of melanoma to BRAFi. We
also observed that RAC1 signaling opposes the proliferative effect
of MITF because RAC1P29S suppressed the growth of differentiated
melanomas. This result is consistent with a past study that used a
marine-organism-derived compound, Plitidepsin, to hyperactivate
RAC1 signaling in the differentiated cell lines, SKMEL28 and
UACC25753. Perhaps a negative feedback loop exists between
RAC1 and MITF, as the growth of differentiated melanomas

Fig. 4 Inhibiting de-differentiation increases the efficacy of BRAFi. a Each point is the relative area under the curve (AUC) of the BRAFi dose-
response curve in combination with drugs targeting the proteins indicated in the panel headers for a given cell line. The dotted line indicates
no difference compared to BRAFi alone. Colors indicate whether a cell line belongs to the de-differentiated or differentiated class. Eight
concentrations of VEM, up to 5 uM, were used to generate the dose-response curves. For the drug combinations, a constant dose of 1 uM
Saracatinib, 1 uM JNK-IN-8, 1 uM of MK2206, or 4 uM of Fasudil was added to varying concentrations of VEM. The edges of the boxes in this
plot denote the 1st and 3rd quartiles, and the line indicates the 2nd quartile. b Same dataset visualized in a shown for each cell line. The y-axis,
which presents the area under the curve, represents the entire area under the dose-response curve shown in Supplementary Fig. 6. The lower
the area, the more sensitive a cell line is to the respective drug. As detailed in the methods, each dose was measured in triplicates. The area is
one value, so no statistics can be performed. c Enrichment plots of RAC1-responsive gene set and Tsoi undifferentiated gene set in genes
differentially expressed upon SRCi. d Venn diagram of the number of differentially expressed genes shared or not upon RAC1-knockdown
or SRCi.
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Fig. 5 Identification of a small gene set to approximate melanoma differentiation state. a Data mining strategy. Created using BioRender.
b t-SNE of TCGA melanoma samples using ~400 invasive and proliferative genes. Cluster assignment determined by K-means. c Comparison of
expression of small gene set between CCLE cell lines and TCGA patient data. The edges of the boxes in this plot denote the 1st and 3rd
quartiles, and the line denotes the 2nd quartile. d Percentage of samples that candidate genes were positive for the class it defines. e Binary
expression of the small gene set in TCGA samples. Genes were set to one if the normalized counts belonged to the upper tertile for each gene
across the TCGA dataset and zero otherwise.
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Fig. 6 Differentiation-based Bayesian classification approach for cutaneous melanoma. a Bayesian learning strategy to generate a binary
classification algorithm for cutaneous melanoma. b (Left) Heatmap of invasive and proliferative genes used for clustering assignment in CCLE
cutaneous melanoma cell lines. Top annotation bar denotes subtype assignment determined by expanded gene set, and bottom annotation
bar denotes subtype assignment from the Bayesian classifier using curated gene set. (Right) Same heatmap but with the binary expression of
the curated gene set. c AUCs for Vemurafenib across melanomas belonging to de-differentiated or differentiated class obtained from CCLE.
d Direction of change for the small gene set in paired pre-treatment and progression patient samples on vemurafenib. An increase or
decrease is defined as a greater than 50% change in normalized gene expression values. e Cancer cell ICI-resistance score as reported by
Jerby-Arnon et al. across de-differentiated and differentiated melanomas. f (Left) Binary expression of our small gene set in patients who
responded or progressed on anti-PD1 therapy from Hugo et al. dataset. Expression for a given gene was set to one if it belonged to the 25th
percentile. (Right) Total counts of TEADs or MITF genes in non-responders vs. responders. Alternative visualization of heatmap shown on the
left. For the box plots in this figure, the edges of the boxes denote the 1st and 3rd quartiles, and the line denotes indicates the 2nd quartile.
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critically depends on MITF and that deletion of MITF results in the
rampant activation of Rho family GTPases40.
Our evaluation of different BRAFi-based drug combinations

suggests that inhibiting SRC kinases with saracatinib can sensitize,
de-differentiated melanomas to BRAFi. Although saracatinib is not
FDA approved, other inhibitors of SRC kinases such as dasatinib may
have similar clinical impact. Indeed, we found that dasatinib
increased the effect of BRAFi (Supplementary Fig. 8). However,
dasatinib inhibits many kinases beyond the SRC family54. Thus, it is
unclear how dasatinib inhibits proliferation. Previous studies have
demonstrated the promise of co-inhibiting SRC kinases and BRAF
both in vitro and in vivo9,10,32,43,55. SRCi may work through inhibiting
the transmission of extracellular matrix (ECM) stiffness, activation of
Hippo kinases, or suppression of RAC1 signaling through regulation
of RAC1-specific GEFs, RhoGDIs, or CUL39,10,55–58. Here, we show that
SRCi suppresses de-differentiation (Fig. 4c, d).
Our findings are clinically meaningful because ECM remodeling

and YAP transcriptional signatures are elevated in patient tumors
that have progressed on VEM30. Upregulation of these processes
has been described as the most recurrent features of MAPK-
redundant drug resistance31. In a greater context, TEADs’ ability to
promote resistance to MAPK-targeting therapies seems to
conserved across cancer types59,60. Strategies to target TEADs
are currently limited, but inhibiting SRC kinases appears to be the
most promising, as suggested by a recent study that performed
pharmacogenomic analysis on Yap-On vs. Yap-Off tumors61.
Nonetheless, there are inhibitors of TEADs under development62.
An alternative strategy is to target the epigenetic regulators of
melanoma differentiation63.
A limitation of our experiments is that we only examined the

short-term benefit of SRCi in combination with the BRAFi. It is
known that differentiated melanomas undergo drug-induced de-
differentiation, and TEADs mediate drug resistance in melanomas
that have undergone de-differentiation21,35. Thus, it is unclear
what impact SRCi will have on phenotypic plasticity during the
emergence of drug resistance.
Since melanoma differentiation influences drug resistance, know-

ing how to classify a patient’s cancer would have high clinical value.
To simplify this task, we have identified a small set of genes based on
the master regulators of cutaneous melanoma transcriptional states,
i.e., TEADs and MITF. Certainly, a binary classification system is a
simplification of multiple subtypes64. Moreover, at the single-cell
level, melanoma tumors are composed of a mixture of subtypes,
while we are proposing to define subtypes based on the population
average34,36,65. However, our data would suggest that a bulk estimate
can still have clinical value as melanomas classified, as de-
differentiated are resistant to multiple therapies and have distinct
signaling vulnerabilities (Fig. 6c–f).
Several studies have underscored the connection between ICI

and de-differentiation: Indirectly, exposure to inflammatory
cytokines or cytotoxic T-cells induced de-differentiation in
melanoma cells16,38,66. Directly, a NGFR transcriptomic signature
is elevated in persister cells that survive ICI treatment and that
among four mouse melanomas that mimic human transcriptomic
profiles, de-differentiated cancers were resistant to anti-PD1
therapy23,67. Clinical samples also support the connection
between de-differentiated cancers and ICI-resistance, as a recent
study on 94 patient tumors at baseline and on ICI treatment
revealed that de-differentiation was the only transcriptomic
signature that was associated with MHC class I downregulation,
which they define as a hallmark of resistance to anti-PD1
therapy22. Finally, at the fundamental level, hyperactive RAC1
has been shown to increase PD-L1 protein levels68.
In summary, our work highlights the SRC-RAC1 axis as a

vulnerability in de-differentiated melanomas. Additionally, we
offer a practical solution to resolve melanoma differentiation
status. Despite extensive data on the behavior and molecular
features of cutaneous melanoma subtypes, this knowledge is still

not utilized in the clinic. Our work seeks to bridge the gap through
biomarker discovery and the characterization of the unique
vulnerabilities of the de-differentiated subtype.

METHODS
Cell lines
A375, 451Lu, and SKMEL28 were obtained from ATCC. UACC257,
RPMI7951, and A2058 were obtained from NCI cell line repository.
PDX10 was obtained from a patient-derived xenograft from a
patient with BRAFV600E, NRAS WT, cutaneous melanoma. PDX10
was confirmed to be a human cell line via STR analysis. vRPP1 and
vRPP3 are drug-resistant sub-lines of A375. We generated vRPP1
and vRPP3 by isolating colonies that formed while parental A375
was treated with a cytostatic dose of VEM. We have confirmed via
sanger sequencing that vRPP1 and vRPP3 are BRAFV600E and NRAS
WT. vRPP3 harbors RAC1N92I and vRPP1 is RAC1 WT. A375, 451Lu,
A2058, and RPMI7951 were cultured in Gibco DMEM, supplemen-
ted with penicillin/streptomycin, and 10% FBS. SKMEL28 was
cultured in Gibco DMEM, supplemented with penicillin/strepto-
mycin, 10% FBS, Sodium pyruvate, and non-essential amino acids.
PDX10 and UACC257 were cultured in Gibco RPMI, supplemented
with penicillin/streptomycin, and 10% FBS. Written informed
consent was obtained from the patient to create PDX10 cell line
for research use. We complied with all relevant ethical regulations
in creating this cell line. PDX10 was obtained through the
University of Iowa Holden Comprehensive Cancer Center’s
Melanoma: Skin and Ocular Tissue Repository (MAST), an
Institutional Review Board-approved biospecimen repository and
data registry (IRB protocols 201708847 and 200804792).

RAC1-knockdown real-time viability assay
Knockdown of RAC1 was performed with lentivirus containing
RAC1-shRNA (KD1) or non-targeting shRNA (NT) in a 6-well format.
48h post-transduction, cells were seeded in a 96-well plate. 24h
after seeding, cells were treated with either DMSO or indicated
dose of VEM and monitored for 72h after treatment. Viability was
assessed with RealTime-Glo, a luminescence-based reagent.
Different doses of VEM were used for each cell line based on
their intrinsic drug sensitivities. Different doses were used to
better assess the impact of RAC1-knockdown. Using too high a
dose of VEM would mask the impact of RAC1-knockdown on VEM
response. The luminescence signal for different cell lines became
saturated at different times, leading to different end time points
for graphs shown in Supplementary Fig. 2. No antibiotic selection
was performed as some cell lines could not survive RAC1-
depletion and selection process. Cell lysates were collected 72h
post-transduction. Transduction efficiency was confirmed using
flow cytometry. The sequence for RAC1-KD1 was GATCCGAAGGA
GATTGGTGCTGTAAAATTCAAGAGATTTTACAGCACCAATCTCCTTTTT
TTTCTAGACAATT. The sequence for RAC1-KD2 was GATCCGCAA
GAAGATTATGACAGATTATTCAAGAGATAATCTGTCATAATCTTCTTGT
TTTTTCTAGACAATT.

RAC1-knockdown rescue
A375 was first transduced with lentivirus containing KD1 or NT
shRNA. 48h later, the cells underwent puromycin selection (1 ug/
ml) for 72h. These cells were then transfected with empty vector
or shRNA-resistant RAC1 plasmid using the Qiagen Effectene
transfection reagent. Afterwards, cells underwent one week of
neomycin selection (500 ug/ml), 48h after transfection. The
antibiotic media was changed every 48h. The seed sequences
for RAC1- KD1 and KD2 shRNAs were AAGGAGATTGGTGCTG
TAAAA and CAAGAAGATTATGACAGATTA, respectively. In the
shRNA-resistant RAC1 construct, these sequences were changed
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to AAAGAAATCGGAGCGGTCAAG and CAGGAGGACTACGATAGG
TTA.

RAC1P29S overexpression
Enforced expression RAC1P29S was performed using a piggyBac
transposon-transposase system69. Namely, cells were seeded in a
6-well format. 24h later, empty vector or RAC1P29S plasmid were
mixed at 1:5 ratio with the PiggyBac transposase plasmid and
delivered into cells with either the Qiagen Effectene or Jetoptimus
DNA transfection reagent using the standard workflow. Media was
changed 6–24h later. Cells were selected with puromycin for six
days with media changes every two days.

Cell viability assay
Drug dose-response curves were generated using the Resazurin
reagent. Viability at each dose was measured in triplicate. Cells were
seeded in a 96-well plate. Cells were treated with drug 24h later. Data
shown represents fluorescent signal detected at day 3–5 normalized
to the vehicle-treated wells. For drug combination experiments, all
the drug combinations were tested at the same time as BRAFi alone.
The assay was performed by putting 100 ul of media and 20 ul of 6x
stock (0.15mg/ml) of resazurin onto cells, followed by a 2h
incubation at 37 degrees in a tissue culture incubator.

Immunoblotting
Whole-cell lysates were separated on Tris-Glycine 4–20% gradient
gels (Thermo Fisher) and transferred to nitrocellulose membranes
overnight. Blots were blocked in Odyssey Blocking Buffer PBS
(Licor) for 1h and incubated with primary antibodies overnight at
4 degrees, followed by 1h incubation at room temperature with
secondary antibodies. Blots were imaged using the Odyssey 9210
(Licor). The control antibody was alpha-tubulin (12G10 UIOWA
hybridoma bank) for all the blots except the vRPP3 blot in Fig. 1a,
which we used beta-actin as the control (Sigma A1978). The other
antibodies used were RAC1 (BD 610651), Cav1 (CST 3267S), AXL
(CST C89E7), and E-cadherin (RD MAB1838), MEK (CST 9122), and
p-MEK_S298 (CST 9128). All antibodies were used at 1:1000
dilution, except for E-cadherin (RD MAB1838), which was used at
1:250 dilution. Western blots were quantified using ImageStudio-
Lite software. All western blots were done in triplicates, derived
from same experiments, and processed in parallel. Unprocessed
and uncropped blot scans can be found in the Supplementary
Information (Supplementary Fig. 9).

RAC1-knockdown and SRCi differential gene expression
analysis
For RAC1-knockdown, parental cell lines were transduced with
shRAC1 (KD1) or shNT containing lentivirus on day zero. The
media was changed on day two. Puromycin antibiotic selection
(1 ug/ml) was then performed for three days. Cells were then
grown in standard media for three days. RNA was extracted from
the cells on day eight. For the SRCi RNAseq experiment, cells were
treated with vehicle or 1uM of saracatinib for three days. The
Monarch Total RNA Miniprep kit was used to extract the RNA.
Samples were sequenced on the Illumina Novaseq 6000. FastQC
was used to determine the quality of the fastq files70. Transcript
alignment/quantification was performed with Kallisto using
default settings71. Ensembl annotation v86 was used as the
reference transcriptome. Differential expression analysis was
performed using Deseq2 with default settings72. Enrichment
analysis was performed using the fgsea R package73. fgsea is
based on the original GSEA method74. Genes were ranked using
the log2 fold change (log2FC). Only genes with an absolute log2FC
of >0.5 and adjusted p-value of <0.01 were used. Benjamini-
Hochberg was used to compute the adjusted p-values. The Tsoi
2018 undifferentiated gene set included 224 genes belonging to

“undifferentiated” and “undifferentiated-neural crest like” listed in
Table S3 of that study16. The Venn diagram in Fig. 4c was made
using the ggvenn R package75.

CRISPR dependency scores
Depmap webtool (https://depmap.org/portal/) was used to gen-
erate Supplementary Fig. 7.

Derivation of small gene set
We selected TEADs and MITF target genes with confirmed binding
of these transcription factors in melanomas, which decreased
upon knockdown of these transcription factors. We derived these
genes from two studies on the regulatory landscape of cutaneous
melanoma31,37. The gene expression values were converted into
binary by setting those samples with the top tertile of expression
to one and the rest to zero.

Naive Bayes classifier
We used the e1071 R package to implement the Naive Bayes classifier
with Laplace smoothing76. The training data consisted of 472 SKCM
TCGA samples that were labeled as de-differentiated or differentiated
based on k-means clustering of ~400 invasive and proliferative genes
previously described. The test data consisted of 49 cutaneous
melanoma cell line samples from CCLE. Again, the correct labels
were determined by k-means clustering of ~400 invasive and
proliferative genes previously described.

Graphics
Figure 5a was created using BioRender.com.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Untreated cell line gene expression and BRAFi (PLX4720) sensitivity data (AUC scores)
were obtained from CCLE77. Gene expression values were extracted from
“CCLE_RNAseq_genes_counts_20180929.gct.gz” and BRAFi sensitivity, i.e., the AUC
for PLX4720, was extracted from “CCLE_NP24.2009_Drug_data_2015.02.24.csv.” RPPA
protein values were extracted from “CCLE_RPPA_20180123.csv”. Patient BRAFi
response and gene expression data were obtained from GSE7794034. Cell line ICI-
resistance scores were obtained from GSE11597850. Patient PD-1 response and gene
expression data were obtained from GSE6518651. TCGA patient data were extracted
from the TCGA SKCM dataset using the GDCquery R package. The settings for
GDCquery were project= ”TCGA-SKCM”, data.category= “Transcriptome Profiling”,
data.type= “Gene Expression Quantification”, and workflow.type= “HTSeq - Counts”.
Raw counts were normalized using the DESeqDataSetFromMatrix function with
default settings. MITF and TEADs ChIP- and RNA-seq data were obtained from
Supplementary Data of Verfaillie et al.24. Raw RNAseq files for the SRCi and RAC1-KD
experiment can be obtained from the Sequence Read Archive, using the unique
identifier: PRJNA861997.

CODE AVAILABILITY
Bioinformatic analysis was performed with custom R scripts using R version 3.6.0.
These scripts can be obtained from github or by request from the authors.
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