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Induction immune-checkpoint inhibitors for resectable
oncogene-mutant NSCLC: A multicenter pooled analysis
Chao Zhang1,2, Hua-Fei Chen3, Shi Yan4, Lin Wu5, Li-Xu Yan6, Xiao-Long Yan 7, Dong-Sheng Yue8, Chun-Wei Xu9, Min Zheng10,
Ji-Sheng Li11, Si-Yang Liu 1, Ling-Ling Yang12, Ben-Yuan Jiang1, Qiu-Xiang Ou12, Zhen-Bin Qiu 1, Yang Shao12, Yi-Long Wu 1

and Wen-Zhao Zhong 1✉

Despite limited efficacy of immunotherapy for advanced non-small-cell lung cancer (NSCLC) with driver mutations, whether
neoadjuvant immunotherapy could be clinically valuable in those patients warrants further investigation. We utilized 40 oncogene-
mutant NSCLC treated with induction immunotherapy from a large consecutive multicenter cohort. Overall response rate was
62.5% while 2 patients had disease progression. Of 39 patients that received surgery, R0 resection rate was 97.4%. The major
pathological response (MPR) rate was 37.5% and the pathological complete response (pCR) rate was 12.5%. Pre-treatment PD-L1
expression was not a predictive biomarker in these patients. Median disease-free survival for all oncogenic mutation and EGFR
mutation was 28.5 months. Indirect comparison through integrating CTONG1103 cohort showed neoadjuvant immunotherapy plus
chemotherapy yielded the most superior efficacy among erlotinib and chemotherapy for resectable EGFR-mutant NSCLC. No MPR
patients were identified with neoadjuvant immunotherapy plus chemotherapy for uncommon EGFR insertion or point mutations.
Our results indicated the potential clinical feasibility of neoadjuvant immunotherapy for resectable localized oncogene-mutant
NSCLC especially for EGFR-mutant NSCLC.
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INTRODUCTION
Anti-PD-1/PD-L1 antibodies, as immune checkpoint blockade
therapy (ICB), have been widely applied in advanced lung cancer
as a single agent, combined with other checkpoint blockade or
platinum-based chemotherapy1,2. Such novel treatment could
enhance antitumor immunity by restoring T lymphocytes’ function
leading to long-term benefits3. However, for advanced non-small
cell lung cancers (NSCLCs) harboring driver mutations such as
EGFR or ALK mutations, immunotherapy exhibited impaired
response compared to corresponding targeted therapies4–6. Even
for those rare driver mutations, the efficacy of immunotherapy
varied among different mutation types and clinicopathological
status such as smoking and tumor mutation burden (TMB),
showing significantly inferior response rate to targeted therapies7.
The mechanism that caused impaired efficacy in these popula-
tions included limited infiltration of CD8+ T lymphocytes, lower
PD-L1 expression and strong oncogenic pathway activation8,9.
Unlike immunotherapy alone, IMpower 150 is the first trial that has
demonstrated comparable efficacy as an immunotherapy-based
combination strategy in pretreated EGFR/ALK mutant NSCLCs10.
However, the response mechanism of immunotherapy in mutant
NSCLC remained controversial.
For resectable NSCLCs, chemotherapy has remained as the

standard neoadjuvant treatment for decades11–13. In recent
years, multiple phase 2 trials of neoadjuvant immunotherapy

have shown dramatic pathological response and elevated
surgical resection rate14–16. However, data on oncogene-
mutant NSCLC using novel neoadjuvant modalities are limited.
CTONG1103 (EMERGING) (NCT01407822) study compared
neoadjuvant targeted therapy and chemotherapy head-to-head
and failed to show neither significantly improved major
pathological response (MPR) nor overall survival (OS)17. This
might be attributed to the highly selective therapeutic mechan-
ism of targeted therapy, intratumor heterogeneity and con-
comitant mutations which leads to incomplete antitumor
response18,19. In a previous study, neoadjuvant atezolizumab
and chemotherapy showed dramatic pathological response even
in subjects with sensitive EGFR mutations, providing the clinical
potentials of immunotherapy-based combination strategy for
oncogene-mutant NSCLC16.
Despite the limited efficacy of immunotherapy in advanced

mutant NSCLC, little is known about whether neoadjuvant
immunotherapy could be clinically valuable for NSCLC positive
of driver mutations. Herein, we describe the clinical outcome
and safety profile of neoadjuvant immunotherapy followed
by surgery in a multi-center cohort of patients with oncogene-
mutant localized NSCLC. We also conducted dynamic
multi-omics sequencing to provide insight of the potential
mechanisms that led to differential response of neoadjuvant
immunotherapy.
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RESULTS
Patient characteristics
In total, patients treated with neoadjuvant immunotherapy were
preliminarily screened from 26 centers around China, and 40
NSCLC patients that were treated with neoadjuvant immunother-
apy and harboring EGFR mutations were collected from 8 thoracic
and cancer centers. 60.0% (24/40) were men and 57.5% (23/40)
were non-smokers. 32.5% (13/40) patients were pathologically or
radiologically confirmed as N2 disease. Only one patient was
suspected to have oligometastatic disease of left adrenal gland
before neoadjuvant treatment which disappear after neoadjuvant
immunotherapy. Among all, there were 47.5% (19/40) patients
harboring EGFR mutation including exon 19del, exon 21L858R,
exon 17–25 and exon 20 insertion. Other oncogene mutation
included KRAS, RET fusion, ALK fusion, ROS1 fusion, BRAF and HER2
insertion. Percentage of residual tumor cells were evaluated in
87.5% (35/40) patients while the other patients did not undergo
surgery or comprehensive pathological assessments to determine
the specific values of their residual tumors. Clinical information
was summarized in Table 1 regarding MPR status. Detailed
demographics including therapeutic regimens, genomic profiles,
physicians’ consideration for neoadjuvant immunotherapy and
adverse events (AE) during neoadjuvant treatment, are shown in
Supplementary Table 1.

Clinical efficacy and safety profile of all oncogenic drivers
All patients have completed neoadjuvant immunotherapy without
treatment discontinuation owing to severe toxicity. No new safety
signals were identified regarding previous studies. Only two
patients had grade 3 anemia, while others exhibited grade 1-2
adverse events (AEs) such as rash and diarrhea. Detailed AEs
profile are shown in Supplementary Table 1. Overall, 62.5% (25/40)

patients achieved partial response (PR) while 5.0% (2/40) had
disease progression after completion of neoadjuvant immunother-
apy. The N2 downstaging rate was 60.0% (9/15) for patients with
pathologically or radiologically confirmed N2 disease. Of the two
patients with progressive disease, one patient did not receive
surgery due to newly-developed metastatic disease, while the
other patient’s tumor was still considered to be resectable based
on multidisciplinary discussion. Among the patients who under-
went surgical resection, only one patient was reported with R2
resection while others achieved R0 resection. The detailed
clinicopathological features of enrolled patients upon radiological
and pathological response were presented in Fig. 1a. For patients
treated with neoadjuvant immunotherapy, 37.5% (15/40) achieved
MPR and 12.5% (5/40) achieved pCR.
We further assessed the correlation between radiological

shrinkage and pathological regression of which a strong correla-
tion was found (p-value < 0.001) probably due to most patients
(91.2%) receiving neoadjuvant immunotherapy and chemother-
apy (Fig. 1b). No significant associations of PD-L1 level were found
between MPR and non-MPR patients (Fig. 1c). With a median
follow-up time of 15.5 months, median disease-free survival (DFS)
for both all oncogenic mutation and EGFR mutation were
28.5 months while median DFS for KRAS mutation was not
reached. 1-year DFS for all oncogenic mutation, EGFR mutation
and KRAS mutation was 87.3%, 92.9%, 87.3%, and 72.8%, 61.9%,
87.3% for 2-year DFS, respectively (Fig. 1d). Regarding MPR status,
patients achieved MPR in both groups showed favorable trending
of DFS (Supplementary Fig. 1).

Comparison of different treatment modalities for localized
EGFR-mutant NSCLC
As the most common driver mutation in lung cancer, we
emphatically analyzed the subgroup of EGFR-mutant NSCLC. We

Table 1. Clincal demograchics of enrolled patients regarding MPR status.

Characteristics All patients (N= 40) Patients with major pathological
response (N= 15)

Patients without major pathological
response (N= 25)

P-value

Age —— yrs 0.812

Mean ± SD 58.7 ± 10.9 58.6 ± 9.9 58.7 ± 11.5

Median (range) 61 (25–75) 60 (36–72) 62 (25–75)

Gender —— no. (%) 0.740

Female 16 (40.0) 5 (28.6) 11 (44.0)

Male 24 (60.0) 10 (71.4) 14 (56.0)

Smoking status —— no. (%) 0.749

Never 23 (57.5) 8 (53.3) 15 (60.0)

Former/current 17 (42.5) 7 (46.6) 10 (40.0)

Clinical stage —— no. (%) 0.580

II 10 (25.0) 5 (35.7) 5 (20.0)

IIIA 22 (55.0) 7 (50.0) 15 (60.0)

IIIB-IVA 8 (20.0)* 3 (14.3) 5 (20.0)

Mutation features —— no. (%) 0.587

EGFR alteration 19 (47.5) 8 (50.0) 11 (44.0)

KRAS alteration 9 (22.5) 4 (28.6) 5 (20.0)

Other mutations 12 (30.0) 3 (21.4) 9 (36.0)

PD-L1 expression——no. (%) 0.208

Negative 9 (22.5) 4 (26.7) 5 (20.0)

1–49% 7 (17.5) 2 (13.3) 5 (20.0)

≥50% 15 (37.5) 8 (53.3) 7 (28.0)

Unknown 9 (22.5) 1 (6.7) 8 (32.0)

*One patient with suspected left adrenal gland metastatsis was included which dismissed after neoadjuvant immunotherapy plus chemotherapy.
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integrated the individual data of EGFR-mutant cohort from
CTONG1103 (NCT01407822) study to compare the efficacy of
different neoadjuvant treatment modalities. Patients were strati-
fied into 3 groups for subsequent analysis: chemotherapy (GC
regimen), targeted therapy (erlotinib) and immunotherapy plus
chemotherapy (IO+ CT). The baseline characteristics were rela-
tively well balanced among groups in terms of smoking status,
histology and EGFR mutation subtypes. EGFR exon 21 L858R was
the most common subtype among groups (Table 2). In GC group,
the response rate was 33.3% (5/15) and 56.3% for erlotinib group
while elevated response rate of 63.2% was identified in IO+ CT
group. Of note, disease control rate (DCR) was 100% for both GC
and erlotinib group, and one patient (5.3%) in IO+ CT group had
disease progress after neoadjuvant immunotherapy plus che-
motherapy (Fig. 2). However, this patient was considered for
radical resection after multidisplenary discussion and received
surgery successfully. No sever postoperative complication was
found except for one patient who had blood transfusion in regard
to Clavien-Dindo score. Detailed clinicopathological features were
summarized in Table 2. Only one patient in IO+ CT group did not
have specific value of residual viable tumor. The MPR in IO+ CT
group was significantly higher than erlotinib group (42.1% vs.

12.5%, odds ratio, 5.09; 95%CI, 1.04-26.39; P= 0.071) (Supplemen-
tary Fig. 2). Strikingly, while no pCR was found in both GC and
erlotinib group, neoadjuvant immunotherapy plus chemotherapy
yielded 10.5% pCR (odds ratio, not available; P= 0.489) (Supple-
mentary Fig. 2). Among these patients, 66.7% (4/6) patients with
EGFR exon19del achieved MPR and 16.7% (1/6) achieved pCR. On
the other hand, 50.0% (4/8) patients of EGFR exon21 L858R had
MPR and 12.5% (1/8) achieved pCR. Six patients detected with rare
EGFR mutations, including insertions (3 EGFR 20ins, 1 EGFR
exon17-25ins and 1 EGFR exon19ins) and rare point mutation
(EGFR exon21 L861Q) did not achieve MPR.

Inter-tumoral heterogeneity of immune contexture between
PL and DLNs might reveal diverse response to neoadjuvant
immunotherapy
To further illustrate why localized oncogene-mutant NSCLC might
be responsive or ineffective to immunotherapy, we investigated
the inter-tumoral heterogeneity and immune contexture data of
four patients via genomic and transcriptomic analysis of their
primary lung cancer (PL) and draining lymph nodes (DLNs). We
used ImmuCellAI20 to estimate the abundance of infiltrating

a

b c d

Smoking
No
Yes

Driver Mutations
EGFR
KRAS
RET-fusion

HER2-ins
ALK-fusion
BRAF

PD-L1 status
NA
Negative
1-49%
≥50%

Regimens
PD-1 alone
PD-1+Chemo

EGFR exon17-25ins

Duration
2 cycles
3 cycles
4 cycles

EGFR 19del
EGFR 21L858R
EGFR 20ins

EGFR subtypes

ROS1-fusion

Clinical Charateristics

KRAS subtypes
KRAS G12C
KRAS G12V
KRAS G12D

†
§

RECIST
PD
SD
PR

Pathological response
Non-MPR
MPR

pCR
NA

0

-20

-40

-60

-80

-100Pa
th

ol
og

ic
al

 re
sp

on
se

 o
f p

rim
ar

y 
lu

ng
 c

an
ce

r

No specific pathological
assessment or surgery

† § §§§

0.0

0.2

0.4

0.6

0.8

1.0

Pr
e-

tr
ea

tm
en

t P
D

-L
1 

ex
pr

es
si

on
 (I

H
C

)

p = 0.78 p = 0.95

MPR pCR

Non
MPR/pCR

MPR/pCR

−0.4

−0.2

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

R
ad

io
lo

gi
ca

l s
hr

in
ka

ge

Spearman
r = 0.649
P < 0.001

0.00 0.25 0.50 0.75 1.00
Pathological regression

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv

iv
al

 p
ro

ba
bi

lit
y

++ ++++ +++++++++++++++ ++++++++
+ +

+ +

+ ++ ++
++ ++++ ++++

+

+ ++ + ++ +

+
+
+

ALL
EGFR
KRAS

0 10 20 30
Time (months)

1-year DFS 2-year DFS
ALL: 87.3%
EGFR: 92.9%
KRAS: 87.3%

ALL: 72.8%
EGFR: 61.9%
KRAS: 87.3%

MPR: Residual tumor ≤10%
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immune cells and performed unsupervised-clustering. We found
distinct immune microenvironment (IME) between PL and normal
lymph nodes while metastatic lymph nodes showed similar IME
with PLs. Interestingly, we found a pretreatment metastatic N2

lymph node from patient 2 which exhibited no residual cancer after
neoadjuvant treatment showed similar IME with PL instead of other
normal lymph nodes. We also applied ImmuCellAI to predict the
efficacy of immunotherapy where MPR patient showed infiltrating

Table 2. Clincal demograchics of EGFR-mutant patients regarding different treatment modalities.

Characteristics All (N= 50) CTONG1103-GDLC cohort Multi-center cohorts P-value

GC (n= 15) Erlotinib (n= 16) IO+ CT (n= 19)

Age at diagnosis (y), mean (SD) 60.2 (10.2) 61.1 (11.0) 57.1 (12.5) 62.2 (9.8) 0.315 (T-test)

Gender, n (%) 0.775 (Chisq)

Male 18 (36.0) 5 (33.3) 5 (31.2) 8 (42.1)

Female 32 (64.0) 10 (66.7) 11 (68.8) 11 (57.9)

Smoking status, n (%) 0.247 (Fisher)

Never 40 (80.0) 14 (93.3) 11 (68.8) 15 (78.9)

Former 10 (20.0) 1 (6.7) 5 (31.2) 4 (21.1)

Histology, n (%) 0.709 (Chisq)

Adenocarcinoma 45 (90.0) 14 (93.3) 13 (81.3) 18 (94.7)

Squamous 4 (8.0) 1 (6.7) 2 (12.5) 1 (5.3)

Others 1 (2.0) 0 (0) 1 (6.2) 0 (0)

TNM stage, n (%) 0.084 (Chisq)

II 4 (8.0) 0 (0) 0 (0) 4 (21.1)

IIIA 34 (68.0) 9 (60.0) 13 (81.3) 12 (63.1)

IIIB 12 (24.0) 6 (40.0) 3 (18.7) 3 (15.8)

EGFR mutation, n (%) 0.082 (Fisher)

Exon 19Del 17 (34.0) 6 (40.0) 5 (31.2) 6 (31.6)

Exon 21L858R 28 (56.0) 9 (60.0) 11 (68.8) 8 (42.1)

Insertion 5 (10.0) 0 (0) 0 (0) 5 (26.3)

GC Gemcitabine/cisplatin; IO+ CT, PD-1/PD-L1 blockade plus platinum based chemotherapy.
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immune features of both PL and DLNs favored immunotherapy and
remarkably less tissues showed response to immunotherapy for
non-responders (Fig. 3a). Relatively higher abundance of cytotoxic,
Th2 and γδT cells were found in responders (Fig. 3b). For patient 4
with N2 disease, who showed completely no response to
neoadjuvant immunotherapy plus chemotherapy (Fig. 3c), we
established a phylogenetic tree regarding PL and metastatic lymph
nodes. PL retained driver EGFR mutation and other cancer
associated genes after neoadjuvant immunotherapy. Although this
patient had CD274 amplification which may predict better response
to immunotherapy21, we also identified MDM4 amplification in PL
which could predict hyperprogression for immunotherapy22

though no MDM4 amplification was found in metastatic DLNs
(Fig. 3d). Additionally, we used NeoPredPipe23 to evaluate
neoantigen burden, and found notably higher Indel-induced
neoantigens burden in PL compared to DLNs while similar for
low SNV-induced neoantigens burden (Fig. 3e).
To further assess immune microenvironment phenotypes, we

applied different functional gene sets upon antigen presenting
cells (APC) abundance, T/NK cells abundance, IFN activity and T
cell exhaustion among primary lung cancer and draining lymph
nodes. Notably high expression of these gene sets was found in
both PL and DLNs from responder while relatively lower
expression in non-responder. Interestingly, despite low expression
of these gene sets was observed in PL of PT2, relatively high
expression of APC abundance and IFN activity were enriched in
corresponding DLNs, and this patient only had 16% residual tumor

left in the PL, which might indicate an underlying role of inflamed
phenotype in DLNs for promoting the efficacy of immunotherapy
(Fig. 4a). Through the radar plot, we comprehensively presented a
multi-dimensional immune index regarding PD-L1 of PLs, T-cell
inflamed gene-expression profile (GEP)24 and suppressor cell
(SC)25 score in PLs and DLNs, respectively. We identified elevated
T-cell inflamed GEP in DLNs along with lower SC score in PL for
responders while the opposite in non-responders (Fig. 4b). Gene
set enrichment analysis (GSEA) further showed that E2F_TARGETS,
G2M_CHECKPOINT enriched in DLNs for non-responders suggest-
ing proliferation arrested of immune cells while IL2_STAT5 and
TNFA_SIGNALING for responders which are involved in anti-tumor
immune response. For PLs, DNA_REPAIR and FATTY_ACID_META-
BOLISM were notably enriched in responders while enriched
IL6_JAK_STAT3, an immune-suppression pathway, was found in
non-responders (Fig. 4c).

DISCUSSION
Despite being a retrospective study with a heterogeneous
population, our study described the clinical efficacy of neoadju-
vant immunotherapy in the largest cohort of patients with
resectable NSCLC harboring oncogene mutations. We observed
both encouraging MPR and pCR rate for oncogene-mutant NSCLC
treated with neoadjuvant immunotherapy especially for EGFR-
mutant NSCLC as well as well-tolerated safety profile.
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Recently released data from Checkmate-81626 showed superior
pathological response of neoadjuvant immunotherapy plus
chemotherapy compared to chemotherapy alone27. However,
most of the neoadjuvant immunotherapy trials precluded EGFR/
ALK mutant patients due to the inferior efficacy of immunotherapy
in advanced NSCLC harboring EGFR/ALK mutation4,6,8,28. In addi-
tion, rare oncogenic mutations were reported to be either
insensitive or undetermined efficacy to immunotherapy. Subgroup
analysis of NEOSTAR study suggested less efficacy of either
neoadjuvant nivolumab or nivolumab plus ipilimumab in canonical
oncodriver patients29. However, phase 2 trials evaluating neoadju-
vant immunotherapy plus chemotherapy16,30 showed astonishing
pathological response in EGFR-mutant NSCLC, although both
contained quite a small sample. In our study, we found that the
short-term use of neoadjuvant immunotherapy plus chemotherapy
in oncogene-mutant NSCLC could still achieve 37.5% MPR
generally which were similar to Checkmate-816 suggesting clinical
potentials for neoadjuvant immunotherapy used for oncogene
mutant NSCLC. Previous study of neoadjuvant EGFR-TKIs in EGFR
mutant patients exhibited relatively lower response rate compared
to first-line setting in advanced disease, and MPR was unexpect-
edly lower which might be due to highly selective TKIs and
recurrent co-occurring insensitive mutation clones17,31. Interest-
ingly, unlike advanced disease, we found comparable efficacy of
neoadjuvant immunotherapy for EGFR-mutant patients with MPR
of 42.1%. Despite a lower pCR than in Checkmate-816, 10.5% EGFR-
mutant patients could still achieve pCR through neoadjuvant
immunotherapy while no pCR was found in the EMERGING study17.
To be noticed, patients with EGFR rare point mutation or exon20

insertion did not show satisfactory efficacy rates in response to
neoadjuvant immunotherapy plus chemotherapy, suggesting
other treatment modalities are required for these patients.
Although LCMC4, an umbrella trial evaluating corresponding TKIs

for different driver mutations as neoadjuvant treatment, was about
to initiated, there remains an open question as to whether
neoadjuvant immunotherapy might be feasible for these rare
oncogene-mutant patients in consideration of one third of these
patients achieved MPR in our cohort and no available neoadjuvant
targeted therapy data for these patients. Indeed, limited sample size
of these patients might be underpowered to draw solid conclusions.
A number of prior studies had evaluated potential biomarkers

for MPR, but no agreement was made upon predictive biomarkers
currently. PD-L1 status, the most well-known predictive biomar-
kers of CPIs in advanced NSCLC32–34, did not show correlation with
MPR/pCR in some trials27,35. In the present study, we did not
observe a significant correlation between pretreatment PD-L1
status and MPR either. For CA209-159 trial, although TMB was
found to be relevant to the efficacy of neoadjuvant CPI15, TMB
measures were not available for present study since few patients
were performed WES or large panel NGS.
Owing to its retrospective nature, this study had two primary

limitations of this study. First of all, the sample size is relatively
small with diverse oncogene mutations and PD-1 blockades
involved. Nevertheless, this is so far the largest cohort of localized
oncogene-mutant NSCLC treated with neoadjuvant PD-1 block-
ades with median follow-up over 1 year. Besides, 19 patients
harboring EGFR mutations, the most common driver mutation of
lung cancer, were involved which could shed light on neoadjuvant
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treatment for EGFR-mutant NSCLC in a way. Last but not least, the
lack of central evaluation of pathological response might lead to
disparity of MPR which would potentially cause overestimation of
MPR. However, evaluation of pCR would be barely affected due to
its definition of no residual tumor cell at all. Moreover, pCR of
EGFR-mutant NSCLC treated with neoadjuvant immunotherapy
plus chemotherapy was notably higher than first-generation
EGFR-TKI (CTONG1103) (MPR 9.7%; pCR 0.0%) and third-
generation EGFR-TKI (NEOS, 2022 ELCC) (MPR 10.7%; pCR 3.6%).
In conclusion, we found that neoadjuvant immunotherapy plus

chemotherapy could be clinically valuable for EGFR-mutant
patients and potentially be extended to other rare driver
mutations. Considering the underlying influence of tumor
heterogeneity to targeted therapy, relatively low pathological
response of targeted therapy in neoadjuvant setting and long-
term benefit of immunotherapy, we assume front-line use of
neoadjuvant immunotherapy plus chemotherapy may provide
higher cured potentials and long-term survival benefit. Therefore,
we proposed an underlying mode of neoadjuvant immunotherapy
in optimizing whole-course treatment for localized oncogene-
mutant NSCLC (Supplementary Fig. 3). Indeed, for localized NSCLC,
multiplex genotyping is getting increasingly pivotal to guide
personalized perioperative treatment. Ongoing trials such as
LCMC4 (NCT04712877), NeoADAURA (NCT04351555) and NAU-
TIKA1 (NCT04302025) trials are evaluating matched neoadjuvant
targeted therapies regarding molecular genotyping. However,
neither MPR nor pCR which may indicate curative conditions from
published prospective trials of neoadjuvant targeted therapy were
satisfactory till now. An ongoing phase 2 trial called Neo-DIANA
(NCT04512430) would evaluate neoadjuvant atezolizumab com-
bined with chemotherapy and bevacizumab for EGFR-mutated
NSCLC. Matched umbrella trials evaluating neoadjuvant targeted
therapies should be expected and future trials of combination
immunotherapy are warranted to further clarify its clinical
significance, identify potential beneficiaries and tailor more optimal
treatment modalities for oncogene-mutant localized NSCLC.

METHODS
Patients and evaluation
We initiated a national questionnaire of real-world neoadjuvant immu-
notherapy in resectable NSCLC across 26 cancer research centers and 8 of
them reported patients with oncogenic mutations who were treated with
neoadjuvant immunotherapy under the real-world circumstances including
inadequate biopsy specimen for genetic testing, negative findings of driver
mutation from ctDNA, or no available TKI treatment. In case of any potential
selection bias, all patients were screened and collected consecutively.
Oncogenic mutations included EGFR mutations, KRAS mutations, ALK
fusions, RET fusions, ROS1 fusions, the BRAF V600E mutation and HER2
mutations. Additionally, we applied data of Guangdong Lung Cancer
Institute cohort from CTONG-1103 trial (NCT01407822) which evaluated
either neoadjuvant gemcitabine plus cisplatin or erlotinib in EGFR-mutant
stage III NSCLC. Informed consent was written and received from each
patient before treatment as well as informed consents for experimentation
with human subjects. This study was approved by the ethical committee of
Guangdong Provincial People’s Hospital (KY-Z-2021-567-03).
Patients’ demographic and clinical data were retrospectively reviewed,

including clinical information, tumor histology, molecular profile, treat-
ment modality, radiological and pathological response assessment.
Genotyping assessments were performed through various approaches,
including PCR, immunohistochemistry (IHC) (for ALK fusion) and large
panel next-generation sequencing (NGS). Radiological response was
assessed following formal Response Evaluation Criteria in Solid Tumors
(RECIST) measurements. Due to the retrospective nature, pathological
assessment was performed independently in the Department of
Pathology of each center following recommended assessment process36

to evaluate residual viable tumor (RVT) except for multiple slides. MPR
and pathological complete response (pCR) was defined as less than 10%
viable tumor cells in primary lesions and no viable tumor cells in both
primary and lympho nodes, respectively.

Expression of PD-L1 was independently scored through Dako PD-L1
22C3 (pharmDx) assay. PD-L1 expression was quantified as the
proportion of PD-L1-positive tumor cells. Positive PD-L1 expression in a
given specimen was defined as ≥1% for tumor cell and ≥50% for high
expression. Cases with <100 total tumor cells for scoring were defined as
not applicable (NA).

Comprehensive genomic and immune profiling of blood and
tumor samples
We collected serial blood samples, post-treatment primary tumor
samples, and draining lymph nodes specimens from four patients.
Genomic DNA was extracted from frozen tumor and normal tissue
sections using the QIAamp DNA FFPE Tissue Kit (Qiagen) following the
manufacturer’s instructions. A minimum of 1ug of DNA was used for WES
profiling experiment. The DNA quality was assessed by Nanodrop2000
(Thermo Fisher Scientific), and the quantity was measured by the dsDNA
HS Assay Kit using Qubit 2.0 (Life Technologies). WES was only performed
when the tumor proportion was above 20%. WES library was sequenced
using an Illumina Novaseq 4000 platform according to the manufac-
turer’s instructions.
Total RNA from frozen section samples was extracted using RNeasy FFPE

kit (QIAGEN). Ribosomal RNA was depleted using RNase H followed by
library preparation using KAPA Stranded RNA -seq Kit with RiboErase
(HMR) (KAPA Biosystems), and library quality was accessed by Agilent High
Sensitivity DNA kit on Bioanalyzer 2100 (Agilent Technologies), which was
then sequenced on Illumina Novaseq NGS platforms.

Gene expression analysis and immune construction
Base calling was performed on bcl2fastq v2.16.0.10 (Illumina, Inc.) to
generate sequence reads in FASTQ format (Illumina 1.8+ encoding).
Quality control (QC) was performed with Trimmomatic (version 0.33). STAR
(version 2.5.3a) is used for transcriptome mapping followed by isoform and
gene level quantification performed by RSEM (version 1.3.0). Correspond-
ing heatmaps were generated by in-house R scripts. To evaluate the
immune construction of primary lung cancer and draining lymph nodes,
we applied ImmuCellAI20 to comprehensively decode distribution of
different infiltrating immune cells.

Reconstruction of phylogenetic trees
SAMtools v1.3.137 mpileup with parameter “-p”:20; “-P”: 20 was used to get
mutation supporting reads counts across all tumor regions where a variant
(SSNV or InDel) was detected in one or more regions in one patient. For
those somatic variants that were not called ubiquitously across tumor
regions, the missing variants were picked back up if the mutant read count
was ≥3, as well as the read depth, was >10. Sites with sequencing depth
≤10 were marked as “NA”. The neighbor joining phylogenetic trees were
constructed using R package named “MesKit”38. The recalled mutation file
(.maf format) was set as input and method= “NJ” with bootstrap 100 times
were set in the function “getPhyloTree”.

Statistical analysis
Clinical and genomic data were analyzed using R Package (Version 3.3.0) or
Prism 5.0 (Graph Pad Software Inc., La Jolla, CA, USA) software. Kruskal-
Wallis test was applied to compare the significance among groups and
Student’s t-test was used for comparison between groups. Correlations
among different variables were examined by Pearson and presented
through Pearson r and p-values. Odds ratios were used to compare
pathological response between different treatment modalities and Fisher
exact test was used to calculate the significance. A two-sided p < 0.05 was
determined to be statistically significance.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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