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Peripheral blood DNA methylation profiles predict future
development of B-cell Non-Hodgkin Lymphoma
Almudena Espín-Pérez1✉, Kevin Brennan1, Asiri Saumya Ediriwickrema 2, Olivier Gevaert1, Izidore S. Lossos3,4,5 and
Andrew J. Gentles 1,6,7✉

Lack of accurate methods for early lymphoma detection limits the ability to cure patients. Since patients with Non-Hodgkin
lymphomas (NHL) who present with advanced disease have worse outcomes, accurate and sensitive methods for early detection
are needed to improve patient care. We developed a DNA methylation-based prediction tool for NHL, based on blood samples
collected prospectively from 278 apparently healthy patients who were followed for up to 16 years to monitor for NHL
development. A predictive score was developed using machine learning methods in a robust training/validation framework. Our
predictive score incorporates CpG DNA methylation at 135 genomic positions, with higher scores predicting higher risk. It was 85%
and 78% accurate for identifying patients at risk of developing future NHL, in patients with high or low epigenetic mitotic clock
respectively, in a validation cohort. It was also sensitive at detecting active NHL (96.3% accuracy) and healthy status (95.6%
accuracy) in additional independent cohorts. Scores optimized for specific NHL subtypes showed significant but lower accuracy for
predicting other subtypes. Our score incorporates hyper-methylation of Polycomb and HOX genes, which have roles in NHL
development, as well as PAX5 - a master transcriptional regulator of B-cell fate. Subjects with higher risk scores showed higher
regulatory T-cells, memory B-cells, but lower naïve T helper lymphocytes fractions in the blood. Future prospective studies will be
required to confirm the utility of our signature for managing patients who are at high risk for developing future NHL.
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INTRODUCTION
Non-Hodgkin lymphoma (NHL) is a malignancy of the lymphoid
system which can often spread to distal organs. If NHL is detected
early, patients are more likely to have a favorable outcome since
stage I patients have 84% 5 years survival; whereas Stage IV
patients have 64% survival1,2. NHL is the 7th most prevalent type
of cancer in the U.S. According to the National Institutes of Health,
approximately 2.2% of men and women will be diagnosed with
NHL at some point during their lifetime. It is estimated that 80,470
NHL cases will be diagnosed and 20,250 deaths will occur in 2022
in the US alone. The overall 5-year survival rate is around 70%1.
Early treatment intervention is crucial, as it is more difficult to

treat patients with advanced disease. Previous studies had
observed aberrant global DNA methylation in samples collected
close to diagnosis of blood cancers3, motivating the research of
early molecular changes associated with cancer initiation. Despite
significant efforts, the impact of biomarkers for early detection of
cancer has remained limited. The International Lymphoma
Epidemiology Consortium (InterLymph)4,5 aims to identify com-
mon as well as distinct risk factors for developing NHL among NHL
subtypes. While the Consortium has identified genetic, environ-
mental and demographic risk factors, currently there are no
predictive models that can robustly quantify the risk of developing
NHL. This limitation is partly due to the heterogeneity of NHL,
which is a major challenge for developing such models. While
identifying subjects at risk for NHL could aid in early diagnosis, to
date there are no recommended screening tests for lymphomas.
The typical scenario for early diagnosis of NHL is regular medical

check-ups with attention to symptoms and known risk factors for
NHL such as first-degree family history of NHL, age and
autoimmune disorders. If NHL is suspected of causing patient
symptoms, a biopsy of a swollen lymph node or other affected
area may be performed.
Detection of altered DNA methylation in liquid biopsies is a

promising approach to detect cancer early6. Methylation of DNA at
genomic CpG sites can regulate gene expression without
changing the underlying DNA sequence. Since DNA methylation
alterations can reflect genetic background, environmental factors,
aging, Epstein-Barr virus, tissue composition, smoking and other
lifestyle factors, these alterations could represent surrogate
markers of underlying NHL risk factors. The association between
aberrant patterns of DNA methylation and cancer development
has long been recognized, including in blood malignancies7,8. In
particular, Polycomb group proteins (histone-modifying enzymes
involved in maintaining stem cell identity and orchestrating
cellular differentiation during development) play a central role in
malignant transformation of lymphomas9,10. In addition, DNA
methylation is the only epigenetic modification that is stable
enough to be measurable in archival tissue samples, allowing the
exploitation of existing biobanks by correlating molecular profiles
with health outcomes over the course of a lifetime.
Harnessing quantification of genome-wide DNA methylation for

developing predictive and prognostic models require mining large
volumes of data involving complex interactions. Artificial intelli-
gence algorithms and rigorously-defined statistical learning
frameworks have become indispensable tools for biomarker
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discovery from genomics data generated by high-throughput
technologies in population studies11, especially for the study of
complex diseases like NHL whose origin is not driven by one
variable (e.g., a monogenic factor) but rather by many features
(genes and gene-environment interactions)5,12–14.
Here we developed a computational framework to identify

features associated with future (lead time up to 16 years)
development of NHL, defining a predictive signature based on
DNA methylation profiles from blood samples (Fig. 1). DNA
methylation information from prospectively gathered samples has
potential for developing predictive models but is challenging to
collect. We address these limitations by dissecting the complexity
underlying NHL prediction using a variety of computational
approaches and large-scale population studies, boosting the
signal-to-noise ratio of a subset of subjects showing measurable
key features of future lymphoma development.

RESULTS
Polycomb and HOX gene hyper-methylation is associated with
future development of B-cell malignancies
We studied DNA methylation from two prospective cohorts where
blood was collected from apparently healthy adult volunteers who
were followed for up to 16 years. From these, 234 were selected
who subsequently developed NHL, along with 236 who did not (Fig.
1, see Methods section for details), resulting in a total of 470 samples
(Table 1). Genome-wide analysis of CpG methylation was performed
on these samples using the Illumina HumanMethylation450k

Beadchip, which assays >450,000 CpG sites. First, we sought to
identify common biological themes related to future B-cell
malignancy development using univariate linear regression applied
to the whole cohort (470 subjects), assessing the relationship
between each measured CpG site and future status (healthy vs NHL).
DNA methylation estimates were obtained starting from the raw
array data (Methods). After filtering out CpGs from sex chromo-
somes and CpGs in SNPs (single nucleotide polymorphisms), we
identified 10,973 CpG sites whose methylation state was signifi-
cantly associated with future development of B-cell malignancies
(<0.05% False Discovery Rate, Supplementary Fig. 1, Supplementary
Table 1a) after adjusting for age and sex. Among these, 4615 were
hyper-methylated in subjects who subsequently developed NHL,
and 6358 were hypo-methylated. CpG sites that were hyper-
methylated in blood from subjects who developed future B-cell
malignancies included many homeobox domain containing genes
of the HOX family, as well as targets of the Polycomb repressive
complex, mirroring differences previously described in lymphoma vs
normal B cells14 (Supplementary Table 1b). 41 out of 45 significant
CpGs in PAX gene loci were hyper-methylated in future lymphoma
samples, including PAX5, a critical master regulator of B lymphocyte
identity development and maintenance15. TP53AIP1 and TP53BP1
(hypo-methylated, in open sea regions) and NFATC1 (hypo-
methylated, in island regions), MCL1 (apoptosis regulator and
member of the BCL2 family, hypo-methylated, in shore regions)
and the tumor suppressor BCL11B, (hyper-methylated, in island
regions) were amongst the genes which contain this predictive set
of CpG loci (Supplementary Table 1a). These results support that

Fig. 1 Workflow of the study. Blood samples from a large population of healthy volunteers were taken and frozen using liquid nitrogen (1).
Throughout a 16 years follow-up, subjects that developed NHL were registered (2). At the end of the follow-up, a balanced cohort comprising
individuals that developed NHL and a matching ratio of controls was identified (3) and omics analyses were conducted on the selected frozen
blood samples (4). Data was preprocessed and analysed to develop a classifier for future NHL called Future LYmphoma Predictor or FLYP
(5,6,7). Finally, the classifier was tested in a variety of independent NHL and healthy cohorts (8). BCLL= B-cell chronic lymphocytic leukaemia,
MM=multiple myeloma.
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there are methylation changes present in the blood in pathways
related to B-cell malignancy development, that are detectable prior
to overt disease presentation.

Deconvolution identifies cell-specific pathway deregulation
prior to NHL development
We estimated proportions of immune cells in blood samples using
CIBERSORTx16,17 with a DNA methylation based signature matrix
(Supplementary Table 1c) representing the cell types from ref. 18:
neutrophils, eosinophils, basophils, monocytes, naïve B cells,
memory B cells, T helper lymphocytes naive, memory helper
T cells, regulatory T cells, T CD8 cytotoxic lymphocytes naive,
cytotoxic CD8 memory T, and natural killer (NK) cells. CIBERSORTx
is a computational framework that infers, in addition to cell
fractions, cell-type-specific transcriptomes from RNA profiles of
intact tissues. Here we extended the framework to estimate DNA
methylation profiles of individual cell types within bulk profiles.
Supplementary Table 1d summarizes immune cell fraction
estimates from methylation-based deconvolution using CIBER-
SORTx. Consistent with expectations for peripheral blood,
neutrophils are the most abundant cells (~50%), followed by
memory T helpers (~12%), monocytes (~8%), cytotoxic CD8
memory T cells (~8%), NK cells (~5%), naïve T helper cells (~4%),
eosinophils (~3%), memory B cells (~3%), naïve cytotoxic CD8
T cells (~2%), and B cells naive (2%), while basophils are the least
abundant cell types (close to 0%) (Supplementary Fig. 2). We
compared our estimates with a different method EpiDISH19 with
an independent signature (see methods section for details),

resulting in high correlations between our estimates and those
obtained by alternative methods except for eosinophils (Pearson
correlations: B cells= 0.97, CD8 T cells= 0.83, CD4 T cells= 0.89,
monocytes= 0.90, neutrophils= 0.98, NK= 0.84 and eosinophils
0.37). Deconvolution using the Salas et al.18, library resulted in
more reliable eosinophil estimates than those obtained from other
libraries as reported in the original manuscript. Blood samples
from the future-NHL group showed few differences from the
control group, except for a trend towards higher memory B cells
(P= 0.07) and T regulatory cells (P= 0.03) (Supplementary
Table 1e). CIBERSORTx can estimate representative methylation
profiles for individual cell types within bulk samples (High-
resolution mode). We used this capability to test if methylation
patterns within cell types can identify biological mechanisms
associated with increased risk of NHL. We identified significant
pathways amongst differentially methylated genes (evaluated by
Wilcoxon rank sum test) between future-NHL and controls
identified by CIBERSORTx. Among others, pathways related to
pluripotency of stem cells (q= 0.002), WNT signaling (q= 0.001)
and G protein coupled receptor signaling (q= 0.01) in memory B
cells and NOTCH signaling in neutrophils (q= 0.01). We identified
lymphoma genes enriched in several cell types (“Disease” category
marked in red in column L from Supplementary Table 1b) by
mining disease-associated genes from the ToppGene database20,
notably from B-cells (“Diffuse Large B-Cell Lymphoma”,
q= 4.66 × 10−9) indicating that abnormal DNA methylation from
cell-specific DNA methylation profiles occurs at genes implicated
in lymphoma prior to diagnosis of disease.

Epigenetic timer of cancer (“epiTOC”)
A DNA methylation-based model called “epiTOC” (Epigenetic
Timer Of Cancer; see Methods), which reflects a mitotic clock-like
process encoding the number of cell divisions, has been used to
relate DNA methylation alterations arising during cell division to
disease risk21,22. The 385 CpG sites that comprise the EpiTOC clock
are unmethylated in many different fetal tissue types, and since
their methylation tends to increase with age (but is not directly
correlated with biological age, Supplementary Fig. 3a), the
presumption is that the EpiTOC value is a proxy of accelerated
cellular mitosis23. We found that the future NHL group had
significantly higher epiTOC levels than the control group
(Wilcoxon, P= 3.4 × 10−4) (Supplementary Fig. 3b). Differences in
epiTOC estimates between future-NHL and controls suggest that
alterations that could influence biological mechanisms are already
happening at an early stage, and could at least partly be related to
an accelerated mitotic clock in subjects who will later
develop NHL.

Development of a DNA methylation-based future NHL
predictor
Quantitative DNA methylation measurement at the single-CpG-
site level provides a comprehensive view of epigenetic changes
but poses challenges for building predictive models due to high
dimensionality (p≫ n). For subsequent analyses, we removed B
cell chronic lymphocytic leukemia (BCLL) and multiple myeloma
(MM), as these are distinct clinical entities from the remaining NHL
types, after which 278 samples remained (139 future NHL, and 139
age- and sex-matched controls; Table 1). We then developed a
model to identify which subjects are more likely to develop NHL
versus those who are likely to remain healthy. We selected an
optimal subset of CpG sites that involves a trade-off between
maximizing performance for predicting future disease status, and
creating a parsimonious model that mitigates against overfitting.
To achieve this, we performed a two-step feature selection
procedure on 70% of the dataset selected at random from each
class (future cancer vs future healthy), holding out the remaining
30% of samples as test data. First, we identified 10,587 CpGs that

Table 1. Demographics of the study population (470 samples),
comprising future Non-Hodgkin Lymphoma (NHL) and controls from
two cohorts (Northern Sweden Health and Disease Study [NSHDS] and
EPIC-Italy from the European Union 7th Framework Programme).

Variable Total
population

NSHDS EPIC

Sample size Sample size 470 314 156

Status disease Controls 236 159 77

Future NHL 234 155 79

Sample size
filtered*

Sample size 278 314 156

Status disease
filtered*

Controls 139 96 43

Future NHL 139 90 49

Subtypes NHL B 41 32 9

BCLL* 28 19 9

DLBCL 40 29 11

FL 33 14 19

LPL 7 7 0

MM* 67 46 21

MCL 10 0 10

LYM 8 8 0

Gender Male 241 175 66

Female 229 139 90

Age Age;mean(SD) 52.48 (8.15) 51.20 (7.84) 55.05 (8.16)

BMI BMI;mean(SD) 26.24 (3.88) 26.12 (4.09) 26.49 (3.42)

Characteristics of the population. B-cell chronic lymphocytic leukaemia
(BCLL), diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL),
(lymphoplasmacytic lymphoma) LPL, multiple myeloma (MM), mantle cell
lymphoma (MCL) and different B-cell lymphomas (BO, BALL, BNOS) and
others (LYM). *BCLL and MM are distinct clinical entities from the
remaining NHL types so these 95 subject and 95 controls were excluded
to build predictive models, resulting in a total of 278 samples.
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were univariately associated with future NHL in the training set
using a Gaussian model (<5% False Discovery Rate). Second, we
applied penalized multivariate linear regression (Elastic Net, with
alpha= 1) to the same training data to condense the 10,587 CpGs
to a subset of 179 that are associated with future disease status.
However, a Random Forest classifier built using these 179 CpGs in
the training set did not accurately classify future NHL from
controls in the test set (0.57 accuracy, Supplementary Table 1f).
Models built on variables other than DNA methylation such as age,
gender, BMI and immune cell fractions also yielded performance
that was close to random (~0.50 accuracy in the test set).
When examining which subjects were misclassified, we noted

that there were differences in epiTOC estimates between
misclassified subjects and correctly classified subjects
(P= 5.7 × 10−4 before adjusting for age and P= 5.0 × 10−4 after
adjusting for age). We did not observe significant differences
between misclassified and correctly classified subjects for other
variables such as age, sex, memory helper T cells, cytotoxic CD8
memory T cells, and naïve B cells. Interestingly, the observed
differences between misclassified subjects in epiTOC estimates
(P= 5.7 × 10−4) revealed that true positives had higher epiTOC
values than false negatives. We also observed that subjects with
high epiTOC showed more significant hyper-methylation in CpGs
from genes known to be important regulators of B lymphocyte
development than the CpGs from subjects with low epiTOC values
(Fig. 2). These included HOXA7, HOXD9, HOXD1, HOXA9, HOXD8,
HOXA10, PAX1, PAX6, PAX7, PAX3, PAX5, and PAX9.

Accounting for mitotic clock improves prediction of future
NHL
We hypothesized that early deregulation of epiTOC indicating
deviations in DNA methylation in mitotically-aged B-cells might
precede proliferation and unrestricted division in future NHL, even
before diagnosis. We further reasoned that assigning future NHL
cases to different groups based on epiTOC might improve
classifier performance as compared to the approach where we
assume all future cases can be represented as one group with
similar risk of developing lymphoma. Thus, we subdivided the
future cases NHL into high epiTOC (epiTOC above its median value

of 0.18) and low epiTOC (epiTOC <= 0.18) within the training set
(Fig. 1). We next identified 1,572 CpGs that were univariately
associated with the three-level categorical variable future NHL/
high-epiTOC, future NHL/low-epiTOC, or control, using limma. We
used a strict permutation-derived FDR cutoff24 appropriate for
DNA methylation, of 2.4 × 10−7. We tested ten additional random
cross-validation splits to check the stability of the findings by
comparing the z-scores for each of the 10 random splits with the
split that we used to obtain our predictive model, resulting in
highly correlated z-scores for each CpG site and large overlap in
the list of significant CpG sites (Supplementary Fig. 4). We then
applied penalized multivariate linear regularized regression
(Elastic Net, with alpha= 0.5) on the same population to obtain
a more parsimonious set of 135 CpGs.
We applied random forests to derive a final classification model

from the training set using the three-level outcome future NHL/
high-epiTOC, future NHL/low-epiTOC, or control as outcome and
tested it on the left-out 30% of samples. We refer to the resulting
per-subject score as the Future LYmphoma Predictor or FLYP. The
performance of the predictive model was 85% accuracy for the
high epiTOC group and 78% for the low epiTOC group in the test
set, with high sensitivity and specificity (Fig. 3). Different epiTOC
cutoff values other than the median resulted in similar perfor-
mances around the median value and worse performance for
more distant values (Supplementary Table 1g). Our classifier
showed high specificity and sensitivity (88% and 80%, respec-
tively) for future NHL subjects with high epiTOC value, as well as
future-NHL with low epiTOC (80% and 75%, respectively) (Fig. 3).
Most of the loci included in FLYP are found in CpG islands near

the transcription start sites of genes, especially those with higher
predictive importance (Supplementary Table 3a). The most
predictive CpG is hypo-methylated in the future-NHL/high-epiTOC
group and located in CpGs islands and targets the gene VGLL3,
which is known to be involved in tumor cell proliferation25

associated with future-NHL/high-epiTOC NHL group. Several
transcription factors from the TEAD family which are downstream
effectors of the Hippo pathway, and for which VGLL3 is a cofactor,
are also significantly different between future NHL and controls
(hyper-methylated in the future-NHL/high-epiTOC).

Fig. 2 Top three CpGs corresponding to HOX and PAX genes in the prospective NHL and control groups. List of CpGs corresponding to
HOX and PAX genes significantly hyper-methylated in the group with high epiTOC estimated levels (cg00599770 P= 1.34 × 10−9, cg19542816
P= 4.10 × 10−8, cg22674699 P= 1.22 × 10−7, cg01783070 P= 2.43 × 10−8, cg11428724 P= 3.75 × 10−8, cg18988498 P= 3.32 × 10−8) identified
using univariate regression analyses (N= 278). The box plot uses the median (horizontal line), the first and third quartiles (ends of box) and
points more than 3/2 times the interquartile range (dots).
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Changes in blood immune composition are associated with
future NHL development
Models based on cell fractions, age and sex as features instead of
CpGs yielded NHL predictions better than random (70% and 61%
accuracy for predicting high and low epiTOC future NHL,
respectively) but less accurate than the CpG-based model. The
future-NHL/high-epiTOC score and the EpiTOC values were
positively correlated with inferred fractions (by deconvolution)
of cytotoxic memory CD8 T cell, memory B cell, regulatory T cell,
and NK cell fractions; and negatively correlated with neutrophil,
naïve T helper cell, naïve cytotoxic CD8 T cells and naïve B cell
fractions (Supplementary Fig. 5). The future-NHL/low-epiTOC
group has a negative correlation with cytotoxic memory CD8
T cells and positive correlation with neutrophils. Moreover, the
future-NHL/low-epiTOC group has statistically significantly higher
neutrophil to lymphocyte ratios than the control group (P= 0.006).
The higher memory B cell fractions in future-NHL samples
suggests possible higher proliferation of B cells prior to NHL
development. In addition, higher levels of NK cells in peripheral
blood have been observed in newly diagnosed DLBCL patients as
compared to controls26. Together, these analyses identify
differences in blood immune composition associated with
elevated NHL risk. However, use of artificial intelligence
approaches applied to DNA methylation improve predictions
above those associated with immune composition, age and sex,
supporting the utility of FLYP.

FLYP foreshadows DNA methylation changes present in NHL
We hypothesized that the FLYP could be capturing low levels of
epigenetic deregulation that occur during early NHL tumorigen-
esis, which become more pronounced in overt disease. We
therefore computed FLYP for samples in five cohorts of tumor
biopsies or blood samples from adults who currently had NHL. We
also interrogated a large cohort of healthy subjects (healthy at the
moment of blood sampling, but lacking follow-up information) to
evaluate the predicted proportion of subjects at risk of developing
NHL in the entire population (details in Supplementary Table 3b).
On average 96.3% of the samples from the NHL cohorts and only

4.4% from the current healthy cohort were classified as future-
NHL/high-epiTOC (Supplementary Table 3c).
EpiTOC estimates from all current-NHL cohorts were signifi-

cantly higher than those from the future-NHL cohort or current
healthy controls (Supplementary Fig. 6); likewise epiTOC estimates
from the NHL prospective group were significantly higher than
those from the prospective controls (Wilcoxon, P= 4.4 × 10−5).
However, EpiTOC estimates alone did not yield accurate NHL
predictions (56% accuracy).

Shared methylation changes across disease subtypes prior to
NHL development
NHL comprises a heterogeneous group of neoplasms of the
lymphoid system, therefore we tested the ability of methylation to
classify future NHL across subtypes defined according to SEER ICD-
0-3 morphology codes27. We conducted differential methylation
analysis on future NHL vs control for each subtype (Supplemen-
tary Fig. 7). The z-scores assessing significance of differential
methylation between future NHL and controls at each CpG site
obtained from each individual subtype correlated differently
across subtypes. The most pairwise correlated z-scores corre-
sponded to the subtypes ML and LYM (Pearson correlation= 0.5),
while the least correlated z-scores corresponded to LYM and
DLBCL or LPL and DLBCL (Pearson correlation= 0.08). To further
test if some NHL subtypes have more generalizable predictive
power than others, we trained models for each NHL subtype on
the other subtypes and then tested them on the “test” one (leave-
one-subtype-out). Future development of LPL (lymphoplasmacytic
lymphoma, N= 7, accuracy future-NHL/high-epiTOC group= 0.8,
accuracy future-NHL/low-epiTOC group= 0.94), DLBCL (diffuse
large B-cell lymphoma, N= 40, accuracy future-NHL/high-epiTOC
group= 0.79, accuracy future-NHL/low-epiTOC group 0.74), LYM
(others, N= 8, accuracy future-NHL/high-epiTOC group= 0.69,
accuracy future NHL/low-epiTOC group= 0.81) and FL (follicular
lymphoma, N= 7, accuracy future-NHL/high-epiTOC group= 0.78,
accuracy future-NHL/low-epiTOC group= 0.75) subtypes showed
better performance from models built on other subtypes as
training sets than MCL (mantle cell lymphoma, N= 10) (Supple-
mentary Table 3d).
Most B‐cell neoplasms originate from the germinal center

reaction as a result of mutation of genes involved in epigenetic
regulation and immune receptor signaling28. We aligned the
epiTOC values from all subtypes (including B-cell chronic
lymphocytic leukaemia [BCLL] and multiple myeloma [MM]) with
the development of the B-cell repertoire in the germinal center
and the attributed origin of each NHL subtype (Supplementary
Fig. 3b). MCL showed on average the lowest epiTOC values, while
BCLL (the most frequent type of B-cell leukemia), LPL and DLBCL
showed the largest epiTOC values. Naïve B cells aggregate outside
of the germinal center leading to the formation of the mantle
zone where MCL develops, while BCLL and DLBCL occur at the
stage of differentiation prior to plasma cell and memory B-cell
development28.

Overrepresentation and hyper-methylation of polycomb-
target promoter CpG sites in the future-NHL DNA methylation
signature
To investigate the potential functional significance of the 135
CpGs comprising FLYP (Supplementary Table 3a), we compared
the CpGs in it with ones associated with 15 specific chromatin
states defined by the 111 Epigenomes study, derived from primary
mononuclear cells (E062) using 450 k arrays29. The number of
CpGs from the signature that belong to regions associated with
de-repression (‘TssBiv’, FDR: 9.31 × 10−19) and repressed by
polycomb proteins or the “ReprPC” chromatin state (FDR:
1.64 × 10−11) are larger than expected by chance (significance
levels calculated by comparing the distribution of chromatin

Fig. 3 Performance of the predictive models using the bulk DNA
methylation. Numbers are expressed in percentage and refer to the
samples from the test set of the prospective cohort.
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states in the FLYP signature with 1000 lists of randomly selected
CpGs) (Fig. 4a and Supplementary Table 3e). Most of the CpGs
from the signature are located in CpG islands (P= 6.03 × 10−9)
(Fig. 4b and Supplementary Table 3e). Polycomb-mediated
repression of expression is generally associated with hypermethy-
lation of target genes, as observed in the top 50 differentially
methylated CpGs from the signature (Fig. 4c, Supplementary Fig.
8a). The signature also shows enrichment of the TssBiv chromatin
state, which has been associated with embryonic stem cells and
induced pluripotent stem cells in other studies30. In order of
significance, the top 5 pathways from GSEA analysis are:
BENPORATH_SUZ12_TARGETS (targets of the Polycomb protein
SUZ12 in human embryonic stem cells), BENPORATH_EED_TAR-
GETS (targets of the Polycomb protein EED in human embryonic
stem cells), BENPORATH_ES_WITH_H3K27ME3 (genes possessing
the trimethylated H3K27 mark in their promoters in human
embryonic stem cells), BENPORATH_PRC2_TARGETS (Polycomb
Repression Complex 2 (PRC) targets identified in human
embryonic stem cells, and TAVAZOIE_METASTASIS (genes up-
regulated in metastatic cell lines of lung and bone relative to the
parental line of breast adenocarcinoma) (Fig. 4d). Overexpression
of genes normally enriched in embryonic stem cells and
repression of Polycomb-regulated genes has been associated
with histologically poorly differentiated tumors across different
cancer types, and poorly differentiated tumor cells in NHL are
associated with fast growing and aggressive tumors31. Genes
targeted by CpGs significantly associated with future-NHL are also

enriched in pathways related to T cell activation (Supplementary
Fig. 8b).

DISCUSSION
Low levels of molecular signals, small effect sizes, population
heterogeneity, and relatively small groups of subjects from long-
term prospective studies are major challenges inherent in cancer
prediction. Furthermore, some subjects might not have developed
NHL-related molecular alterations at time of sample acquisition,
hampering the classification task. We developed a peripheral
blood-based DNA methylation signature (FLYP) based on 135 key
CpG sites that can predict NHL development, with an accuracy of
85% for the future-NHL/high-epiTOC group and 78% for the
future-NHL/low-epiTOC group. We built a comprehensive compu-
tational framework to condense the original DNA methylation
data into a lower-dimensional feature space to develop the
prospective signature, by studying differences in DNA methylation
levels from blood samples between a future NHL group (lead time
of 16 years) and healthy control group. Notably, FLYP performance
was improved by stratifying the population into high-epiTOC and
low-epiTOC individuals, reflecting accelerated mitosis of cells.
Clearly this require validation in an external prospective cohort
but nevertheless this observation was crucial to identifying a
predictive model. We performed several tests to confirm that FLYP
predicts mostly “control” or low-epiTOC in an independent
population of 656 healthy subjects; and that it predicts patients

Fig. 4 Landscape of the future NHL signature. a Number of CpGs from the signature from each chromatin state compared to the annotated
genome. b Location of the CpGs from the signature compared to the annotated genome. c Number of hyper-/hypo-methylated CpGs from
the signature from each chromatin state within the prospective cohort (reference: healthy controls from the prospective study). d Top 20
pathways from GSEA analysis (C2-curated gene sets).
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who currently have NHL in tissue samples from four independent
cohorts.
While immune cell fractions, age and gender have some degree

of predictive power, the combination of epiTOC and FLYP
outperforms the other models or a model based on epiTOC
alone. An elastic net baseline model resulted in worse perfor-
mance (81% accuracy for high epiTOC group and 68% accuracy
for low epiTOC group) than Random Forests. The association
between NHL risk and epiTOC is consistent with other studies
reporting accelerated mitosis based on methylation in cancer
tissue samples, cancer cell lines, pre-cancerous lesions and normal
epithelial cells exposed to a major carcinogen31. It has been
suggested that accelerated cell division could lead to epigenetic
cellular heterogeneity and predispose the tissue to future
neoplastic transformation21,32–34. The proliferation of these new
clones could be responsible for the increased cellular proliferation
and epigenetic changes observed in active NHL subjects. DNA
methylation profiles may implicitly capture some of the complex-
ity of cell heterogeneity (both cell abundance and molecular
profiles) that is not captured when using cell type fraction
estimates, facilitating good model performance.
Overrepresentation of the “ReprPC” chromatin state with hyper-

methylation CpG sites in our DNA methylation signature indicates
polycomb-mediated repression, which usually targets pro-
differentiation genes in stem cells and cancer. Hyper-methylation
potentially silences differentiation-related genes in effector lym-
phocytes, inducing a more undifferentiated, stem-like cell state.
This hyper-methylation might be mechanistically relevant for NHL
initiation, and lead to higher epiTOC values observed in active
NHL/future NHL subjects. We also found B-cell lymphoma related
key genes such as HOX and PAX5 deregulated at the DNA
methylation level in future NHL compared to controls. Overall, our
study suggests a biologically informative DNA methylation
signature that reflects B-cell deregulation before NHL diagnosis.
This also supports the idea that the predictive features represent
biological mechanisms leading to increased risk of NHL, rather than
being passive markers of neoplasticity.
FLYP has the potential to be a convenient and clinically

applicable risk score for predicting NHL using DNA methylation.
Future prospective studies will be required to confirm its utility
and incorporate these results into clinical practice, for example to
recommend that people with high risk have more regular
checkups. Since only <2% of CpG sites are covered by the
Illumina HumanMethylation450k Beadchip, the predictive value of
FLYP would likely be improved by generating new datasets using
a sequencing-based methylation method. In addition to a
predictive NHL signature, we provide our computational frame-
work as a resource to identify top performing approaches across
pre-processing, normalization, feature selection, data transforma-
tion, predictive models, deconvolution analyses and omics
integration. This should also facilitate reproducible DNA methyla-
tion analyses using new data sets.
In conclusion, we built a score based on DNA methylation from

peripheral blood samples that can predict future (up to 16 years)
development of NHL. This study demonstrates the potential for
early detection to enable early treatment of NHL that may
improve outcomes of patients.

METHODS
Study cohorts
The study population is based on participants from two existing
prospective cohorts: the Italian component of the European Prospective
Investigation into Cancer and Nutrition (EPIC‐Italy)27 and the Northern
Sweden Health and Disease Study (NSHDS)35. After providing written
informed consent, blood samples were prospectively collected from
subjects who were healthy at enrolment (47,749 volunteers within the
EPIC-Italy study and 80,000 subjects within the NSHDS study). Instances of

NHL occurring during the study period (16 years) were identified through
local Cancer Registries (loss to follow-up < 2%). This study was approved by
the committee on research ethics at the relevant institutions in accordance
with the Declaration of Helsinki of the World Medical Association. All
participants provided written informed consent to take part in the study at
recruitment.
For each NHL case identified within the two cohorts during follow-up,

one random control was selected among all cohort subjects free of cancer
at the time of diagnosis, matched by cohort, center, gender, date of blood
collection (±6 months) and age at recruitment (±2.5 years). Participants
diagnosed with disease within less than two years of blood sample
collection were excluded.

Sample preparation
Buffy coats were isolated from the collected blood samples within 2 h of
blood collection for both cohorts, and placed in long-term cold storage
(liquid N2 in EPIC- Italy and −80 °C in NSHDS). Careful evaluation of the
data from a pilot study experimenting with the conditions of sample
collection did not reveal any systematic influence of storage time on
epigenomic profiles36.
The final number of included successfully analyzed samples was 234

NHL cases and 236 matched controls. The characteristics of the study
population are summarized in Table 1.

Preprocessing DNA methylation
Genome-wide analysis of CpG methylation was conducted on the Illumina
HumanMethylation450k Beadchip. We used the “preprocessQuantile”
function from the “minfi 1.32.0” R package to normalize the data. We
corrected M values for batch effects (adjusting for the variable
corresponding to the date of chip analysis) using the function “ComBat”37

from the “sva 3.34.0” R package. Methylation levels were expressed as beta
values (ranging from 0 to 1, corresponding to the proportion of
methylation at each of the >450,000 genomic CpG sites measured by
the Infinium platform) for visualization and epigenetic clock calculations
and M-values (corresponding to the logarithmic ratio of the methylated
versus the unmethylated signal intensities at each site) for construction of
predictive models. Because SNPs near the CpG site may alter methylation
levels, we removed CpG at SNPs with a minor allele frequency >1% from
the dbSnp database38. We also filtered out CpGs from sex chromosomes.

Estimation of cell-type composition and cell type specific DNA
methylation profiles
We used the deconvolution algorithm CIBERSORTx16,17 in combination
with a previously defined signature matrix based on epigenetic profiles to
infer the proportions of cell-types present in the blood samples, and
estimate the DNA methylation profiles for each immune cell-type. The cell
composition was estimated using methylCIBERSORT (“FeatureSelect.V4”
function) and a signature obtained from sorted cells from ref. 18,
(GSE167998). We used the High-Resolution mode of CIBERSORTx to impute
sample-level DNA methylation profiles using CpGs located in CpG islands
and Wilcoxon rank sum test to identify differentially methylated CpGs in
each imputed cell-specific DNA methylation profiles. Then, we used
ToppGene20 and GoMeth39 for pathway analysis.
The immune cell fractions inferred from deconvolution were compared

with those generated from a different algorithm called EpiDISH based on
Robust Partial Correlations19 and different data: purified normal blood cell
sub-populations white blood DNA methylation data derived from
granulocytes (12), CD8+ (cytotoxic T-lymphocytes) (6), CD4+ (cytotoxic
T-lymphocytes), CD19+ (B-lymphocytes) (6), CD56+ (NK cells) (6),
CD14+ (monocyte lineage) (6) and eosinophils40 as a sanity check of the
first of the deconvolution involving estimation of cell fractions.

Epigenetic age and DNAm-based age-correlative model
“epiTOC” (Epigenetic Timer Of Cancer)
The number of cell divisions per stem cell is an important cancer hallmark.
We computed estimates of the rate of stem cell division using a DNA
methylation-based age-correlative model based on the EpiTOC signature21.
EpiTOC correlates with chronological age to a lesser extent than other
epigenetic clocks that aim to predict age (Supplementary Fig. 3a). We
tested if epiTOC is higher in active NHL patients compared to future NHL or
healthy subjects using the Wilcoxon signed-rank test.
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Differential DNA methylation to identify biological themes
associated with future NHL development
We identified CpG sites significantly associated with future development of
NHL (<5% False Discovery Rate, Supplementary Table 2a), as described
further below. We used ToppGene20 and GoMeth39 for pathway analysis
and Gene Set Enrichment Analysis (GSEA)41 to further investigate whether
pre-defined sets of genes from the MSigDB database (C2-curated gene sets
and C7-immunologic gene sets) show statistically significant and
concordant differences between the future NHL and control subjects.

Two-step feature selection
We first split the data into 70% training and 30% test, balanced for the
three classes (future NHL with high EpiTOC, future NHL with low EpiTOC
and control status) distributions within the split, and then used linear
regression models using limma from the ‘missMethyl_1.20.4’ R package42

to investigate the relationship between each individual CpG DNA
methylation probe from the training set and the NHL outcome (control
group as reference). We fit models using least squares regression on all
CpGs separately, and accounted for multiple hypothesis testing using a
2.4 × 10−7 cutoff specific for DNA methylation based on permutations24.
Then, we selected the common CpGs significantly associated with both

high and low EpiTOC future NHL groups and performed regularization
using elastic net (which combines the L1 and L2 penalties of the lasso and
ridge methods) methods43,44 with the same split as the univariate
approach to select a subset of the CpGs. We efficiently maximized the
amount of joint information relative to the status of future disease by
identifying the top common features with non-zero coefficients.

Constructing an AI-based prospective diagnostic system
We built random forest classification model using the same training data
from the split in the initial two-step feature selection. We assessed
performance of the final model fit on the left-out test data. We used
“Random Forest“ model from the “randomForest 4.6–14” R package,
implemented in the R package “caret 6.0–86”. To train the models, three
separate 10-fold cross-validations were used as the resampling scheme.
We set to 30 the parameter that defines the total number of parameter
combinations that will be evaluated (“tuneLength”). We tuned hyper-
parameters to assess the model fit on subsets of the training dataset and
we reported the results from the test set to assess the performance on an
independent set.
We assessed the performance of the classifier using the following

metrics: accuracy (percent of correct classifications obtained), sensitivity
(ability to detect future disease in the population of future diseased
individuals), specificity (ability to correctly rule out the future disease in a
disease-free population), F1 Score= 2 * Precision * Recall/(Precision+
Recall) and AUC value of the resulting ROC curves.
We also tested if the combination of gender, age, epigenetic age,

epiTOC and proportion of cell-types or some of these variables alone had
predictive power by training models using these variables as features, with
future case/control status as the dependent variable.

Confirmation of the signature on NHL subjects and healthy
subjects
We evaluated our predictive model in four cohorts of subjects with current
NHL, and in a cohort of 656 healthy subjects (at the time of blood sampling
– no follow up is available), utilizing genome-wide DNA methylation data
from the same platform as our prospective cohort were available
(Supplementary Table 3b). These validation datasets are different from
the test dataset of the prospective cohort, which is also held back from the
training of the model.

NHL subtypes
NHL future cases were classified into subtypes according to the SEER ICD-
0-3 morphology codes27. These include B-cell chronic lymphocytic
leukaemia (BCLL), diffuse large B-cell lymphoma (DLBCL), follicular
lymphoma (FL), (lymphoplasmacytic lymphoma) LPL, multiple myeloma
(MM) and mantle cell lymphoma (MCL), heterogeneous category of B-cell
malignancy and others (LYM) (Table 1). We built predictive models leaving-
one-subtype-out, where the training set comprised all NHL subtypes but
one and the test set the remaining subtype. BCLL and MM cases were

removed from the final analyses to build predictive models as they are
clinically distinct from the other disease entities.

Description of the DNA methylation signature
We investigated whether methylation signatures were statistically enriched
for a comprehensive set of previously defined DNA chromatin features
based on methylation profiles. We used the 15 chromatin states from the
111 epigenomes study29 which were derived from primary mononuclear
cells (E062) using 450k arrays.
We studied the location of the CpGs from the signatures and

characterized the proportion of CpGs from islands, shores, shelves, and
open seas.
We calculated significance levels by comparing the distribution of

chromatin states and genome location of the CpGs from the FLYP
signature with 1000 lists of the same number of CpGs randomly selected
from the entire genome.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data is available at https://doi.org/10.5281/zenodo.6578747 and https://
github.com/alespe/PredDNAm. A portion of the dataset is not publicly available due
to restrictions imposed by Swedish legislation on the protection of personal data, but
is available under request (contact person Ingvar Bergdahl, ingvar.bergdahl@umu.se).
The validation datasets are GSE4027945, GSE3736246, GSE4237247, GSE10938148 and
The Cancer Genome Atlas (TCGA) DLBC (https://www.cancer.gov/tcga).
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