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A single-cell based precision medicine approach using
glioblastoma patient-specific models
James H. Park1,9, Abdullah H. Feroze 2,9, Samuel N. Emerson2,9, Anca B. Mihalas2,3, C. Dirk Keene 4, Patrick J. Cimino 4,
Adrian Lopez Garcia de Lomana5, Kavya Kannan1, Wei-Ju Wu1, Serdar Turkarslan1, Nitin S. Baliga 1,6✉ and Anoop P. Patel 2,3,7,8✉

Glioblastoma (GBM) is a heterogeneous tumor made up of cell states that evolve over time. Here, we modeled tumor
evolutionary trajectories during standard-of-care treatment using multi-omic single-cell analysis of a primary tumor sample,
corresponding mouse xenografts subjected to standard of care therapy, and recurrent tumor at autopsy. We mined the multi-
omic data with single-cell SYstems Genetics Network AnaLysis (scSYGNAL) to identify a network of 52 regulators that mediate
treatment-induced shifts in xenograft tumor-cell states that were also reflected in recurrence. By integrating scSYGNAL-derived
regulatory network information with transcription factor accessibility deviations derived from single-cell ATAC-seq data, we
developed consensus networks that modulate cell state transitions across subpopulations of primary and recurrent tumor cells.
Finally, by matching targeted therapies to active regulatory networks underlying tumor evolutionary trajectories, we provide a
framework for applying single-cell-based precision medicine approaches to an individual patient in a concurrent, adjuvant, or
recurrent setting.
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INTRODUCTION
GBM is a highly lethal malignancy of the brain that is refractory to
standard-of-care (SOC) therapy, which consists of surgery, radia-
tion (XRT), and chemotherapy with the DNA-alkylating agent
temozolomide (TMZ)1–3. Despite aggressive treatment, median
survival is only 14–17 months. Previous studies have shown that
GBM tumors are complex ecosystems of normal cell types and
diverse malignant tumor-cell states4–6. Such intratumoral hetero-
geneity complicates tumor treatment informed by genomic,
epigenomic, and transcriptomic biomarkers of response detected
in bulk because these markers may not be ubiquitously present
across the entire tumor-cell population.
The functional consequence of such heterogeneity is the

existence of a diverse tumor-cell population composed of distinct
cellular phenotypes that can divergently respond to both intrinsic
and extrinsic pressure. For instance, SOC-treatment may lead to
the selection or induction of drug-resistant states7 along
evolutionary trajectories that are as yet unknown. Thus, tumor
composition just after SOC treatment represents a critical
timepoint in the evolution of the disease, but is largely under-
studied because patient tumors are not typically sampled at this
time as part of routine clinical care. Consequently, the ‘residual’
disease and corresponding tumor-cell states that ultimately lead
to recurrence are poorly understood. To elucidate the evolu-
tionary trajectories of a given patient’s GBM tumor, tractable
model systems that accurately reproduce the heterogeneous
tumor-cell states at baseline and those that emerge due to SOC-
treatment are necessary.
Precision medicine approaches have traditionally focused on

mutation-based profiling but have expanded more recently to
include bulk-level transcriptional profiling. However, bulk-level

analysis obscures underlying intratumoral heterogeneity and
the importance of specific cell-state vulnerabilities. Traditional
analysis, e.g., differential gene expression, of transcriptional
profiles does not necessarily generate mechanistic insights on
master regulators that drive cell-state biology. In theory, these
master regulators represent important cell-state-specific vulner-
abilities that could be exploited for the development of
therapeutic strategies.
Here, we report a framework developed specifically to model

and characterize non-genetic tumor-cell states at various
stages of GBM progression including disease onset, recurrence,
and the critically understudied periods immediately following
SOC-treatment prior to recurrence (Fig. 1a). We applied this
framework to an individual patient by performing single-
nucleus multi-omic analysis (snRNA-seq, snATAC-seq) of the
initial patient biopsy, time-series sample set collected from
untreated and SOC-treated patient-derived xenografts (PDX),
and the matched XRT-treated recurrent tumor collected at
autopsy. We show that the untreated and treated PDX models
recapitulated certain phenotypic states observed in the
primary and recurrent tumor. Moreover, through the applica-
tion of systems biology and network inference approaches, we
identified multiple candidate mechanistic drivers of treatment-
induced transitions in the epigenetic states of tumor cells6,8,9.
Finally, we applied these network-based insights to identify
potential therapeutics that could target specific cell states
during various stages of tumor evolution. Together, these
results provide a proof-of-concept for how such a framework
can inform the rational design of precision therapeutic
regimens that account for intratumoral heterogeneity within
a given patient.
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RESULTS
Modeling framework
Our modeling framework used samples derived from a single
patient with GBM that was surgically resected, snap frozen, and
processed for single nucleus analysis. Biopsy material was also

directly xenotransplanted into four NSG mice to generate a cohort
of ‘patient avatars’, which were split into either a control (n= 2) or
treatment (n= 2) group (Supplemental Table 1). The treatment
group was then harvested 24 h (early) or 72 h (late) post-
treatment-completion. These timepoints represent intermediate
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points in the evolutionary trajectory of the disease that are not
routinely sampled as part of clinical care. The patient ultimately
reached the terminal stage of disease and was enrolled in a rapid
autopsy program that produced snap frozen tissue having a post-
mortem interval of 8.75 h. This complete sample set was then
integrated into a comprehensive ‘time lapse’ model of tumor-cell
states spanning the entire disease process.

scSYGNAL reveals multiple transcriptional network states in
primary tumor cells
We first created a reference landscape from the primary tumor
sample by integrating 4318 single-nucleus RNA-seq (snRNA-seq)
and 3405 single-nucleus ATAC-seq (snATAC-seq) profiles into a
common latent space via uniform manifold approximation and
projection (UMAP, Fig. 1b). We then identified 4924 tumor cells
(63.7% of the total cell population), characterized by a chromosome
7 gain and chromosome 10 loss, via inference of single-cell CNV
state (Supplementary Fig. 1)5,10,11 and gene expression markers
SOX2, PTPRZ1, and EGFR. The remaining cells were classified into
known cell types, based on established gene markers, representing
the expected composition of the tumor microenvironment (Fig. 1c,
d, Supplemental Table 2).
We then adapted the Systems Genetics Network AnaLysis

(SYGNAL) platform12 to analyze the snRNA-seq profiles (scSYG-
NAL) and identify distinct epigenetic programs that were
differentially active across tumor-cell subpopulations in the
primary tumor. Briefly, using biclustering of snRNA-seq data, we
inferred regulons, i.e., sets of genes that share similar expression
patterns and are putatively co-regulated by the same set of
transcription factors (TFs) or miRNAs across a sub-population of
single cells. Our analysis revealed the mechanistic co-regulation
of 809 genes across 160 regulons by at least 65 TFs and 141
miRNAs (Supplementary Tables 3, 4). Subsequent analysis via
Mining for Node Edge Relationships (MINER) algorithm13 revealed
a subset of 93 significant regulons that included 52 non-
redundant TFs regulating 454 target genes (Methods, Supple-
mentary Tables 3, 4). Of the 52 TFs identified, 33 TFs (63.4%,
p value= 0.009) have been reported to play biologically mean-
ingful roles in GBM12,14, indicating that the single-cell-level network
analysis had identified GBM-relevant regulatory mechanisms
(Supplementary Table 5). These 93 regulons were further clustered
into five metaregulon groups, i.e., transcriptional programs, each
characterized by distinct regulon activity profiles across the tumor-
cell snRNA-seq profiles (Fig. 1d, e). Comparison of these transcrip-
tional programs with results from unbiased principal component
analysis (PCA) revealed that these programs captured major
sources of expression variation as regulon activity levels correlated
with PC sample scores along multiple PCs (Supplementary Fig. 2).
Each program was enriched (FDR p value ≤ 0.1) with top-loading
genes (largest absolute loading values) along PCs 1 and 2
(Supplementary Table 6). Moreover, expression of top-loading

genes within these programs showed a gradient behavior across
tumor cells sorted according to their sample scores along PCs 1
and 2 (Supplementary Fig. 2). Finally, distinct biological processes
and molecular functions were enriched15 within each program
(Fig. 1d, Supplementary Table 7), the amalgamation of which we
defined as a transcriptional network state.
The primary tumor cells sharing similar transcriptional network

states clustered into five sample groups, with each group
exhibiting up- or down-regulated activity of specific programs
(Fig. 1e). For example, the SG-4 subpopulation expressed
increased activity in program 1 (Pr-1), which was enriched for
hypoxia-associated genes like VEGFA, PLOD2, and PDK1. Con-
comitantly, SG-4 exhibited decreased activity of cell-cycle-related
regulons (Pr-4) and a corresponding enrichment of non-
proliferating cells (Methods, Fig. 1f, Supplementary Table 8)16.
Similarly, almost every group had some characteristic upregulated
program activity (SG-1: angiogenesis, SG-2: immune function and
cytokine/interleukin signaling, SG-3: proliferation). SG-5, however,
did not exhibit upregulation of any specific program. Rather, these
cells expressed varying activity levels of multiple regulons across
multiple programs. It is possible that SG-5, which was enriched for
proliferating cells (Fig. 1f, Supplementary Table 8), represented
tumor cells transitioning between states or tumor cells primed for
the expression of various programs.
As these network states represent a novel, regulatory

mechanism-based organization of tumor cells, we compared the
scSYGNAL-derived network states to two recently established
organizing frameworks that characterize GBM tumor-cell hetero-
geneity and plasticity4,17. Categorizing tumor cells along a MES-PN
axis17 resulted in large proportion (26.5%) of uncategorized tumor
cells (Supplementary Fig. 3), suggesting that this framework was
not appropriate for characterizing this specific tumor accurately.
We then considered a modular framework4, which proved to be
more appropriate as a much smaller proportion of tumor cells
(7.3%) remained uncategorized. We found that the primary tumor
cells categorized across all four meta-modules (Supplementary
Figs. 3-4). Importantly, each transcriptional network state included
cells from all meta-modules, suggesting that scSYGNAL-defined
cell states whose regulatory relationships spanned previously
defined cell states primarily based on gene expression profiles.

scSYGNAL and snATAC-seq analysis identifies a network of
regulators mediating GBM-relevant gene expression
programs in primary tumor cells
Analysis of snATAC-seq data revealed TF motifs enriched in
differentially accessible regions of the genome across the tumor-
cell population. Using the ArchR package and chromVAR
method18,19, we identified 141 TFs with differential binding
activity across the primary tumor cells (Fig. 1g), 103 of which
had motif deviation scores18 that correlated with inferred gene
expression, i.e., gene scores (Fig. 1h), which provided greater

Fig. 1 Multi-modal single-cell characterization of UW7 primary tumor biopsy. a Schema of overall modeling and analytical framework.
UMAP projections of integrated snATAC-seq (4318) and snRNA-seq (3405) profiles. Color annotations indicate (b) data type or (c) cell type.
d Violin plots of cell-type marker gene expression (log2(normalized counts+ 1)). e scSYGNAL/MINER analysis of tumor cells (3130) identified
from snRNA-seq profiles from UW7 primary tumor biopsy. Heatmap shows activity levels (z-scores) of regulons (rows) across tumor cells
(columns). Regulons are grouped into transcriptional programs (Pr-X) and tumor cells sharing similar regulon/program activity profiles are
grouped into transcriptional network states (SG-X). f Proportions of SG-X cells in specific cell-cycle phase. Asterisks indicate significant
enrichment of cells in a particular cell-cycle phase (FDR p value≪ 0.01). g Violin plots of standardized deviation accessibility scores (deviation
scores), determined via snATAC-seq, of top three TF binding motifs per network state. h Scatter plot of TF motif deviation vs. correlation to
inferred gene expression (gene score) via snATAC-seq profiles. Orange points indicate TF regulators whose deviation scores correlate with
their corresponding inferred gene expression (gene score) values (correlation ≥0.4, FDR-adjusted p value ≤ 0.1) and have a maximum inter-
sample group deviation score difference in the upper 50% quantile. Labeled TFs have maximal radial distance from the plot origin. i Upset
plot outlines number of TFs identified from scSYGNAL and ArchR analysis and number of common TFs shared across all combinations of
transcriptional programs and ArchR TF sets. Pie charts indicate the composition of transcriptional network states associated with a positive
deviation score for each consensus TFs.
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confidence in the putative role of a particular TF in modulating
expression behavior of downstream target genes. Comparison of
the TFs identified from scSYGNAL/MINER and snATAC-seq analysis
revealed a consensus set of seven TFs (AR, TEAD1, RUNX1, RORA,
EBF1, ZEB1, and TCF4). Many of these TFs play important roles in
tumor biology including TEAD1 via regulation of YAP/Hippo

signaling20–23, TCF4 via regulation of Wnt/β-catenin signaling24,
ZEB1 via regulation of epithelial to mesenchymal transition25,26,
and AR via mediation of radiation resistance in GBM27,28.
Importantly, only a subset of these consensus TFs of interest
would have been identified from snRNA-seq analysis alone
as only a few were differentially expressed across tumor-cell

JH Park et al.

4

npj Precision Oncology (2022)    55 Published in partnership with The Hormel Institute, University of Minnesota



subpopulations identified via unsupervised clustering (Supple-
mentary Table 9). While the importance of each of these putative
regulators in GBM requires further validation, this analysis
highlights the value of multi-omic network based approaches, as
it was able to identify additional TFs of interest using mechanistic
principles of regulation.
The fact that only seven out of 53 TFs were identified by both

analyses likely reflects the fact that RNA-seq and ATAC-seq
represent different readouts of epigenetic information. snATAC-
seq measures regulatory ‘potential’ based on accessibility of
chromatin and is not a direct measure of TF binding or
downstream activity. Conversely, RNA-seq data is an accurate
measure of downstream effects of TF activity. However, individual
genes and gene sets can be regulated by multiple TFs, which
convolutes interpretation of RNA-seq counts and corresponding
TF activity. Consequently, no single modality is capable of
accurately and completely predicting the putative TFs driving
transcriptional program activity, but the overlap between the two
orthogonal modalities provides a consensus set of high con-
fidence regulatory drivers.

Differential expression and network analysis demonstrate
that the PDX tumor avatars replicate primary tumor
phenotypic cell states and simulate SOC treatment-induced
cell states
We next sought to validate the use of PDXs as a model of
heterogeneous cell states in GBM. To do this, we compared
primary and PDX tumor cells across multiple levels ranging from
gene expression to functional phenotype using various analyses
including unsupervised shared nearest neighbor (SNN) cluster-
ing29, differential expression analysis, statistical enrichment
testing, and direct cell-to-cell comparison.
Dimensionality reduction via PCA and subsequent SNN-

clustering revealed that primary tumor cells organized into 11
SNN-clusters associated with 3,531 differentially expressed genes
(DEGs) (Figs. 2a, d, Supplementary Table 10) that were enriched for
multiple GBM-relevant processes (Supplementary Fig. 5. Supple-
mentary Table 11). Concomitantly, PDX tumor cells organized into
seven SNN-clusters associated with 1,731 DEGs (Fig. 2b, e,
Supplementary Fig. 6, Supplementary Table 12) that were
enriched for similar processes observed in the primary tumor
(Supplementary Fig. 5, Supplementary Table 13). Comparison of
PDX SNN-cluster membership to experimental treatment condi-
tions revealed that in some cases PDX SNN-clusters were primarily
composed of cells from a single treatment condition, whereas in
other cases cells from a single condition spanned several PDX
SNN-clusters (Fig. 2f). Enrichment analysis confirmed that nearly all
primary tumor SNN-clusters (except cluster 6), were enriched with
DEGs associated with PDX SNN-clusters (Fig. 2g). In addition, the
enrichment of functional gene sets30–32 shared across primary and
PDX tumor cell clusters suggests phenotypic similarity (Supple-
mentary Information, Supplementary Fig. 7, Supplementary Table
14). Together these results support the ability of the PDX models

to simulate, to an extent, primary tumor-cell states in the context
of this particular patient.
We then directly assessed similarities and differences between

the primary and PDX tumor samples on a cell-to-cell basis with
respect to transcriptional program gene expression. Hierarchical
clustering of tumor cells based on their cosine similarity profiles
produced five clusters, each composed of primary and PDX tumor
cells (Fig. 2h, i). Hypothesis testing revealed that all five clusters
had a significantly higher distribution of pairwise cosine similarity
values between PDX tumor and primary tumor cells than that
obtained from pairwise comparison of primary tumor cells only (p
values≪ 0.05; Fig. 2i). Moreover, projection of PDX tumor cells
into PC score and UMAP embedding space, defined by primary
tumor cells, showed that the PDX cells overlapped with the
primary tumor cells (Supplementary Fig. 5), corroborating
similarities between PDX and primary tumor cells within the
context of this particular patient.
Finally, examination of underlying functional regulatory mechan-

isms including regulon gene membership and transcriptional
network states showed additional similarities between primary and
PDX tumor cells (Supplementary Fig. 8). In particular, comparison
of transcriptional network states of primary tumor cells (batch-
integrated dataset, Supplementary Fig. 9) to those inferred from
untreated PDX samples (non-integrated dataset) via cosine
similarity showed that untreated PDX tumor cells exhibited
transcriptional network states similar to 44.8% of all network
states observed across primary tumor cells (Supplementary Fig. 10),
further corroborating the ability of the PDX tumor cells to simulate
cell states observed in the patient’s primary tumor.

Longitudinal categorization of tumor cells reveals distinct
dynamic behavior of network modules
To determine the mechanistic underpinnings of SOC-treatment-
induced changes in tumor-cell states over time, we collected
samples of untreated/treated PDX avatars at timepoints immedi-
ately following treatment, which are not clinically available for this
stage of disease progression. Analysis and visualization by UMAP
showed that the batch-integrated single-cell transcriptomes of the
primary and PDX tumor cells, which showed a high degree of
similarity to the non-integrated versions of the datasets at both
the regulon and transcriptional-program levels (Supplementary
Fig. 8), intermingled across several broad cell groups (Fig. 3a). We
identified four broad groups of tumor cells (Fig. 3b), informed by
SNN clustering and enrichment analysis of PDX treatment
timepoints within the SNN-clusters (Supplementary Fig. 9). Based
on the enrichment of timepoints, we ordered the groups into
longitudinal stages (Supplementary Fig. 11). The pre-treatment
(PT) stage was enriched for cells from the primary tumor and
untreated PDX conditions. The “immediate post-treatment” stage
(IPT) was enriched for PDX samples collected from the 24-h post-
treatment timepoint. The “late post-treatment” (LPT) stage was
divided into two subpopulations: LPT-A, which was enriched for
samples from both 24-h and 72-h post-treatment timepoints, and

Fig. 2 Differential expression and enrichment analysis of primary and PDX tumor cells. a 3D UMAP plot of snRNA-seq profiles of UW7
primary tumor cells. Colors indicate SNN-clusters. b 3D UMAP plot of snRNA-seq profiles of PDX tumor cells. Colors indicate SNN-clusters. c 3D
UMAP of PDX tumor cells annotated by their respective treatment condition. d Heatmap of normalized gene expression (Methods) of DEGs
from the primary tumor cells. The 251 DEGs shown are those genes that have the largest differential expression magnitude in both primary
tumor and PDX datasets. e Heatmap of normalized expression in PDX samples of the same DEGs depicted in b. f Proportions of each PDX
condition within each SNN-cluster. Asterisks indicate those conditions that are significantly enriched (FDR-adjusted p value≪ 0.1) within each
SNN-cluster. g Heatmap of FDR p values indicating significant enrichment of PDX cluster-specific DEGs in primary tumor cluster-specific DEGs.
h Heatmap of cosine similarity values from pairwise comparison of all primary and PDX tumor cells, based on expression of genes comprising
all transcriptional programs. Dendrograms indicate five distinct clusters of tumor cells based on hierarchical clustering. i Stacked bar plots
show proportion of tumor cell conditions in each cluster. Asterisks indicate hierarchical clusters that have distributions of cosine similarity
values, derived from pairwise comparison of all cells within each cluster, that were significantly higher than the distribution from pairwise
comparison of only primary tumor cells (FDR p value ≪ 0.01).
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LPT-B, which was enriched for PDX samples from just the 72-h
post-treatment timepoint. Finally, the “recurrent” (REC) stage
included 72-h post-treatment PDX samples, onto which a majority
of the recurrent tumor cells (Supplementary Fig. 12) projected in
the co-embedded UMAP space (Fig. 3a, Supplementary Fig. 13).
This overlap was corroborated by significant enrichment of
regulons and transcriptional programs that were active in 72 h

post-treatment PDX samples (PDX-tr2) within the recurrent tumor
cells (Fig. 3c) as well as by phenotypic similarity between the
recurrent tumor cells and those belonging to the REC stage
(Supplementary Fig. 14).
It was important to delineate the longitudinal stages in this

manner because unsupervised SNN clustering identified clusters
mixed with cells from different timepoints. This is consistent with

JH Park et al.
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the fact that the evolutionary trajectories as a consequence of
treatment and disease progression represent a mixture of
“selected” cell states that become enriched or depleted over time
and “induced” cell states that are not abundant or present at
disease onset, but likely emerge in response to intrinsic and
extrinsic factors.

scSYGNAL/Open Targets platform analysis identifies drugs
targeting selected/induced and recurrent cell states
We next investigated whether the scSYGNAL-derived network
understanding could enable a therapeutic strategy using drugs
that putatively target active transcriptional programs across
tumor-cell states along evolutionary trajectories through which
tumor cells escape treatment (Supplementary Table 15). Using the
Open Targets platform33, a curated database of drug-target
pairings, we identified drugs targeting TFs or downstream genes
in regulons and transcriptional programs having distinct long-
itudinal activity patterns across the PT, IPT, LPT, and REC stages
(Supplementary Table 16). The first distinct pattern identified,
labeled as ‘selected against’, was characterized by regulons
expressing high activity early in the disease and low activity
post-treatment, such as those regulated by TEAD1 and TCF4
(Fig. 3d). This pattern suggests that SOC-treatment effectively
decreased network activity of these regulons. The second pattern
observed described regulons having increased activity in the REC
stage (“selected/ induced”), and informed us of potential targets
for salvage therapy at the time of recurrence. PRRX1, which has
been associated with TGF-ß signaling34, could potentially be
targeted with galunisertib (Fig. 3d). IKZF2 and its corresponding
regulon genes also showed increased activity in the REC stage
(FDR p value= 0.00, Fig. 3d and Supplementary Fig. 11).
Accordingly, IKZF2 can be targeted indirectly by CDK4/6 inhibitors
that target CDK4 activity, which was downstream of IKZF2
(Supplementary Table 16).
A unique strength of this modeling framework is that it enables

the identification of regulons and cell states that are transiently
induced during or immediately following treatment. As these cell
states likely represent ‘residual’ disease that lead to tumor
recurrence, they are of clinical importance. Unfortunately, because
activity transiently arises at a time when clinical sampling rarely
occurs, these states are missed from typical clinical specimen
analysis. However, in our framework transient states were
represented clearly by the IPT and LPT stages. SP100, reported
to play a prominent role in GBM35,36 and a TF driver for regulon-7,
displayed such transient behavior (Fig. 3d). Regulon-7 showed
increased activity in PDX cells enriched in the IPT stage and was
enriched in upregulated DEGs specific to 24 h post-SOC-treatment
PDX cells (p value= 8.13e-04). Moreover, regulon-7 was not
enriched for upregulated DEGs associated with any other time-
points or stages. Interestingly, regulon-7 included PDGFC and
MEOX2, which have been associated with poor prognosis and

GBM aggressiveness37,38. SOX5, a TF for regulon-67 (Fig. 3d), was
another regulator with similar transient activity patterns. In this
case, Open Targets analysis identified the TGF-β pathway39–41 and
TTK42 as downstream druggable targets for regulon-67. Transient
states governed by TFs such as SP100 and SOX5 are appealing
targets for concurrent therapies that could be trialed in
conjunction with SOC, or as adjuvant therapies after SOC has
been completed but prior to recurrence.
Finally, we were also able to identify a number of TFs of

interest, including RFX3 and RFX7 (Fig. 3e) from snATAC-seq
analysis of the recurrent tumor autopsy specimen. These two TFs
play roles in ciliogenesis in the central nervous system, an
important pathway in regulating GBM growth and resistance to
therapy43. While RFX3 was differentially expressed across the
tumor-cell populations, RFX7 was not and would have been
missed using snRNA-seq analysis alone (Supplementary Table 17),
further highlighting the value of multi-omic data analysis in
identifying potential TF targets.

DISCUSSION
In this study, we developed a modeling and analytical frame-
work to investigate, at single-cell resolution, GBM progression in
an individual patient from early disease onset (primary tumor),
post-SOC-treatment (PDX mice), and eventual recurrence
(recurrent tumor collected at autopsy). We used single-cell,
multi-omic profiles, in combination with a priori knowledge of
cell types/states and regulatory relationships, to define tumor-
cell-state composition and delineate how that composition
changed in response to SOC-treatment. These results provide a
comprehensive view of the evolutionary trajectory underlying
GBM progression within a patient, including the understudied
stage immediately following SOC-treatment.
Differential expression, functional enrichment, and direct

comparative analysis of clusters identified in the primary and
PDX tumor cells revealed similarities among specific primary
and untreated PDX tumor cell clusters observed across multiple
levels ranging from gene expression, to functional phenotype.
While these findings showed that PDX mice models recapitu-
lated multiple phenotypic characteristics of a primary tumor, it
is important to interpret these results in the context of the
single patient from which these models were derived. Although
this framework is singularly focused on an individual patient,
these results support the possibility of using PDX models on a
broader scale and warrants further study to confirm the
consistent accuracy of such models required for general use in
clinical care. This is conceptually important as model systems
that faithfully represent the heterogeneity seen in patient
tumors are currently lacking.
Concomitantly, we applied the network-inference methodology

SYGNAL44 to infer the underlying regulatory relationships at
single-cell resolution (scSYGNAL). This is the first application of the

Fig. 3 Modeling tumor progression and tumor response to standard of care. a UMAP plot of integrated snRNA-seq profiles of UW7 primary
tumor (3130) and PDX tumor cells (4388). Colors indicate treatment conditions (Primary: tumor biopsy, PDX-1/2: untreated samples collected
at 24 h and 72 h post-treatment of corresponding XRT/TMZ-treated conditions, respectively, PDX-tr1/tr2: samples collected 24 h and 72 h,
post-TMZ/XRT treatment, respectively). b Four main longitudinal stages (PT pre-treatment, IPT immediate post-treatment, LPT late post-
treatment- (a, b), REC recurrent). Heatmaps show corresponding regulon activity z-scores across tumor-cell subpopulations. Color bars
indicate experimental condition of cells as described in a. Black arrowheads underneath color bars indicate nearest primary/PDX tumor cell
neighbor to recurrent tumor cells, which were co-embedded in the UMAP space (Supplementary Fig. 13). c Gene set enrichment analysis of
regulon gene sets in recurrent tumor cell snRNA-seq profiles. Top color bar indicates transcriptional programs. Right adjacent color bars
indicate samples statistically enriched with regulons for a particular transcriptional program (FDR-adjusted p values ≤ 0.1). d Violin and
embedded boxplots of regulon activity across longitudinal stages. Selected regulons exhibit distinct activity patterns characteristic of
“selected-against”, “selected/induced”, or “transient” behavior. Centerline and bounds of the box for each boxplot represent the 50th, and 25th/
75th percentile of the cosine similarity values, respectively. Whiskers capture ±1.5 * interquartile range. Asterisks indicate stages where
regulon activity is significantly higher relative to the rest of the primary/PDX tumor-cell population (FDR-adjusted p value < 0.01). e Violin plots
of deviation scores across recurrent tumor snATAC-seq profiles. Green background highlights seven consensus TFs (Fig. 1i).
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SYGNAL approach in the single-cell context. Through this analysis,
we were able to infer regulatory network programs and define
tumor-cell subpopulations based on common regulatory mechan-
isms and similar regulatory network states. Importantly, these
network states spanned multiple SNN-clusters and previously
established meta-module cell states4. In theory, therapeutic
strategies targeting regulatory mechanisms have the advantage
of potentially targeting multiple cell states simultaneously. As
such, our method represents an alternative approach to cell state
identification based on gene expression alone. Further experi-
mental validation is required to determine which method is more
robust, requiring the use of functional assays to determine the
prevalence of tumor-cell subpopulations defined by the different
methods. It is also important to note that many of these potential
regulators may not be directly druggable and will require
techniques like CRISPR-Cas9 or antisense RNA-mediated targeting
to validate their regulatory roles. Regardless, insights into inferred
regulatory mechanisms and their activity throughout disease/
treatment progression enabled us to identify TFs of interest and
potential therapeutic strategies having plausible clinical relevance
for this particular patient.

Model limitations and future work
While this framework represents a deep characterization of GBM
tumor-cell-state evolution in an individual patient, experimental
testing is required to validate the predicted drug-target pairings.
The next logical step in this approach is to test predictions of
putative therapeutic activity in relevant model systems. Due to
limited biopsy sample availability, we were unable to test these
predictions in an appropriate, patient-specific model system in this
case. Ideally, this would have involved continuous maintenance of
a corresponding PDX model (via serial transplantation), an
important future direction for this work. Equally important is the
systematic characterization of the faithfulness of serially trans-
planted PDXs to the original patient tumor, which has yet to be
performed and requires further study. Nevertheless, predicting
therapeutic efficacy using systems biology-based analysis of
single-cell data shows promise, but needs to be fully validated
and will require larger studies using complex model systems.
To our knowledge, this is the first study that infers tumor

evolutionary trajectories from single-cell analysis of a comprehen-
sive patient-specific sample set (primary tumor biopsy, treated
patient avatars, and a matched recurrent tumor), and subse-
quently translates these results into potential therapeutic insights.

The proof-of-concept work presented herein supports the use of a
modeling and analytical system to characterize the spatiotemporal
heterogeneity of an individual patient’s tumor throughout disease
progression, particularly during stages post-SOC, and inference of
potential therapeutic vulnerabilities (Fig. 4). Ultimately, the
information gathered from this type of approach could inform
clinical treatment in a more targeted, rational manner and enable
precision medicine that addresses intratumoral cell heterogeneity
and cell-state evolution.

METHODS
Tumor acquisition
Based upon institutional review board (IRB)-approved protocols (proto-
col #STUDY00002162), intraoperative tumor specimens from adult
patients who voluntarily consented to donation to the institutional
tumor bank were collected in cryogenic vials (Corning; Corning, NY) and
immediately snap frozen in liquid nitrogen. All patient specimens were
anonymized prior to processing. Tumor pathology and diagnosis was
confirmed by a neuropathologist as WHO grade IV glioblastoma, IDH-
wild type. The specimen was subsequently stored in −80 °C freezers for
further experimentation. Autopsy tissue was collected after informed
consent with a waiver from the University of Washington IRB with a
post-mortem interval of approximately 8.75 h. Tissue was snap
frozen in liquid-nitrogen cooled isopentane. Tumor regions were
sampled based on gross examination of brain sections and processed
as outlined below.

Tissue processing
Frozen tissue was processed to nuclei using the Frankenstein protocol
from Protocols.io. Briefly, snap frozen glioblastoma tissue was thawed on
ice and minced sharply into <1mm portions. 500 μl chilled Nuclei EZ Lysis
Buffer (Millipore Sigma, NUC-101 #N3408) was added and tissue was
homogenized 10-20 times in a Dounce homogenizer. The homogenate
was transferred to a 1.5 ml Eppendorf tube to which 1 mL chilled Nuclei EZ
Lysis Buffer was added. The homogenate was mixed gently with a wide
bore pipette and incubated for 5 min on ice. The homogenate was then
filtered through a 70 μm mesh strainer and centrifuged at 500 g for 5 min
at 4 °C. Supernatant was removed and nuclei were resuspended in 1.5 mL
Nuclei EZ lysis buffer and incubated for 5 min on ice. Nuclei were
centrifuged at 500 g for 5 min at 4 °C. After carefully removing the
supernatant, nuclei were washed in wash buffer (1x PBS, 1.0% BSA, 0.2 U/μl
RNase inhibitor). Nuclei were then centrifuged and resuspended in 1.4 ml
wash buffer for two additional washes. Nuclei were then filtered through a
40 μm mesh strainer. Intact nuclei were counted after counterstaining with
Trypan blue in a standard cell counter.

Fig. 4 Comprehensive schematic of glioblastoma progression. Distinct populations of “induced”, “selected”, and “transient” tumor-cells
states, regulons, and TFs (bold) contribute to intratumoral heterogeneity, which plays a role in treatment resistance. As cell states may be
differentially susceptible to treatment and may be selected for or induced by therapeutic intervention, use of a more complete view of cell
state trajectories with scSYGNAL and MINER analysis may allow for the prediction of therapies that work in either the concurrent setting
against cell states or an adjuvant/neo-adjuvant setting against induced cell states. Figure components were created via BioRender.com.
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Animal models
All animal procedures were performed in accordance with protocols
approved by the Institutional Animal Care and Use Committee (IACUC) at
Fred Hutchinson Cancer Center and the University of Washington. Animals
were housed at a maximum of five per cage with 14-h light/10-h dark cycle
with food and water ad libitum. Female 4–8 week-old NOD-SCID mice
(NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ, Jackson Labs; Bar Harbor, ME) were used
for all experiments with random assignment into treatment groups where
applicable. Mice were monitored at least three times weekly for weight loss
and other signs of neurologic or physical distress.

Patient-derived xenograft modeling
Fresh surgically resected tumor sample was placed in sterile phosphate
buffered saline and transported to Fred Hutchinson Cancer Center for
further processing. Tumor specimen was dissociated with the use of a
papain-based tumor dissociation kit (Miltenyi Biotec, 130-095-942) as per
manufacturer’s instructions. Intracranial orthotopic transplantation of
single-cell suspension human glioblastoma tumor cells into murine mouse
models were performed in standard, IACUC-approved fashion. Briefly, mice
were induced with 5% isoflurane and maintained at 2% isoflurane in
oxygen thereafter. After appropriate placement on a stereotactic frame
(Stoelting Co.), the skull of the mouse was exposed through a small skin
incision, and a small 1 mm2 burrhole was placed shortly behind and lateral
to bregma using a 25-gauge needle. Freshly dissociated cells were
suspended in 5mL of PBS and loaded into a 33-gauge Hamilton needle
syringe. The cells were then subsequently injected 2.0 mm lateral and
posterior to the bregma and 2mm deep to the cortical surface. After
completion of injection, the syringe was left in situ for another minute
before removal in attempt to minimize risk of cell reflux. After scalp closure
with suture, the mice were removed from anesthesia and allowed to
recover on warming pads and returned to their cages following full
recovery. Mice were then checked daily for five consecutive days for signs
of distress or neurologic disability. Mice were also monitored using a small
animal 1.5 T MRI to track the degree of intracranial tumor, initially four
weeks following injection and then again upon signs of neurologic
symptoms, including ataxia, head tilt, seizures, or cachexia. Mice were
sacrificed as soon as they demonstrated symptoms, and their brains were
collected directly following euthanasia.

Radiation and TMZ treatment
Tumor-bearing mice, as confirmed by small animal MRI, were given 50mg/kg
of temozolomide dissolved in 5% DMSO/saline or vehicle intraperitoneally for
five consecutive days. On the same days, tumor-bearing mice were sedated
with ketamine and xylazine and irradiated using a X-RAD 320 from Precision
X-Ray at 115 cGy/min as has been performed previously45.

10x Chromium snRNA-seq & snATAC-seq
Single-nucleus RNA sequencing was performed using the 10X Chromium
v2 system. Briefly, nuclei were isolated, hashed according to timepoint
(see below), and pooled prior to loading on a 10X Chromium chip using
single cell RNA-seq 3’ v3 chemistry (SingleCell RNA ReagentKits v3.0
UserGuide RevC) with a targeted cell recovery of 12,000. Gel emulsions
were recovered from the microfluidic chip and full-length cDNA libraries
were fragmented, end repaired, A-tailed, and ligated to 10X read 2
adapters prior to SPRI cleanup. Final indexing PCR with P5 and P7 Illumina
primers was performed as per standard protocols and libraries were
quantified using TapeStation D1000, pooled, and sequenced on an
Illumina NovaSeq 6000 to a read depth of 50,000 reads per cell using
paired end 28:8:0:91 read lengths. snATAC-seq was performed per
manufacturer instructions (SingleCell ATAC ReagentKits v1.1 UserGuide
RevD). Briefly, nuclei were isolated as already described and transposed in
bulk using standardized amounts of Tn5 per 10X protocols. Nuclei were
diluted to an appropriate concentration to target a recovery of 5000 and
loaded on a 10X Chromium ATAC Controller Chip. Resulting transposed
and single-cell barcoded DNA was then denatured and linearly amplified,
followed by SPRI cleanup and Illumina P5 and P7 indexing as per standard
protocol. Libraries were quantified using TapeStation D1000, pooled and
sequenced on an Illumina NovaSeq 6000 to a read depth of ~50,000 reads
per using paired end 50:8:16:50 read lengths.

Cell hashing and demultiplexing
Single nuclei from each PDX condition were labeled with 1 μl condition-
specific hashtag oligonucleotide-labeled antibodies (BioLegend, TotalSeq
A0541-A0545) according to manufacturer’s protocol prior to pooling and
loading on a single lane of the 10X Chromium v2 system. The HTO library
was processed separately and spiked in at 10% of the mRNA library prior to
sequencing. Demultiplexing of pooled single-cell samples relied on
subsequent HTO raw counts generated from snRNA-seq to classify
computationally single-cells in their appropriate experimental condition.
Demultiplexing was performed using the HTODemux function in the Seurat
v3.2.2 platform29. The resulting single-cell annotation indicated experi-
mental conditions and potential doublet or untagged state of a cell.

Doublet prediction
For those cells not processed using cell hashing, i.e., UW7 primary and
UW7 recurrent autopsy cells, an alternative, computationally-based
approach known as DoubletDecon was used to identify likely doublet
samples46. Briefly, DoubletDecon generates synthetic doublets by merging
transcriptional profiles from randomly selected pairs of cells belonging to
distinct cell clusters identified in the dataset. These synthetic doublets are
used, in conjunction with the previously identified clusters to create a
deconvolution cell profile (DCP) for the entire cell population. Pearson
correlations are then calculated between each DCP and the centroid of
each cluster. Those cells having the highest correlation to clusters
comprised of synthetic doublets are labeled as doublets. Prior to final
labeling of cells, a rescue step is performed in which certain cells may
avoid doublet labeling if the cell contains statistically significant
upregulated expression, relative to a synthetic doublet cluster, for a
minimum number of genes. Cells meeting that criteria are reincorporated
into the non-doublet population. Finally, due to the random nature of
synthetic doublet, it is likely that doublet predictions will vary run-to-run.
Therefore, we conducted 50 runs to identify a consensus set of predicted
doublets, which were subsequently excluded from downstream analysis.

Quality control and snRNA-seq data pre-processing
We initially processed the 10X Genomics raw data using Cell Ranger Single-
Cell Software Suite (release 3.1.0) to perform alignment, filtering, barcode
counting, and UMI counting. Reads were aligned to the GRCh38 reference
genome using the pre-built annotation package download from the 10X
Genomics website. We then aggregated the outputs from different lanes
using cellranger aggr function with default parameter settings.
Each sample set analyzed via snRNA-seq (UW7 primary-, UW7 PDX-, and

UW7 recurrent-tumor samples collected at autopsy) was QC-filtered
separately prior to data integration, as in the case of primary and PDX
tumor samples, and/or subsequent downstream analysis. Each sample set
consisted of the following: 5082 cells with 27,763 mapped genes (UW7
primary tumor), 11,648 cells with 26,231 mapped genes (UW7 PDX
samples), and 690 cells with 19,917 mapped genes (UW7 recurrent autopsy
tumor). To minimize inclusion of poor-quality genes and single-cell
samples, we applied the following QC filters: (1) mitochondrial genes
must comprise ≤ 20% of the number of uniquely mapped genes/cell, (2)
total counts/cell should be ≥500 and ≤50,000 (UW7 primary tumor cells),
≥500 and ≤24,000 (UW7 PDX samples), or ≥500 and ≤4000 (UW7 recurrent
autopsy tumor), and (3) the total number of mapped genes should be
≥500 genes and ≤10,000 (UW7 primary tumor cells), ≥500 genes and
≤7000 (UW7 PDX tumor cells), or ≥500 genes and ≤30,000 (UW7 recurrent
autopsy tumor). Following QC-filtering, each sample set consisted of: 4456
cells expressing up to 19,228 genes (primary tumor), 4388 expressing up to
26,231 genes (PDX tumors), and 350 cells expressing up to 12,463 genes
(recurrent tumor).

Data normalization of snRNA-seq data
We applied the SCTransform function, provided in the Seurat v3.2.2
platform, to normalize and variance-stabilize UMI counts in the single-cell
data. This function develops a regularized negative binomial regression
model to characterize the UMI count distribution on a gene-by-gene basis.
This model is then used to determine Pearson residuals, i.e., the square
root of the variance-normalized difference between the actual gene count
and model-predicted counts. These residuals represent the standardized
expression values not affected by technical artifacts and were used for
downstream analysis. Concomitantly, mitochondrial gene expression
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influence was regressed out of expression for each gene in each cell, as
part of the SC-normalization procedure.

Cluster identification and analysis of differentially expressed
genes (DEGs) of primary-, PDX-, and recurrent-tumor snRNA-
seq data
After quality control and filtering, SC-normalized data for all 6867 genes
common to the primary- and PDX-data sets and 6541 genes common to
the recurrent tumor data were used for dimensionality reduction via
principal component analysis (PCA). The first 30 principal components
were used as a basis to create a shared nearest neighbor (SNN) graph of
the single-cell samples. From this graph, clusters of single cells were
identified via Leidan clustering of nodes, i.e., single cells, from the
SNN graph.
To identify DEGs in each of the SNN-clusters identified across the

primary tumor and PDX single-cell samples, the FindMarkers function in
Seurat was used. In particular, the Wilcoxon rank sum test was used with
the following cutoff values to identify DEGs: absolute fold change ≥log2
(1.25), minimum proportion of cells of interest expressing the gene for
consideration= 0.1, and an FDR-adjusted p value of 0.1. In the case of the
recurrent tumors, DEGs were determined based on expression between
cells identified as tumor cells (refer to snRNA-seq cell-type and tumor cell
annotation section) and non-tumor cells.

snRNA-seq cell-type and tumor-cell annotation
Established CNS cell-type-specific genes were used to determine gene set
module scores for each cell. Gene module scores were determined using
the AddModuleScore function provided in Seurat. In brief, the module score
represents the difference between the mean expression of the gene set of
interest and the average expression of a randomly selected set of control
genes. To create a control gene set, all genes are grouped into 25 bins
according to their respective average expression. Next, for each gene in
the gene set of interest, a corresponding set of 100 randomly selected
genes is selected from the same expression bin. This results in a control set
that is 100-fold larger in size, which is analogous to averaging over 100
randomly selected gene-sets identical in size to the gene set of interest.
Positive module scores indicate that the gene set of interest has higher
expression than what is expected by random chance and vice versa. Final
cell-type assignment was based on which corresponding gene set resulted
in the highest positive module score above a threshold value of 0.05. To
annotate tumor cells, inferCNV11 was used to infer the copy number
variation state of each cell (Supplemental Text). Both cell-type and tumor
cell state, defined by Chr7 gain and Chr10 loss, were used to determine
final cell-type annotation for the primary and recurrent tumor biopsy
samples (Supplementary Figs. 1, 12).
Module scores were determined for each meta-module (MES1, MES2,

AC, OPC, NPC1, and NPC2) as defined by Neftel et al. (2019). Initially, each
cell was assigned a meta-module state based on the maximum score, as
described previously. To simplify tumor-cell annotation, cells annotated as
either MES1 or MES2 were annotated simply as “MES”. Likewise, cells
annotated as either NPC1 or NPC2 were annotated simply as “NPC”.
Within the MES-PN axis of differentiation framework17, we defined three

gene sets to determine whether a cell was of the MES, PN, or intermediate
(INT) subtype. Each category was defined by genes selected according to
their PC1 loading values, MES genes were defined as those genes having
the highest 100 loading values. PN genes were defined as those having the
lowest 100 PC1 loading values. The remaining 514 genes were used to
define the intermediate (INT) state. To confirm that the genes used to
define the MES and PN states, we compared those loading genes with
DEGs associated with each state17 and found that the highest loading
genes overlapped with the MES DEGs while none overlapped with the PN
DEGs and vice versa. We determined module scores and cell annotation
using gene sets defined solely on their PC1 loading values as well as gene
sets defined by both PC1 loading values and DEGs. We found minimal
differences in the proportion of cell types. Because the MES-PN axis17 was
defined by top-loading genes along PC1, we too defined gene sets based
on PC1 loading values. Finally, PC loadings determined from analysis of
single-nucleotide RNA-seq (snRNA-seq) were used so that a comparable
determination of the MES-PN state could be made from our snRNA-seq
single-cell profiles.

snRNA-seq multivariate analysis
Downstream analysis of snRNA-seq data was performed using Seurat
v3.2.2. Following QC filtering, SC-normalization and integration, we
performed principal component analysis (PCA) on the integrated gene
expression matrix using the first 30 principal components (PCs) for
clustering and visualization. Next, we used the transformed gene
expression data along the top 30 PCs to identify shared nearest neighbors
(SNN). We then identified clusters in an unsupervised manner using Leidan
clustering (resolution= 0.8). Visualization of PC scores from the top 30 PCs
was performed using UMAP (minimum distance= 0.2, spread value= 1.2).

Semantic similarity analysis and determination of phenotypic
state
To determine functional similarities of regulons and transcriptional
programs determined from the batch-integrated and non-integrated
primary and PDX tumor cell snRNA-seq datasets, we determined semantic
similarity scores as a measure of functional similarity. Briefly, semantic
similarity scores between sets of genes were determined via graph-based
methods that compare the topology of the GO-term graph structure,
where a directed acyclic graph (DAG) includes the term of interest, all
related ancestor terms, and the set of edges that connect the GO terms in
the DAG. To compare multiple sets of regulon genes, the mclusterSim
function in the GOSemSim package in R was used. Specifically, the “Wang”
method was used to compare quantitatively the DAGs of GO terms
associated with each regulon gene set. It is possible that multiple GO terms
can be associated with a gene set(s). The result is a matrix of similarity
scores. To aggregate these scores, we used the best-match average (BMA)
strategy, which calculates the average of the maximum row and column
similarity scores from the matrix of similarity scores.
To determine the phenotypic state of a cell, we performed enrichment

analysis of MSigDB gene sets30–32, which covered a wide range of
biological functions, pathways, and oncogenic signatures, within a
particular cluster or grouping of tumor cells. Specifically, the hallmark,
C2 (curated), C4 (cancer-oriented microarray data), C5 (ontology), C6
(oncogenic signatures), and C7 (immunologic) gene sets were used.
Enrichment analysis of DEGs and transcriptional programs were
performed using the compareCluster function in the clusterProfiler
package in R15. Statistical enrichment of a gene set was based on an
FDR-adjusted p value cutoff of 0.1, using the set of 6867 genes shared
between the primary tumor and PDX datasets and 6541 genes shared
with the recurrent tumor dataset.
Results from the enrichment analysis were combined to produce a

vector of 7551 FDR-adjusted p values associated with each gene set for
each tumor cell cluster (FDR-adjusted p value ≤ 0.1). We then converted
the adjusted p values by taking the −log10(FDR-adjusted p value) for
subsequent comparison. Gene sets that did not have any overlapping
genes with DEGs or those included in transcriptional programs produced
an NA result. Because a large majority of gene sets tested did not have any
overlapping genes with DEGs or transcriptional program genes, we
focused on the top 200 enriched gene sets having the largest row sum of
the converted FDR-adjusted p value (Supplementary Fig. 7). That is, we
focused on the top 200 gene sets enriched across the most tumor cell
clusters. The resulting profile of the significantly enriched gene sets
defined the phenotypic state of a cell cluster. We performed subsequent
pairwise similarity comparison of the tumor cell clusters/groupings based
on their phenotypic state using the Jaccard index to quantify similarities.

Batch integration of snRNA-seq tumor cell data
To integrate the two different snRNA-seq profiles for annotated tumor
cells only, we further filtered our expression datasets after our initial QC,
described above, by applying the additional filters: (1) profiles must be
associated with a singlet tumor cell based on DoubletDecon46 and
inferCNV11, and (2) genes within each profile must have a minimum raw
count of 2 in a minimum of 20 cells. The resulting datasets used for batch
integration involved 3130 tumor cells expressing up to 11,298 genes
(UW7 primary tumor cells) and 4388 PDX tumor cells expressing up to
7045 genes. Next, we utilized the suite of integration functions provided
by Seurat v3.2.2 platform – FindIntegrationAnchors and IntegrateData.
These functions apply canonical correlation analysis (CCA) to identify
shared patterns in gene expression profiles between datasets, (i.e.,
“integration anchors” that are pairs of cells that share maximal
correlation with one another). These anchors are then used as references
with which the remaining datasets are harmonized with one another.
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The resulting integrated dataset consisted of 7277 tumor cells
expressing up to 6807 genes.

Batch integration of snRNA-seq and snATAC-seq data
To integrate snRNA-seq and snATAC-seq datasets, we utilized the suite of
integration functions provided by the ArchR platform. Here, snATAC-seq
data is first converted to gene score values, a correlate for gene expression,
based on the accessibility of regulatory elements in the vicinity of a gene.
Gene scores are determined via an exponential weighting function that
takes into account ATAC-seq signals proximal to the transcription start
site18,47. These values were calculated as part of the initial creation of
ArrowFiles for each snATAC-seq dataset analyzed using the ArchR platform
using the CreateArrowFiles function and default parameters. Alignment of
snATAC-seq based gene scores to snRNA-seq expression data is performed
using the FindTransferAnchors function from Seurat v3.2.218,29,47.

Quality control and snATAC-seq data preprocessing
Similar to snRNA-seq data, we initially processed 10X Genomics raw data
using the Cell Ranger Software Suite (release 3.1.0). We performed
additional data preprocessing and analysis using the software package
ArchR (version 0.9.5). As part of the QC-filtering process, we used two
metrics including: (1) number of unique nuclear fragments (>1000), and
(2) signal-to-background ratio (i.e., transcription start site (TSS) enrich-
ment score >4). This score represents a ratio of per-base pair accessibility
centered around the TSS relative to flanking regions (2000 bp distal in
either direction). Here, we used a TSS enrichment score value of 4 as a
lower limit threshold. We also inspected fragment size distribution to
verify whether a periodicity in fragment size, reflected as a multi-omic
distribution, existed. These peaks and valleys in the distribution occur
because fragments span 0, 1, 2, etc. nucleosomes and the Tn5 enzyme
cannot cut DNA that is tightly wrapped around a nucleosome. We also
inferred and removed those cells likely to be doublets from the datasets.
Doublet inference in ArchR involves a method similar to the Double-
tDecon in that heterotypic doublets were synthesized from the original
population. These synthetic doublets were added to the original cell
population and visualized via UMAP48. Single-cells were then labeled as
putative doublets if they repeatedly projected as nearest neighbors
during this iterative procedure.
We calculated QC statistics separately for each snATAC-seq dataset (UW7

primary tumor and UW7 recurrent tumor samples). The primary tumor set
initially included 3770 cells, having a median of 31,462 fragments/cell. In
this case, applying QC-filtering resulted in 3407 cells having a median of
29,268 fragments/cell. The recurrent tumor data set initially included
1934 single-cells, with a median of 8801 fragments/cell. Following QC-
filtering, 1425 single-cells with a median of 8033 fragments/cell remained
(Supplementary Figs. 15, 16).

snATAC-seq dimensionality reduction
Due to the sparse nature of snATAC-seq data, popular methods like PCA
would result in high inter-cell similarity due to the predominance of non-
values in the snATAC-seq profiles across the single-cell samples. Towards
addressing the sparsity issue, latent semantic indexing (LSI) was applied.
LSI is a technique used in natural language processing to assess document
similarity based on word counts, which often involves sparse and noisy
datasets (many words, low frequency). Analogously, snATAC-seq profiles
are viewed as a document and different accessible regions/peaks are
words. To reduce the dimensionality of the snATAC-seq dataset, term
frequency by depth normalization per cell was calculated. Next, these
values were normalized by the inverse document frequency, which
weights features by how often they occur. The result is a matrix that
indicates how important a region/peak is to a sample. Using this resulting
matrix, singular value decomposition (SVD) was applied to factorize the
matrix into constituent matrices from which the most valuable information
can be identified and projected into a lower dimensional space.
Here, ArchR applies a variation of this LSI methodology, an iterative LSI

approach49,50. The default setting of two iterations was performed on both
UW7 primary and matched recurrent tumor snATAC-seq datasets.

snATAC-seq cell-type and transcriptional program labeling
Labeling of snATAC-seq datasets was performed using ArchR (package 22,
v0.9.4). In brief, filtered fragments.tsv.gz files after quality control were
used to generate an ArchR GeneScore matrix and a tiled genome feature

matrix for each dataset. Cells were grouped by performing iterative latent
semantic indexing (LSI) on the tile matrix, followed by the shared nearest
neighbor clustering approach implemented in Seurat v3.2.2. GeneScore
data, a correlate for gene expression, was then used to compare snATAC-
seq clusters to a labeled reference snRNA-seq dataset, the UW7 primary
tumor cells, using ArchR’s implementation of the FindTransferAnchors
method from Seurat. Cell type and/or sample groups based on
transcriptional network states with the highest score for each snATAC-
seq cluster were used to annotate those cells for downstream analysis and
visualization (Fig. 1c–i).

Motif deviation scores
TF motif deviations were predicted on a per cell bases, relative to an
aggregate background of a subpopulation of cells via chromVAR, which
was incorporated into the broader ArchR package. The enrichment of TF
motifs can guide in the prediction of which regulatory factors are most
active in a cell type of particular interest, such as tumor cells. Designed for
predicting enrichment of TF activity on a per-cell basis from sparse
chromatin accessibility data, chromVAR produces two outputs including:
(1) deviation – a TN5 insertion sequence bias-corrected measurement of
how far the per-cell accessibility of a given motif deviates from the
expected accessibility based on the average of all cells or samples, and (2)
z-score – referred to as a “deviation score” for each bias-corrected
deviation across all cells. The absolute value of the deviation score is
correlated with the per-cell read depth. The greater the number of reads,
the higher the confidence that the difference in per-cell accessibility of the
given motif from the expectation is greater than that which would have
occurred by chance.

Regulatory network analysis
To infer regulons within single cells, we applied the SYGNAL12 and
MINER13 workflow to the snRNA-seq dataset resulting from the Batch
Integration procedure described above. The MINER algorithm involves a
suite of functions that enables the inference of causal mechanistic
relationships linking genetic mutations to transcriptional regulation.
Because our datasets did not include any extensive mutational profiling,
we primarily focused on identifying regulons, based on co-expression
clustering and enrichment of transcription factor binding motifs present
in those co-expressed genes, and calculated the activity of these regulons
in the single-cell samples. Regulon activity represents the eigengene
value in each single cell. Briefly, regulons are identified in part by PCA of
snRNA-seq data profiles, i.e., PCA is used to identify PCs in which
decreasing amounts of variation across genes is captured along each
principal component – defined as a linear combination of samples in this
approach. Here the coefficients, i.e., loadings, associated with each
sample represent the eigengene value51. Alternatively, one can view
eigengene values as a scalar representation of expression of gene
members for a regulon. The eigenvalue represents a summarizing value of
all the genes in the regulon and thus if these genes are indeed share co-
regulation or are correlated, the eigengene value would be higher than
that of randomly selected set of genes.
To determine the significance of each inferred regulon, we performed

a permutation test to determine the possibility of obtaining an
eigenvalue corresponding to the first principal component of a regulon
(across all single-cells) of equal or greater value. Next, we randomly
selected a set of genes having the same number of members as the
original regulon and calculate the corresponding eigengene value for
the permuted regulon. This procedure was repeated 1000 times to create
a null distribution of eigengene values. We repeated this procedure for
each inferred regulon. Those regulons whose eigengene values were
greater than the 95th percentile of their respective null distribution were
considered significant. Furthermore, we used eigenvalues to represent
regulon “activity” within each cell.
Using the calculated activities of regulons, we identified groups of

regulons sharing similar activity profiles across the cell population, i.e.,
transcriptional programs. Specifically, those regulons that correlated across
the cell population (k-means clustering of sample pairwise Pearson
correlations) defined distinct transcriptional programs. We further defined
subpopulations of single-cells based on their shared regulon/transcrip-
tional program activity. Sample pairwise Pearson correlations were
calculated based on their regulon activity profiles.
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Regulon enrichment analysis
We used the gene set variance analysis GSVA (version 1.34.0, R package)52

to determine enrichment scores of gene sets. To confirm the significance
of these enrichment scores, we performed permutation tests in which
gene rankings were randomized in each single-cell sample and calculated
the corresponding enrichment scores. In total, 1000 permutations were
performed, from which the resulting scores were used to define empirically
a null distribution of enrichment scores. We considered regulons having
enrichment scores greater than the 95th percentile of the null distribution
to be enriched in a particular cell.

Projection of UW7 recurrent tumor cells onto UW7 primary
and PDX tumor cell UMAP embeddings
Before projecting any new data onto some pre-existing latent space, we
first determined a gene set shared across all datasets of interest. We
identified 6,541 genes shared across the UW7 primary, PDX, and recurrent
tumor snRNA-seq datasets. We performed PCA on the batch-integrated
dataset (UW7 primary and PDX tumor cells) using only the 6,541 common
set of genes and used the transformed gene expression data along the
top 30 principal components for visualization via UMAP. Next, we mean-
centered and variance-normalized the UW7 recurrent tumor cell
expression data using gene-specific means and variances that were
calculated from the batch-integrated dataset. These mean-centered and
variance-normalized values were transformed via matrix multiplication
with the eigenvectors from the top 30 PCs. We used the predict function
in R along with the UMAP embeddings for the batch-integrated dataset to
develop a linear regression model and the transformed UW7 recurrent
tumor data (PC scores) as predictors. To determine which primary/PDX
tumor cells were nearest neighbors to the projected recurrent tumor cells,
we calculated pairwise Euclidean distances in the UMAP embedding
space amongst all tumor cell pairs. Those cells having the lowest distance
to the projected UW7 autopsy tumor cells were represented as arrow-
heads in Fig. 3b.

Drug matching identification
To identify drugs targeting elements within the transcriptional programs and
states identified from the network analysis, we applied the Open Targets
platform tool (https://www.targetvalidation.org/). The platform integrates a
variety of data and evidence from genetics, genomics, transcriptomics, drug,
animal models, and literature to score and rank target-disease associations
for drug target identification. We focused our search on identifying drug-
target matches for only those drugs associated with any cancer treatment
employed in any phase I–IV clinical trials.

Reporting Summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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