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Usability of deep learning and H&E images predict disease
outcome-emerging tool to optimize clinical trials
Talha Qaiser 1✉, Ching-Yi Lee2, Michel Vandenberghe1, Joe Yeh2, Marios A. Gavrielides1, Jason Hipp3, Marietta Scott1 and
Joachim Reischl1

Understanding factors that impact prognosis for cancer patients have high clinical relevance for treatment decisions and
monitoring of the disease outcome. Advances in artificial intelligence (AI) and digital pathology offer an exciting opportunity to
capitalize on the use of whole slide images (WSIs) of hematoxylin and eosin (H&E) stained tumor tissue for objective prognosis and
prediction of response to targeted therapies. AI models often require hand-delineated annotations for effective training which may
not be readily available for larger data sets. In this study, we investigated whether AI models can be trained without region-level
annotations and solely on patient-level survival data. We present a weakly supervised survival convolutional neural network (WSS-
CNN) approach equipped with a visual attention mechanism for predicting overall survival. The inclusion of visual attention
provides insights into regions of the tumor microenvironment with the pathological interpretation which may improve our
understanding of the disease pathomechanism. We performed this analysis on two independent, multi-center patient data sets of
lung (which is publicly available data) and bladder urothelial carcinoma. We perform univariable and multivariable analysis and
show that WSS-CNN features are prognostic of overall survival in both tumor indications. The presented results highlight the
significance of computational pathology algorithms for predicting prognosis using H&E stained images alone and underpin the use
of computational methods to improve the efficiency of clinical trial studies.
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INTRODUCTION
Survival (or time-to-event) analysis of cancer patients acts as a key
driver for clinical decision-making and treatment planning1,2.
Clinical trials in oncology stratify patients into different treatment
subgroups based on biomarker/prognosis data and analyze
survival in these subgroups3,4. The impact of patient(s) response
to a certain treatment or therapy may also be observed by
monitoring survival periods or time to disease progression.
Objective estimation of survival probability may assist clinicians
to personalize the treatment options and improve the selection of
participants for conducting successful clinical trials5. Survival
analysis is generally performed using genomic and protein
(immunohistochemistry, IHC) biomarkers along with other clinical
and patient characteristics or demographic information, such as
age, gender, BMI, ethnicity, etc. Another relatively new but
emerging direction is the tissue-based prognosis of the tumor
microenvironment (TME), which consists of composite structures
of normal, malignant cells, connective tissue infiltrated with
immune cells and vessels. There is increasing evidence suggesting
different components of TME structure influence tumorigenicity6,7

and previously shown to be prognostic in multiple cancers6,8,9.
In routine practice, cancer tissue slides are manually examined

by a trained histopathologist under a microscope. The primary
objective of the visual examination is to diagnose cancer by
analyzing the morphological variations within the cancerous
regions, quantifying the density of malignant areas, and observe
the spatial arrangement of the TME10. However, careful visual
examination of tissue slides is resource and time intensive, and the
subjective nature of the histological practices inevitably leads to
inter- and even intra-observer variability11,12. Recent advances in
computational pathology enable the use of artificial intelligence

and machine learning (AI&ML) algorithms to predict relevant
clinical outcomes from histology image data. Automated algo-
rithms are generally based on the concepts of digital image
analysis which can analyze images to improve the precision and
reproducibility in cancer diagnostics. The integration of artificial
intelligence with whole slide imaging (WSIs) data sets of
hematoxylin and eosin (H&E) stained tissue images have shown
potential in linking complex associations of histology data with
patient outcomes13. Related applications include the use of AI in
immuno-oncology (IO) to quantify tumor mutual burden (TMB)
and PD-L1 immunohistochemistry (IHC)14,15. Due to the rise of
deep learning and the availability of scanned tissue slides,
imaging-based prognosis is gaining more attention16.
Despite the overwhelming increase of deep learning related

approaches for histopathology image analysis, there are several
challenges that may hinder the development of these algorithms
for routine clinical practice. Computational pathology algorithms
usually require precisely annotated tissue regions to train AI&ML
models and predict the slide label. In most of the real-world
problems, and for the task at hand, the ground-truth (GT) label for
overall survival is generally provided at the patient level and there
are no detailed annotations provided about which regions of
interest (ROIs) from the tissue slides are more likely to impact
survival. Amongst existing approaches, the most common strategy
is to select ROIs of a WSI (mainly from tumor component areas)
identified by a pathologist or from a third-party application and
train a supervised learning model to predict survival17–23. One
important limitation is that such approaches introduce an
inevitable bias to the model predictions and learn the prognostic
features only from annotated ROIs. Therefore, the prognostic
significance of the entire TME spatial organization remains largely
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unexplored. Another potential limitation is reusability, since, for
larger data sets, it may not be feasible to attain detailed annotated
regions of gigapixel images for training the model. This leads to
our hypothesis that AI models can be trained without regions-
level annotations and solely on patient level survival data to
highlight the prognostic significance of different components of
TME from H&E stained WSIs.
In this paper, we present a deep learning framework that

leverages the patient level survival statistics to predict overall
survival (OS) without the need for precisely annotated regions.
Our framework demonstrates the usability of weakly supervised
learning and visual attention mechanism to infer relevant spatial
signatures for predicting cancer outcome without prior knowl-
edge of tissue composite structures. This approach may also
improve our understanding of disease pathogenetic mechanism
and lead towards an unbiased objective prognosis. We demon-
strate the significance of our prognosis framework on two cohorts
of multi-center data sets including urothelial bladder carcinoma
and lung cancer data from the publicly available National Lung
Screening Trial (NLST) data set. The heterogeneous TME char-
acteristics of urinary (bladder) and respiratory system (lung)
provide a preliminary test of the applicability of the proposed
framework to multiple tumor indications. We separately reported
the prognostic accuracy of the framework by performing cross-
validation on both data sets. Overall, the proposed framework
achieves state-of-the-art performance in OS prognosis on the
NLST data by outperforming previously published approaches and
attains statistically significant results for the bladder cohort. We
further extended our analysis to evaluate the prognostic
significance of different clinical and pathological characteristics
through univariable and multivariate analysis. Lastly, to explore
the explainability of our results (the ability to present findings so
human experts can understand the cause of a decision), we obtain
WSI density maps to investigate regions of TME that may have
predictive features, and which correlate with pathological inter-
pretation to better understand the disease progression. The WSI
density maps highlight, without any prior assumptions or
annotations, crucial risk areas that also correlate with pathologist
interpretation.

RESULTS
Study design
The proposed model was developed and evaluated on two
independent cohorts of H&E stained WSIs from lung and bladder
carcinoma. The first cohort was a subset (collected from a total of
53,454 participants) of the publicly available data set from the
National Lung Screening Trial (NLST)24 and the second was an in-
house cohort of urothelial cells bladder carcinoma. To demon-
strate the robustness of the proposed framework, we separately
performed k-fold cross-validation for both tumor indications. For
each fold, we randomly split the data at the patient level into
training (70%), validation (10%), and test (20%) sets. We used the
training data to learn the optimal weights for the deep learning
model and validation data to monitor the performance of the
model and hyper-parameter tuning. The test data set was then
used to report the performance and to estimate the general-
izability of the model. Overall survival (OS) was used as the
prognostic endpoint for this study.

Bladder carcinoma. A total of 198 cases of urinary bladder
carcinoma were available for this study. The tissue slides were
scanned with an Aperio ScanScope whole-slide scanner (Leica Bio-
systems Imaging, Inc., Illinois, USA) at ×20 magnification with a
microscopic resolution of 0.49 mm/pixel. The clinical data
contained histological grade, along with other parameters
including gender, ethnicity, age, days to progression-free, and
overall survival. A detailed description of this data set is presented

in Table 1 (right). For training, we randomly sample 500 regions-
of-interest (ROI) each of size 224 × 224 × 3 at ×5 magnification
from each WSI using OpenSlide. ROIs selected at higher
magnifications may offer a detailed representation of tissue at
cell levels, but they lack the spatial information which was
previously shown to be effective for natural and histology
images25. In total, we extracted 99,000 overlapping ROIs (with a
maximum stride of 50%) after removing regions not containing
tissue using Otsu thresholding based tissue segmentation. Further,
we randomly split the data into 4-folds, and we selected 3-folds of
the data for training and the remaining 1-fold for testing. We then
performed cross-validation by switching the training and test data
sets, ensuring every patient’s WSI is used once in the test set.

Lung carcinoma. The lung data set consisted of 1122 WSIs
derived from the formalin-fixed paraffin-embedded (FFPE) tissue
specimens of 410 patients selected from the NLST data set. All
WSIs were scanned at ×40 magnification with a microscopic
resolution of 0.25 mm/pixel using an Aperio ScanScope. Similar to
the experiments with the urothelial bladder data, we performed
5-fold cross validation to evaluate the performance of the model.
For training, we randomly selected a total of 205,000 image ROIs
each of size 224 × 224 × 3 at 5 ×magnification. Table 1 (left)
represents a list of clinical and demographics features included in
this study. The NLST H&E stained images were sampled from
blocks of lung tumor tissues that were preserved by pathology
labs during diagnosis and treatment of the disease.

Prognostic evaluation for bladder and lung carcinoma
To evaluate the performance of weakly supervised survival-
convolutional neural network (WSS-CNN), we separately com-
puted the prognostic accuracy for each tumor indication using k-
fold cross-validation. Overall, we assessed the efficacy of the
proposed WSS-CNN on >1300 WSIs with their follow-up clinical
and demographics data. Both data sets comprised patients with
heterogeneous characteristics in terms of variability among
histological grade (including well-differentiated, moderately dif-
ferentiated, and poorly differentiated cases), cancer stage (from I
to IV), and TNM staging, as shown in Table 1. Overall survival is
generally defined as the duration between the time from either
diagnosis or start of treatment and the time to event (death in our
case). In this work, for both lung and bladder data sets, the start
time was the treatment time. We selected overall survival to report
our results in this study because it is widely recognized as a
reliable endpoint in most oncology clinical trial studies. As a pre-
processing step, we transformed the survival times from days to
months for all the follow-up experiments.
The reported analysis has two main components (a) evaluate

the prognostic ability of the proposed WSS-CNN performing
univariable and multivariable Cox regression analysis, along with
computing concordance-index (Table 2) (b) Kaplan–Meier survival
analysis (Fig. 1) to inspect overall survival difference in high/low
stratified groups as compared to standard clinical and demo-
graphics features. The hazard ratios in univariable and multi-
variable analysis were computed using the Mantel-Haenszel
method. We used two-sided p values and p < 0.05 was considered
to be statistically significant. In addition, we also performed
comparative analysis to demonstrate the prognostic efficacy of
the WSS-CNN as compared to different state-of-the-art baseline
models (Table 3).
Generally, the prognostic role of age, gender, and molecular

subtyping features are well explored and provide insights to
support clinical decisions. Tumor purity or the proportion of tumor
cells in the whole tissue section is another independent factor that
is routinely determined by pathologists and is associated with
histological grades, and disease prognosis26,27. Overall, the WSS-
CNN model outperformed other standard clinical factors and
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Table 2. Univariable and multivariable analysis for overall survival on the test data sets.

Bladder quantitative results: univariable and multivariable analysis for overall survival

Univariable Multivariable

Variable Hazard ratio p value c-index Hazard ratio p value

Age 1.58 (0.954–2.61) 0.123 0.592 1.03 (1.01–1.24) 0.127

Gender 1.07 (0.696–1.63) 0.762 0.533 1.85 (0.69–3.89) 0.517

Tumor purity 1.55 (1.09–1.84) 0.13 0.587 1.92 (1.18–3.03) 0.094

Stage (II vs III & IV) 1.51 (0.9–2.53) 0.22 0.521 2.34 (1.09–5.14) 0.212

WSS-CNN (high/low risk) 1.96 (1.23–2.947) 0.0179 0.612 2.27 (1.72–3.89) 0.0012

Lung quantitative results: Univariable and multivariable analysis for overall survival

Univariable Multivariable

Variable Hazard ratio p value c-index Hazard ratio p value

Age 1.4 (0.979 – 1.99) 0.0674 0.657 1.62 (1.05 - 2.03) 0.004

Gender 0.74 (0.521– 1.07) 0.13 0.633 0.71 (0.44 - 1.16) 0.194

Smoking status 1.39 (0.79 – 2.17) 0.09 0.576 1.95 (1.59–2.54) 0.212

Stage (II vs III & IV) 1.58 (0.66 – 3.78) 0.01 0.642 2.19 (1.12–3.28) 0.118

WSS-CNN (high/low risk) 2.28 (1.16- 3.675) 0.00836 0.7033 2.93 (1.61–4.53) 0.00457

Table 1. A concise summary of clinical and histopathological characteristics for lung (left) and bladder (right) data sets.

Patient characteristics of Lung data set Patient characteristics of Bladder data set

Patient characteristics Summary Patient characteristics Summary

Number of patients L= 410 Number of patients B= 198

Total whole-slide images 1122 Total whole-slide images 198

Age 63.8 ± 5.2 Age 73.8 ± 10.6

Gender (Male/female) 60.7%/39.37% Gender (Male/female) 73.7%/26.3%

Stage Stage

Stage I 273 Stage I 0

Stage II 15 Stage II 152

Stage III 63 Stage III 34

Stage IV 18 Stage IV 12

Can not be assessed 28 Can not be assessed 0

Grade Grade

Well Differentiated (G1) 50 Grade 1 2

Moderately Differentiated (G2) 156 Grade 2 5

Poorly Differentiated (G3) 132 Grade 3 188

Undifferentiated (G4) 9

Not known 31 Not known –

TNM staging TNM staging

TX, NX, MX (cannot be measured) 31, 24, 21 TX, NX, MX (cannot be measured) 1,153, 196

T1, N0 301, 297, 369 T1, N0 0, 36

T2, N1, M1 47, 18, 20 T2, N1, M1 153, 4, 1

T3, N2 19, 52 T3, N2 33, 3

T4, N3 12, 19 T4, N3 11, 0

Censored patients (%) 29.75 Censored patients (%) 59.09

Median follow-up time 6.59 y Median follow-up time 3.67 y

K-fold cross validation Lk= 5 K-fold cross validation Bk= 4

Number of training image patches 205, 000 Number of training image patches 99, 000
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Fig. 1 Univariable Kaplan-Meier survival curves for clinical characteristics including gender, age, and cancer stage along with the
proposed WSS-CNN. The top two rows show results from lung NLST data and the bottom two rows belong to bladder data. Risk categories
(low, high) were identified by using median threshold for WSS-CNN predicted risks.
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achieve the c-index of 0.7033 (p-value: 0.00836) for lung and
0.6125 (p-value: 0.0179) for the bladder, as shown in Table 2.
Conventionally, the Cox proportional hazards model forms a linear
combination of covariates (e.g. age, gender, tumor purity, etc) to
estimate the patient’s risk. Due to the heterogeneous appearance
of TME with complex interactions of tissue components, generally
non-linear risk functions are more suitable for estimating survival.
It is encouraging that a weakly supervised approach shows
prognostic significance over cancer stage (bladder: c-index:0.521
and p-value: 0.195) and tumor purity (bladder: c-index: 0.587 and
p-value: 0.13) (Table 2, top). Intuitively, younger patients may
experience a favorable prognosis than older patients and our
results show a comparable prognostic significance of age for lung
patients (with c-index: 0.657 and p-value: 0.0674). Similar to the
bladder data set, the c-index for clinical and demographics
parameters are relatively low as compared to the WSS-CNN for
lung data set. Regarding comparative study, we investigated the
prognostic significance of different baseline models (including
AlexNet28, VGG29, ResNet30, and Dense-Net31) as shown in Table 3.
The residual connection in intermediate convolution layers of
ResNet enables the gradient to flow smoothly during training and
eventually assists in achieving better prognostic accuracy. Besides,
we also evaluated the impact of the visual attention mechanism
by separately training the WSS-CNN framework with ResNet-18 for
each tumor indication. Excluding the visual attention mechanism
from WSS-CNN marginally drops the overall performance to
0.6863 (for lung) and 0.5911 (for bladder).
We then performed Kaplan-Meier analysis to further investigate

the prognostic significance of WSS-CNN and to observe the
differences in overall survival among patients stratified as high
and low risk categories using the log-rank test, as shown in Fig. 1.
For WSS-CNN predictions, the cut-off values used for risk group
stratification (low/high progressors) were based on the median of
risk scores after performing cross-validation on the entire cohort.
Median of predicted risk scores was used as a threshold to stratify
the given cohort (lung or bladder) in high and low sub-groups. We
perform univariable Cox regression analysis to examine the
independent prognostic significance of WSS-CNN and other
clinical and histology features including age, gender, tumor
purity, histology grade, and smoking status. In addition, we
conduct multivariable Cox regression analysis to investigate the
prognostic ability of WSS-CNN risk along with the impact of
patients’ clinical and histopathological characteristics. We also
report hazard ratios for both univariable and multivariable
analyses.
For univariable analysis of bladder carcinoma, the WSS-CNN

model was prognostically significant (HR:1.967 (1.23–2.947), p-
value: 0.0179) whereas disease stage, age, and gender were not.
Tumor purity for bladder patients attains a relatively higher
c-index (0.587) as compared to other clinical parameters but the

overall results were not statistically significant (Table 2). In
multivariable analysis, the WSS-CNN shows independently prog-
nostic (HR:2.27 (1.72–3.89), p-value: 0.0012) for overall survival
using other patient characteristics. In lung univariable analysis, the
WSS-CNN shows prognostic relevance (HR:2.28(1.72–3.675), p-
value: 0.00836) in contrast to standard clinical and histology
features. Based on Kaplan–Meier survival curves and hazard ratio,
gender, and smoking status show the least prognostic relevance
for estimating overall survival. For lung multivariable analysis, the
WSS-CNN (HR:2.93(1.61–4.53), p-value: 0.00457) as age (HR:1.62
(1.05–2.03), p-value: 0.0048) shows prognostic of overall survival.
Normally, elder patients diagnosed with lung cancer may observe
poor disease outcome as compared to young patients.

Pathological interpretation of tumor micro-environment
predicted regions
In order to promote the adoption of AI-based approaches in
routine clinical practice, it is crucial to enable these approaches to
produce interpretable outcomes which may assist experts in
better understanding the relationship between the ML features
and disease pathomechanism. In this regard, we separately
explore the pathological interpretations of tumor micro-
environment predicted regions for both data sets using risk
density map visualizations. We overlaid transparent risk density
maps on H&E stained WSIs which enable pathologists to correlate
the model predictions with the underlying histology of the
disease. Density maps were generated using a trained WSS-CNN
model to predict the risk for each ROI in a whole-slide image. The
ROI predicted risks were then aggregated to WSI-level, followed
by a color map to overlay on WSI, where red and blue indicate
higher and low WSS-CNN risk regions, respectively. A selection of
risk heat maps from multiple patients are presented in Fig. 2
(bladder) and Fig. 3 (lung), with ROIs showing how WSS-CNN’s
predictions correlated with important pathological phenomena.
Figure 2 presents the WSI-level risk density maps for a set of

four patients from the bladder data set. The risk maps show a
combination of multifocal and diffuse TME delineated regions
signifying their associated risk predicted by WSS-CNN. The top two
rows manifest multifocal patterns and both patients belong to
slow progressors (better prognosis) with tumor stage II, age: 68
and 44, and primarily diagnosed as transitional cell carcinoma and
papillary urothelial carcinoma, respectively. The WSS-CNN density
maps mostly exhibit cancerous tissue areas with pleomorphic
regions containing large hyperchromatic nuclei and moderate
mitotic activity as high-risk. The risk maps also identify regions
containing high cellularity with heterogeneity in nuclei appear-
ance and size (pleomorphism), interestingly, these features are
previously reported as a significant prognostic factor for urothelial
carcinoma32,33. The density maps in the bottom two rows show a
number of diffuse patterns dispersed over different regions of
TME and both these patients experienced poor prognosis (fast
progressors) with cancer stage II, age 42 and 66, and primarily
diagnosed as urothelial carcinoma. Similar to previous examples,
the density maps broadly identify high-risk regions within the
malignant tissue containing complex irregularly arranged nest’s
structure, necrotic tumor regions34–36, and angiogenesis37,38

showing abnormal microvascular structures. It is noteworthy to
mention that most of these features are previously reported as
tumor-promoting factors and are widely associated with poor
prognosis.
The attained risk maps for four patients from the lung data set

are shown in Fig. 3. Similar to the bladder data, the lung WSI-level
risk map links the association of WSS-CNN predicted regions with
their pathologic interpretation. One of the most interesting
aspects of lung density maps is the well-delineated localization
of tumor-enrich areas (shown as either yellow or teal color)
without using any expert’s ground-truth information. Furthermore,

Table 3. Comparative analysis of different state of the art baseline
models using concordance index value on both data set.

Comparative analysis for bladder and lung data set

Method Bladder c-index Lung c-index

WSS-CNN AlexNet (Krizhevsky et al.57) 0.5713 0.623

WSS-CNN VGG (Simonyan and
Zisserman)

0.5419 0.653

WSS-CNN ResNet-18 (He et al.) 0.6125 0.7033

WSS-CNN DenseNet-121 (Huang et al.) 0.538 0.666

DeepSurv (Katzman et al.63) – 0.602

DeepConvSurv (Zhu et al.) – 0.629

(where bold values represent the best performance)
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most of the risk maps demonstrate multifocal patterns of high-risk
areas within tumor regions, highlighting the significance of
malignant regions for lung prognosis. For slow-progressors (top
two rows), the high-risk regions mostly contain sites of tumor-
infiltrating lymphocytes (TIL), inflamed stromal regions, and
tertiary lymphoid structures (TLS). A number of previous studies
have identified these as an independent prognostic factor and the
presence of inflamed stromal regions is linked with prolonged
survival. The WSI risk density features for fast-progressors (in the
bottom two rows) show TIL regions with adjacent tumor and
lymphocytes interaction, localization of invasive edge margin, and
necrotic regions39–41. Previously, along with other patterns, tumor
necrosis in the lung was previously reported to be an adverse
prognosis risk factor42–44. These risk maps with multifocal patterns

precisely localize high-risk histology patterns which could
potentially identify novel spatial signatures relevant to disease
pathomechanisms.

DISCUSSION
The science of therapeutic evaluation in clinical trials is on the
verge of imminent transformation due to the availability of large-
scale digitized data sets, emerging compute power, remarkable
developments in artificial intelligence and machine-learning
algorithms, and the escalating acceptability of software as a
medical device45. Recently, enormous efforts have been made to
improve the interpretability, reliability, and efficacy, of the clinical
trial studies46. One of the emerging directions to improve the

Fig. 2 Density risk maps of whole-slide images processed by WSS-CNN from the bladder data set. The WSS-CNN analyzes all the tissue
regions within a given whole-slide image to generate a risk map that WSS-CNN associates with different histologic patterns. The red color
indicates relatively higher risk, and blue indicates lower risk.
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reliability of clinical trials is to precisely predict the occurrence of
relevant events such as death, disease progression, the occurrence
of severe adverse events such as stroke, infection, or organ failure.
This work aimed at presenting a weakly supervised visual
attention-based automated approach to estimate prognosis from
H&E stained histology WSIs of lung and bladder carcinoma.
Experimental results attained through systematic evaluation on

two independent cohorts demonstrated the efficacy of deep
learning-based WSS-CNN on H&E stained histology images.
Moreover, our presented results have several interesting aspects,
(a) it overcome the need for manual annotations which makes this
approach more applicable to large-scale studies, where collecting
precise annotations of scanned WSIs would be a laborious and
time-consuming task, prone to observer variability. To the best of
our knowledge, this is the first study to show the utility of weakly
supervised learning with visual attention to predict patient
survival from H&E stained WSIs, (b) there is an increasing interest

to utilize weakly supervised learning (WSL) for the prediction of
relevant clinical outcomes as it is less time-consuming and
inexpensive relative to supervised methods. Another approach47

based on WSL employs a customized loss function to transform
survival prediction as a classification problem by splitting the
survival time into four discrete bins based on censored informa-
tion. The performance of such approaches may rely on the
number of discrete bins which may vary among different data
sets. Unlike other approaches, the proposed WSS-CNN leverages
weak supervision among randomly sampled H&E stained image
patches and utilizes visual attention to emphasize only prognos-
tically relevant regions of an ROI (c) for better interpretation of the
AI-based results and to get more insights into prognostically
relevant TME spatial signatures, we analyze the risk maps of the
WSS-CNN to correlate prognostic features with pathological
interpretations. This analysis may assist in developing a better
understanding of disease pathomechanism, (d) we perform k-fold

Fig. 3 Density risk maps of whole-slide images produced by the WSS-CNN framework from the lung NLST data set. Similar to bladder
data, the red color in density map indicates relatively higher risk, and blue indicates lower risk regions on the WSI level.
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cross-validation, to estimate the model generalizability on unseen
splits of the data set. This ensures that every patient’s WSI is used
exactly once in the test set, and k− 1 times during training (e) we
perform univariable and multivariable Cox regression analysis to
investigate the prognostic significance of H&E image along with
other clinical and demographics variables (e.g. cancer stage,
histology grade, gender, age, etc).
This study investigates the significance of deep learning and

H&E stained whole slide images to predict overall survival for two
heterogeneous tumor indications including lung and bladder
urothelial carcinoma. Lung cancer is the most common and
prevalent form of cancer worldwide, accounting for nearly 18% of
the cancer-related mortalities48. On the other hand, bladder
cancer is the 10th most common form of cancer, accounting for
nearly 2.1% of total cancer-related deaths each year with a
growing number of cases, especially in western populations49.
Previous work-related to automated survival analysis often trains
customized neural work but differed from these approaches, we
enable SOTA models to predict survival, we observed that ResNet-
1830 produces a better concordance index as compared to other
SOTA models. In multivariable Cox regression analysis, WSS-CNN
median risk was independently significant for overall survival,
along with a set of covariates including histology grade and age
for lung cohort, as also demonstrated in Kaplan–Meier analysis
(Fig. 1). In most clinical trial studies, overall survival is one of the
primary events of interest and is our main intent of using it for
reporting our analysis.
AI model interpretability is an indispensable aspect of machine

learning especially when applied to clinical data. Interpretable AI
models may deftly secure the confidence of clinicians and patients
in adopting cutting-edge digital health solutions. The risk maps
(shown in Figs. 2 and 3) are representing focal or diffuse patterns
highlighting crucial TME components, such as necrosis, pleo-
morphic regions with hyperchromatic large nuclei, and angiogen-
esis for bladder cohort and tumor-infiltrating lymphocytes,
inflamed stromal regions, necrosis, and tertiary lymphoid struc-
tures for lung data set. Tumor necrotic regions, as identified by the
WSS-CNN (Fig. 2, 3rd row and Fig. 3, 2nd row)) have previously
reported as an independent prognostic factor linked to poor
disease outcome34. This kind of analysis would not only improve
the interpretability of deep learning models but also transform
H&E stained gigapixels images into a sequence of interpretable
information. Moreover, it may also provide insights into disease
patterns associated with poor disease outcomes and guide
experts in unraveling the disease heterogeneity.
This study presents an emerging deep learning tool that may

assist in optimizing clinical trial design but it also comes with
some limitations. The model is trained on random samples
extracted from WSIs; automated, semi-automated, or some
curriculum-based learning (e.g. how many tissue regions to be
selected from each slide, etc) could be explored for the selection
of ROIs to train the model50. Further extension of the WSS-CNN
framework may entail validating the performance of the model on
larger cohorts, preferably containing a uniform distribution among
different stages of the disease. Another potential extension would
be to predict survival using the combination of different data
modalities, e.g imaging-to-imaging data (by using radiology data
as supplementary information along with H&E data) or imaging-
to-tabular data by exploring genomics or other patient patients’
characteristics along with imaging data51. Different scanning
protocols introduce domain shifts which may pose challenges for
automated algorithms. To train a scanner-agnostic computational
pathology system, one solution (and a future extension of this
work) could be to diversify the training data by collecting data
from multiple scanners. For our Kaplan-Meier analysis, the cut-off
values used for risk group stratification (high/low progressors)
were based on the median of feature vectors, it is worthwhile to
explore more optimal ways of finding the cut-off on a larger

cohort. We prioritize cancer stages from both data sets for KM
analysis mainly due to skewed distribution of cases across
histology grades (especially for bladder data). For univariable
and multivariable analysis, we combined cases across cancer
grade (G1 with G2 and G3 with G4) based on data distribution and
generally, G3 and G4 are often categorized as high-grade tumors
with abnormal cells that are more aggressive as compared to G1
and G2. For future analysis on larger cohorts containing uniform
distribution, it may be worth exploring different combinations of
tumor grades and cancer stages. The interpretation of risk maps
was based on visual evaluation, and a comprehensive study to
investigate risk maps more objectively would assist in finding
novel TME digital biomarkers associated with different sub-groups
(e.g. high/low). Lastly, there was 1 patient in the lung data and
around 15 patients in the bladder data that underwent
neoadjuvant treatment and such factors may also impact OS for
those patient. It is an important point and warranting further
investigation on larger cohorts where there is higher proportion of
patients with different pre-treatment history. In real world data
sets, especially when tissue slides were gathered from nonserial
sections, it is apparent that all the tissue slides might not be
equally informative for predicting clinical outcomes. In order to
select the most informative tissues slide(s), one may need an
intermediate process to either manually or automatically select
the best possible slide(s). We have presented some preliminary
analysis in this regard, as provided in the Supplementary
Information section 1.
Prospective validation of the WSS-CNN framework in clinical

trial studies would be crucial prior to utilizing it as an independent
clinical tool. One potential application could be to use this in
clinical trial settings to stratify participants as fast (high risk) and
slow progressors (low risk) based on their disease outcome. This
would enable clinicians to select relevant participants for a multi-
arm clinical trial study and to better access the treatment
response, drug efficacy, and safety within different sub-groups.
We believe the proposed framework carries the potential to be
applied not only to other tumor indications but also to other
medical imaging modalities. This work would likely pave the way
for the development of other AI-based imaging approaches in
predicting relevant clinical outcomes and optimizing the clinical
trial design for precision medicine.

METHODS
Each WSI is a gigapixel image (1010 pixels) with an average spatial
dimensions of 50, 000 × 80,000 (15mm× 25mm) and an uncompressed
version of a WSI may require 56GB52 of storage at ×40 magnification.
Analyzing the entire WSI at once is a computationally expensive task and
therefore we split each WSI into manageable ROIs. The model was trained
on randomly extracted image patches from WSIs using WSI-level ground-
truth survival information provided for each patient. This transforms it into
a weakly supervised learning problem where we only have the patient-
level prognosis information and we do not have any precisely marked
regions from pathologists.

Ethics statement
The lung data from NLST was collected after institutional review board
approval at each contributing center and the National Cancer Institute. The
informed written consent was obtained from all participants involved in
the NLST53. Regarding bladder commercial samples, AstraZeneca has a
governance framework and processes in place to ensure that commercial
sources have appropriate patient consent and ethical approval in place for
collection of the samples for research purposes, including use by for-profit
companies. The AstraZeneca Biobank in the UK is licensed by the Human
Tissue Authority (Licence No. 12109) and has National Research Ethics
Service Committee (NREC) approval as a Research Tissue Bank (RTB) (REC
No 17/NW/0207), which covers the use of the samples for this project.
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Disease prognosis without precisely annotated ground-truth
(or ROIs)
Weak supervision is a variant of supervised learning from the machine
learning paradigm where the model is trained on partially or weakly
annotated data54. Collecting precisely annotated ROIs for a large number
of WSIs is often expensive, time-consuming and a significant obstacle for
real-world data sets. Recognizing this obstacle in training fully supervised
learning algorithms, we propose a weakly supervised survival-
convolutional neural network (WSS-CNN) framework incorporating a visual
attention mechanism to overcome the dependency of learning algorithms
on annotated regions.
Estimating prognosis (or time-to-event) from histology images is

considered a more sophisticated problem than a conventional regression
task, largely due to censored observations, in case, one or more patients
have not experienced the relevant outcome (death, relapse, etc) during the
duration of the study or if the patient’s outcome is unavailable which in
general makes it impractical to track the survival status. To optimize the

WSS-CNN learnable weights in the presence of censored data, we
employed the Cox proportional hazards model55,56 as the loss function
which calculates the negative partial likelihood to predict patients’
outcome. A detailed illustration of the proposed WSS-CNN model is
shown in Fig. 4. The ROIs used for training the WSS-CNN contained a
heterogeneous representation of the tumor micro-environment including
image patches from malignant and normal epithelial, stromal, and
lymphocytic regions, etc. The convolutional neural network in WSS-CNN
serves as a non-linear function that maps a given ROI patch into high-
dimensional prognostic features which then use to predict the associated
risk. The attention mechanism is a combination of spatial and channel
attention which enables the WSS-CNN to refine the activation maps by
emphasizing the prognostically relevant regions. It is worth noting that our
attention mechanism does not include any additional training parameters
hence the complexity of the models remains the same. To aggregate the
results on the WSI level, during inference, we process all the tissue regions
of a given WSI.

Fig. 4 Overview of the proposed prognosis pipeline for analyzing histology H&E stained whole slide images (WSIs). a shows an example
of ROI (left image) from a WSI from which multiple patches were randomly selected during training. We sample N image patches iN where N=
{1, . . . , n}, each of size 224 × 224 × 3 from all WSIs of a patient. Each in was further transformed by data augmentations to generate synthetic
copies which were used during training the model. b Extracted image patches (regions of interest) iN were then used to train a weakly
supervised survival convolutional neural network (WSS-CNN) to predict overall survival. The WSS-CNN comprised a combination of fully
connected layers and convolutional layers which were followed by max-pooling and non-linearity. Visual attention mechanism and residual
connections using element-wise summation are also shown in the illustration. c While testing, we run inference on the WSI level and to
evaluate the performance of the model for an unseen patient. Each image patch from the tissue regions in was analyzed by the WSS-CNN to
predict the associated risk.
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Model training and network architecture
Previously, several automated survival analysis approaches were presented
either using patient’s demographics (or structural prognosis features) or
using hand-crafted features from H&E stained images by training a shallow
machine learning model18–20. The hand-crafted features are generally data-
specific and sensitive to data variations. There also exist some approaches
that utilize deep convolutional neural networks but most of these
approaches proposed customized convolutional neural networks which
are often tailored to solve a specific task and need proper architecture
calibrations (number of hidden layers, neurons per layer, etc). In this work,
we enable the state-of-the-art (SOTA) baseline models (or representative
models) for predicting survival. More specifically, the SOTA models we
used are ResNet-1830, VGG-11bn (batch normalization)29, DenseNet31, and
AlexNet57.
Given a H&E stained WSI I, the objective of WSS-CNN is to learn

prognostically relevant discriminative features and to predict time-to-event
by analyzing a set of image ROIs in∈ RH×W×D, where I ¼ fðinÞgNn¼1. The
schematic diagram of the proposed model is shown in Figure 4(b). The
WSS-CNN has two main components including a) a deep CNN baseline
model and b) a visual attention mechanism (which is described in the
following section). Here, the baseline model acts as a non-linear mapping
function f(in)→ xn, where xn ¼ ðxn1; :::; xnpÞ is the feature vector of p
dimensions. The CNN model is an altered version of residual CNN
(ResNet30) that contains multiple residual connections to reroute the low-
level features and combine them with intermediate and high dimensional
feature representations. The fully connected layers contain non-linear
weighted combinations of convolutional features, which then feed into the
final layer that predicts associated risk. The Cox proproportional-hazards
model is a commonly used regression model associating prognosis with
predictor variables of patients. The hazard represented by Cox proportional
model is defined as, hðtjxÞ ¼ h0ðtÞ expðβTxÞ, where h0 is the baseline
hazard, t is the survival time, β= (β1, . . . , β) denotes the regression
parameter vector of dimension p. The goal here is to estimate vector β by
minimizing negative log partial likelihood. The proposed model is trained
end-to-end by maximizing the performance over the model parameters.
The cost function is the negative log partial likelihood is l(β) as given in (1),

lðβÞ ¼ �
XM

m¼1

δm βT xm � log
X

j2RðtmÞ
expðβT xjÞ

0
@

1
A (1)

where M is the number of patients, xm represents feature vector for the
input image in, and δm indicates if the survival time is censored (δm= 0) or
observed (δm= 1) for patient m, R(tm) is the set of risk at time tm for all
individuals still under study. Finally, to aggregate the ROI level in results to
the patient level (or WSIs level), we calculate the central tendency (median)
of the ROI risk values. The ROI risks were first sorted and then the central
value is obtained, separately for each patient. Computing measures of
central tendency also ensures the exclusion of noisy (outliers) and
relatively less prognostic regions to predict a more robust patient-level
survival.
To improve the generalizability and to reduce overfitting, during

training, we extensively performed the data augmentation (generating

synthetic copies of the original data) by flipping (along the horizontal or
vertical axis), random cropping, rotating (0,90,180,270), and perturbing the
color distribution (hue variation) for both cohorts, separately. In addition,
we used random erasing which randomly picks a rectangular region from
an input image in and replaces its pixel values with random values. We
used AdaGrad stochastic optimization algorithm to minimize the negative
log partial likelihood using backpropagation. The initial learning rate was
selected as 0.0001 with an exponential reduction of 0.97 and with an
adjusted momentum of 0.95. All the learnable parameters of the WSS-CNN
were initialized as Gaussian random numbers with 0 mean and 10−2

standard deviation. The data normalization was performed using the mean
and standard deviation of the ImageNet dataset.

Visual attention
One of the main aspects of human visual perception is that we do not
usually process all the information from a given scene but instead we only
put attention to a sequence of regions to understand the entire visual
scenario. Similarly, in a routine diagnostic setting, while performing the
visual examination of tissue slides, a histopathologist would not equally
analyze each component of the tissue to make clinical decisions. Recently,
there is an increasing interest in incorporating attention mechanisms to
improve the deep convolutional neural network performance, mainly for
classification tasks. Here, we employ a soft visual attention mechanism58–60

that refines input convolutional features and enables the deep learning
model to emphasize the task-related features, rather than learning
representations from prognostically irrelevant or background regions.
The schematic illustration of the attention module is shown in Fig. 5. For a
given intermediate convolutional features F∈ RH×W×D of the WSS-CNN, the
attention mechanism fuses the spatial (Satt(F)∈ RH×W×1) and channel-wise
Catt(F)∈ R1×1×D) features together with input convolutional features. The
overall concept of the attention mechanism can briefly be described as in
(2) and (3)

FCatt ¼ CattðFÞ � F and FSatt ¼ SattðFÞ � F (2)

FCattþSatt ¼ CattðFÞ � F þ SattðFÞ � F (3)

where Catt(F) and Satt(F) representing channel and spatial-wise attention,
respectively and⊗ denotes the Hadamard product between intermediate
convolutional features and attention maps.
In a CNN model, each channel of a convolutional layer contains a certain

feature response. The main intent of channel-wise attention (Catt) is to
interpret the significance of each feature response by first performing 1 × 1
convolution operation followed by a channel-wise global average pooling
which transforms F∈ RH×W×D→ R1×1×D. After compressing the spatial
dimension of the feature maps F, we normalized the channel attention
using the Sigmoid function. Finally, we compute the Hadamard product
between the (Catt) and F to obtain the combined feature vector
representing 3D channel-wise attention maps. The spatial branch of the
attention module transforms F∈ RH×W×D→ RH×W×1 to generate a 2D spatial
attention map which enables the WSS-CNN model to highlight the spatial
features of prognostically relevant regions (and suppress features from
non-informative regions). To compute the spatial attention Satt(F), we first

Fig. 5 The proposed attention mechanism for analyzing histology images. The module has two main components a) spatial and b) channel
attention which refine the features from an intermediate convolutional layer, as separately shown in the bottom row. Rep.net means
representational CNN that process each in and transform them to the features maps which were then used for the attention mechanism.
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perform 1 × 1 convolution which then followed by an inter-channel global
average pooling to aggregate spatial information of a given feature map F.
The 2D spatial attention map is then normalized using the Sigmoid
function. Lastly, to obtain the 3D feature maps, we perform the Hadamard
product between the Satt and F. After obtaining the channel Catt(F) and the
spatial attention Satt(F), to generate the final 3D refined feature maps, we
perform element-wise summation which offers better gradient propaga-
tion as compared to other operations e.g., product, or average/max
operations.

Concordance index
Due to censored patients and skewed survival data distribution, survival
analysis can be transformed into a ranking problem so rather than
predicting the continuous survival time it can infer as ranking the survival
time61. Therefore, during training, we compute the prognostic accuracy of
the model using Harrell’s concordance index (or c-index), which is a non-
parametric global statistics measure to quantify the proportion of correctly
ranked survival times by total possible actual observation62 and formally
defined as in (4)

CI ¼ 1
jQj

X

ðm;nÞ2Q
IðRðxmÞ< RðxnÞÞ ¼ 1

jQj
X

ðm;nÞ2Q
IðβT xm < βT xnÞ (4)

Larger c-index values indicate better predictive ability of the model, with
c-index of 1 indicating best concordance whereas 0 the worst
concordance, and 0.5 means random concordance. It is worth mentioning
that the c-index was computed on the data set level, whereas during
training, we only compute c-index for a mini-batch and therefore, it is
important the way we sample mini-batches for training the model. We
ensure that we get image patches from unique patients for each mini-
batch after shuffling the training data set.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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