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Just Add Data: automated predictive modeling for knowledge
discovery and feature selection
Ioannis Tsamardinos 1,2,3✉, Paulos Charonyktakis1, Georgios Papoutsoglou 1,2, Giorgos Borboudakis 1, Kleanthi Lakiotaki2,
Jean Claude Zenklusen4, Hartmut Juhl5, Ekaterini Chatzaki 6,7 and Vincenzo Lagani 1,8

Fully automated machine learning (AutoML) for predictive modeling is becoming a reality, giving rise to a whole new field. We
present the basic ideas and principles of Just Add Data Bio (JADBio), an AutoML platform applicable to the low-sample, high-
dimensional omics data that arise in translational medicine and bioinformatics applications. In addition to predictive and diagnostic
models ready for clinical use, JADBio focuses on knowledge discovery by performing feature selection and identifying the
corresponding biosignatures, i.e., minimal-size subsets of biomarkers that are jointly predictive of the outcome or phenotype of
interest. It also returns a palette of useful information for interpretation, clinical use of the models, and decision making. JADBio is
qualitatively and quantitatively compared against Hyper-Parameter Optimization Machine Learning libraries. Results show that in
typical omics dataset analysis, JADBio manages to identify signatures comprising of just a handful of features while maintaining
competitive predictive performance and accurate out-of-sample performance estimation.
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INTRODUCTION
The number of molecular biological datasets available (defined as
collections of molecular profiles of several biological samples) is
increasing at a rapid pace, presenting welcoming opportunities for
new science. Public repositories such as Gene Expression
Omnibus1, recount22, Metabolomics Workbench3, and the NCI
Genomics Data Commons4 collectively count hundreds of
thousands of datasets. The samples in those datasets are typically
associated with an outcome (target, dependent variable) of
interest, such as disease status, response to treatment, disease
sub-type, quantitative phenotypic trait, and time to an event of
interest (e.g., survival, complication, metastasis). Predictive model
instances (hereafter, models) can be learned (fit, constructed) to
predict the outcome in future unseen (out-of-sample) profiles,
using modern statistical and machine learning methods. This type
of analysis is known in the machine learning field as supervised
learning5, as opposed to unsupervised (clustering)5 and self-
supervised6 learning approaches used for unlabeled samples. i.e.,
when there is no specific outcome of interest to predict. In
supervised learning, methods falling in the class of feature
selection (a.k.a., variable selection or attribute selection), can be
coupled with predictive modeling algorithms to identify (bio)
signatures, defined as minimal-size subsets of molecular and other
biological measurements that collectively lead to optimal predic-
tions. Identifying such predictive signatures is of major importance
for knowledge discovery, gaining intuition into molecular
pathophysiological mechanisms, identifying novel drug targets,
or designing diagnostic/prognostic assays with minimal measur-
ing requirements. Feature selection for knowledge discovery is
often the primary goal in an analysis and the predictive model is
just a side-benefit. Feature selection is different than differential
expression analysis: feature selection examines feature

correlations in combination (multivariately) and not individually.
Not only it removes irrelevant features, but also features that are
redundant for prediction given the selected ones.
Despite the plethora of available data, algorithms, and

computational power, a major bottleneck in molecular data
analysis is still present: lack of human experts’ time. In addition,
analyses are prone to methodological errors that invalidate results
and mislead the community7. Is it possible to fully automate the
sophisticated, advanced multivariate analysis of biological data
and the discovery of biosignatures? Can we democratize machine
learning to life scientists and non-expert analysts? Can we reduce
statistical methodological errors that creep into analyses? Quite
importantly, can we identify small size signatures that carry all
predictive information of the outcome in typical omics analyses?
As a response to the above challenges, the field of Automated

Machine Learning (AutoML) recently emerged8. AutoML tools try
to automate the analysis and predictive modeling process end-to-
end in ways that provide unique opportunities for improving
healthcare9. They automatically try thousands of combinations of
algorithms and their hyper-parameter values to obtain the best-
possible model. However, state-of-the-art AutoML tools do not
cover all the analyses needs of the translational researcher. Firstly,
they do not focus on feature selection. As a rule, they return
models that employ and require to measure all molecular
quantities in the training data to provide predictions, thus
hindering interpretation, knowledge discovery, and the ability to
translate to cost-effective benchtop assays. Secondly, they do not
focus on providing reliable estimates of the out-of-sample
predictive performance (hereafter, performance) of the models.
The latter is particularly important to a practitioner gauging the
clinical utility of the model. Thirdly, they do not provide all
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information necessary to interpret, explain, make decisions, and
apply the model in the clinic.
Focusing on reliable performance estimation, we note that it is

particularly challenging in omics analyses for at least three
reasons. The first one is the low-sample size of typical omics
datasets10. It is not uncommon for biological datasets to contain
fewer than 100 samples: as of October 2021, 74.6% of the 4348
curated datasets provided by Gene Expression Omnibus count 20
or fewer samples. This is typical in rare cancers and diseases, in
experimental therapy treatments, and whenever the measure-
ment costs are high. When sample size is low, one cannot afford to
hold out a significant portion of the molecular profiles for
statistical validation of the model. The second reason is that trying
multiple machine learning algorithms or pipelines to produce
various models and selecting the best-performing one, leads to
systematically overestimating its predictive performance (bias).
This phenomenon is called the “winner’s curse” in statistics11 and
the multiple comparisons in induction algorithms problem in
machine learning12. The third reason is that omics datasets
measure up to hundreds of thousands of features (dimensions).
Such high dimensional data are produced by modern biotechnol-
ogies for genomic, transcriptomic, metabolomic, proteomic, copy
number variation, single nucleotide polymorphism (SNP) GWAS
profiling, and multi-omics datasets that comprise of multiple
modalities. The combination of a high number of features (p) and
a low-sample size (n), or as it is called “large p, small n” setting, is
notoriously challenging as it has been repeatedly noted in
statistics13 and bioinformatics14,15 leading to problems of model
overfitting and performance overestimation. Such challenges have
been recently noted in the precision medicine research commu-
nity as well10,16.
In this work, we describe the design and properties of a web

based AutoML platform to address the above challenges, called
Just Add Data Bio or simply JADBio, version 1.2.24 (April, 1, 2021).
JADBio is qualitatively compared against auto-sklearn17, TPOT18,19,
GAMA20, AutoPrognosis21, and Random Forests22, demonstrating
that it provides a wealth of unique functionalities necessary to a
translational researcher for decision support and clinically apply-
ing a model. A case-study on the microbiome of colorectal cancer
is presented to illustrate and demonstrate JADBio’s functionalities.
JADBio is also comparatively and quantitatively evaluated on 360
public biological datasets, spanning 122 diseases and correspond-
ing controls, from psoriasis to cancer, measuring metabolomics,
transcriptomics (microarray and RNA-seq), and methylomics. It is
shown that, on typical omics datasets, JADBio identifies signatures
with just a handful of molecular quantities, while maintaining
competitive predictive performance. At the same time, it reliably
estimates the performance of the models from the training data
alone, without losing samples to validation. In contrast, several
common AutoML packages are shown to severely overestimate
the performance of their models.

RESULTS
Case-study problem definition: analyzing colorectal cancer
microbiome data
We present a case-study example to showcase the functionalities
of JADBio for predictive modeling, biosignature discovery, and its
pertinence to oncology and molecular data analysis in general. We
use data from Wirbel et al.23, where five public cohorts of
colorectal cancer cases and controls and their microbial gut
profiles were assembled. The profiles were uniformly prepro-
cessed to allow pooling them together. The cohorts were named
after the corresponding country where the sampling was
performed (China CN24, France FR25, United States US26, Germany
DE23, and Austria AT27). Collectively, the five cohorts contain
575 samples (285 colorectal cancer cases, 290 healthy controls).

The samples were profiled with shotgun metagenomics measur-
ing the relative abundance of 849 microbial species. We used
these data to replicate part of the analyses presented in Wirbel
et al.23. The analysis tasks are: (a) to create a predictive, diagnostic
model for colorectal cancer given a microbial gut profile, (b) to
estimate the predictive performance of the model, (c) to identify
the biosignature(s) of microbial species that predict colorectal
cancer, and (d) to apply the colorectal cancer model on new data.
Particularly, we use each cohort to build a predictive model and
every other cohort as its external validation set. The detailed set of
results is presented in Supplementary Table 1. Overall, JADBio
analyses deliver similar performances as in the original publica-
tion23, with the maximum difference between original and JADBio
analyses being 0.08 AUC points. However, note that JADBio
requires minimal human effort and selected fewer predictive
features on average (up to 25). The number of features used in
Wirbel et al.23 for each model cannot be extracted as they use an
ensemble of models’ approach; for all practical purposes their
models employ the full set of 849 features. Using all measured
biomarkers in the model limits the knowledge discovery aspect of
their analysis and their application to designing diagnostic assays.

Case-study: create a diagnostic model instance for colorectal
cancer given a microbial gut profile
To initiate an analysis with JADBio using the GUI, the
2-dimensional training data matrix with the measurements is
uploaded, the user designates which column contains the
outcome, and the analysis begins; during the analysis, the user
can monitor its progress (see Supplementary Fig. 1 for details). All
GUI functionalities, as well as additional ones, are also available
through a REST API interface or a Python API wrapper (see
Software Availability). In the case of the CN cohort, the analysis
completes within 44min after training 127160 model instances
stemming from 3179 configurations (i.e., machine learning
pipelines each of which combines different algorithms with
different tuning hyper-parameters; see Methods. A configuration
accepts the data and produces a predictive model). The user can
share results with the community for reproducibility purposes and
interactive examination through unique sharable links. Results
from the CN cohort are available at this link: https://app.jadbio.
com/share/f138ced3-1357-465b-81f0-523e64a3abf7. The expert
analyst can look at the analysis report with a description of all
computations that took place, including all configurations that
were tested (https://app.jadbio.com/share/f138ced3-1357-465b-
81f0-523e64a3abf7/report). Links for the analyses of the other
cohorts are available in Supplementary Table 2. The results and
analysis performed are summarized in an automatically generated
natural language report for inclusion in scientific publications (an
example of such reports is presented in the companion webpage,
https://jadbio.com/jadbio-extensive-evaluation-resource-page/).
JADBio reports configurations optimized for different criteria,

namely performance, interpretability, feature selection, and
aggressive feature selection. When the Performance criterion is
selected, JADBio reports the configuration with the highest
expected predictive performance. When Interpretability is
selected, JADBio reports the best-performing configuration
among those whose predictive algorithm generates models that
are humanly interpretable. When either Feature Selection or
Aggressive Feature Selection is selected, JADBio reports the best
configuration when Feature Selection is integrated in the pipeline,
with Aggressive Feature Selection enforcing the identification of
minimal size feature subsets at the expense of reduced
performance, on average.
The configuration that produces the best-performing model on

the CN cohort is reported in Fig. 1a. It produces a non-linear
model, specifically, a Random Forest that includes 1000 different
decision trees. If “Interpretability” is selected as criterion for this
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analysis, the best interpretable model is a linear Ridge Regression
type of model (Fig. 1b), whose standardized coefficients are
shown in Fig. 1c.

Case-study: estimating the predictive performance of the
colorectal cancer model
The predictive model outputs the probability of a sample to
belong to a given class; in this case, it is the probability of having
colorectal cancer. The user can decide on a clinically relevant
classification threshold t and call as cancerous any sample with
predicted probability higher than t. Several metrics of perfor-
mance depend on this threshold t, such as sensitivity, specificity,
accuracy, precision, and positive predictive value.
Figure 2 reports some of the information JADBio provides on

predictive performances for the model trained on the CN cohort
and optimized for “Feature Selection”. Specifically, it presents the
expected, out-of-sample Receiver Operating Characteristic curve
(ROC) that shows all trade-offs between the False Positive Rate
and True Positive Rate achieved by using different thresholds on
the output of the final model (Fig. 2a, blue line). By clicking on a
point on the ROC or the skyscraper in Fig. 2b, the clinician can
select a different threshold leading to different sensitivity,
specificity, or accuracy. For example, the blue circle selected in
Fig. 2b corresponds to a probability classification threshold of
0.488, which leads to 0.841 True Positive Rate (TPR), and 0.33 False
Positive Rate (FPR). Using this threshold, the model operates on
the green circle on the ROC of Fig. 2a. The green cross on Fig. 2a
displays the 95% confidence interval in terms of both TRP and FPR.

In a similar fashion, the Precision-Recall curve shows all achievable
trade-offs between precision and recall (Supplementary Fig. 2). If
the given FPR is not acceptable for the clinical application of the
model, another circle/threshold could be selected.
The Area Under the ROC Curve (AUC) is a threshold-

independent metric of performance, as its computation sums
over all possible threshold values. For the model in Fig. 2a, the
AUC turns out to be 0.845; confidence intervals and the
unadjusted AUC value are reported as well. The latter is the
estimate without adjusting (controlling) for trying multiple
configurations and, as shown empirically and theoretically in prior
work28, systematically overestimates the performance on unseen
profiles. Except for metrics specifically denoted as “unadjusted”,
we would like to note that all estimates and confidence intervals
reported by JADBio are adjusted for trying numerous configura-
tions (winner’s curse) and are, in general, conservative (see
Methods); this includes not only the AUC but all metrics for all
thresholds displayed (see Supplementary Fig. 2). This means that
the user can optimize the classification threshold for clinical use to
the best sensitivity/specificity trade-off without overfitting.
As an example of an external validation of a model, we apply

the Feature Selection CN model on the DE cohort. The AUC
achieved on the validation set is 0.834 (Fig. 2c) close to the
estimated value of 0.845 from the training set and within the
confidence interval. The unadjusted estimate (0.862) seems on the
overoptimistic side, but still within the confidence intervals in this
case. The ROC curve achieved on the validation set is shown as the
bold green line in Fig. 2a.

a

b

c

Preprocessing

Constant Removal, Standardization

Predictive Algorithm

Ridge Logistic Regression with penaltly
hyper-parameter lambda = 100

Feature Selection

LASSO Feature Selection 
(penalty=1.0, lambda=9.946e-02)

Aggressive Feature Selection No Feature SelectionFeature SelectionPerformance Interpretability

Preprocessing

Constant Removal, Standardization

Feature Selection

Full Selector

Predictive Algorithm

Classification Random Forests training 
1000 trees with Deviance splitting 
criterion, minimum leaf size = 1, and 
variables to split = 1.414 sqrt (nvars)

Interpretability Aggressive Feature Selection No Feature SelectionFeature SelectionPerformance

-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Intercept

Parvimonas micra [ref_mOTU_v2_1145]

Gemella morbillorum [ref_mOTU_v2_4513]

unknown Clostridiales [meta_mOTU_v2_6105]

unknown Faecalibacterium [meta_mOTU_v2_5815]

unknown Clostridiales [meta_mOTU_v2_6602]

Clostridium clostridioforme [ref_mOTU_v2_0979]

bacterium LF-3 [ref_mOTU_v2_3608]

Fig. 1 The best performing and best interpretable model trained on the China (CN) cohort. a Winning configuration that leads to the
production of the final best-performing model when applied to all training data. It is produced by first applying removal of constant-value
features and standardization of all features, followed by including all features in the model (FullSelector, i.e., no feature selection), and then
modeling using the Random Forest algorithm. The hyper-parameter values to use are also shown. b Configuration that leads to the
production of the best interpretable model. It is a linear Ridge Logistic Regression type of model, preceded by a Lasso regression for feature
selection. c The interpretable model can be visualized, in contrast to the best-performing one. JADBio shows the standardized coefficients of
the model for each selected feature and the intercept term.
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Case-study: identify the biosignature(s) of microbial species
that predict colorectal cancer
JADBio performs feature selection (biosignature discovery) simul-
taneously with modeling to facilitate knowledge discovery. JADBio
performs multiple feature selection, meaning that it may identify
multiple alternative feature subsets that lead to equally predictive
models, up to statistical equivalence, if present. Among the
performed analyses, multiple signatures were identified only in the
FR cohort. The best-performing model for this cohort presents
three biosignatures (Fig. 3a), each containing just five features (i.e.,
microbe species) selected out of a total of 849 features. The first
feature for all signatures, named ‘unknown Dialister’, is the relative
abundance of an unknown microbe from the Dialister genus. The
second feature varies across the signatures among three
unidentified, yet possibly distinct microbes from the Clostridiales
order, denoted as “unknown Clostridiales [meta_mOTU_v2_6009]”,
“unknown Clostridiales [meta_mOTU_v2_5514]”, “unknown Clos-
tridiales [meta_mOTU_v2_7337]” (full names trimmed out in Fig.
3a). In other words, the abundance of each of these three microbes
could substitute for the others in the signature and lead to an
equally predictive model: they are informationally equivalent with
respect to the prediction of this outcome.
Interestingly, while the unknown Dialister and the Hungatella

hathewayi microbes respectively rank first and second among the
markers most associated (pairwise) to the outcome (two-tailed t-
test), the Porphyromonas somerae and Fusobacterium nucleatum

(univariate, unconditional) p-values rank in 27th and 46th
positions, respectively. This example anecdotally illustrates the
difference between standard differential expression analysis that
examines genes independently, and feature selection that
examines biomarkers jointly29. Features with relatively weak
pairwise association with the outcome may be selected in a
multivariable analysis because they complement each other
towards predicting the outcome.
JADBio presents Individual Conditional Expectation (ICE) plots

(see Methods and Goldstein et al., 201530) to facilitate the
interpretation of the role of the features in the model. Figure 3c
presents the ICE plot for one of the unknown Clostridiales
microbe. The y-axis corresponds to the predicted probability that
the sample belongs to a subject diagnosed with colorectal cancer.
The bold blue line in the plot shows how the average of the
predicted probability changes against the value of the marker. The
gray area indicates the range of the predictions due to the values
of the other biomarkers. The higher the abundance of the specific
microbe, the higher the probability of disease on average; hence,
we would call Clostridiales overabundance a risk factor for the
disease. The Feature Importance graph (Fig. 3b) shows the relative
drop of predictive performance when a single feature is removed
from the model. In this case, removing the Dialister feature from
the model is expected to cause a relative drop in performance
slightly above 10%, while removing the second feature would
have a smaller effect (around 8%).

Receiver Operating Characteristic (ROC) Curve for class "CRC"
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Fig. 2 Predictive performance of the winning model optimized for Feature selection, trained on the China (CN) cohort and validated on
the Germany (DE) cohort. a The Receiver Operating Characteristic (ROC) curve estimated on the training set and controlled for trying multiple
different configurations is shown as the blue line. It shows all trade-offs between False Positive Rate (top x-axis) and True Positive Rate (y-axis)
for all different classification thresholds (bottom x-axis). By clicking on a circle, a corresponding threshold is selected. The user can see how
metrics of performance are affected, which facilitates selection of the clinically optimal threshold. The green cross shows the confidence
intervals in each dimension for that point on the ROC. The ROC curve achieved by the model’s predictions on the DE cohort used as external
validation set is shown as the green line. It closely follows the blue line estimated from the training. b A list of different thresholds suggested
by JADBio and the corresponding metric of performance that they optimize. E.g., accuracy is optimized for threshold 0.488, while balanced
accuracy is optimized for 0.465. c The threshold-independent metric ROC Area Under the Curve (AUC) as estimated by the training (bold blue)
and achieved on the validation (bold green) is reported along with its confidence intervals. Its unadjusted estimate (i.e., not adjusted for trying
multiple configurations) is also reported and is expected to be optimistic on average. All other estimates computed by JADBio, including but
not limited to accuracy, precision, recall (not shown in the figure) are adjusted for trying multiple configurations as well.
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Fig. 3 Feature selection (biosignature discovery) results for the best-performing model using the France (FR) cohort as training data.
a There are three biosignatures identified, each containing five features. Each signature leads to an optimally predictive model. They share
four features, while the second feature varies across signatures. b Feature importance plot, assessing the relative drop in performance if each
feature is dropped from the signature and the rest are retained. c The Individual Conditional Expectation (ICE) plot for the ‘unknown
Clostridiales [meta_mOTU_v2_6009]’: the higher its abundance, the higher the probability of colorectal cancer. Note that the trend is non-
linear and non-monotonic (close to step function). d The manual application of the model to get predictions for a fictional new sample is
shown. Values are log-transformed relative concentrations, which can be negative if the original numbers are smaller than the logarithm base.
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Case-study: apply the colorectal cancer model to new, unseen
data
The users can apply the model in batch form on a new labeled
dataset for external validation, or on an unlabeled dataset to get
predictions, or even download the model as executable to embed
it in their own code. They can also manually input the values of
the predictors and get a single prediction. This is a useful
functionality to explore what-if scenarios of how observed feature
values affect predictions (we warn however, against interpreting
causally these scenarios, i.e., when feature values are not observed
but manipulated). As an example, the manual application of the
best-performing model for the FR cohort is shown in Fig. 3d.
Overall, JADBio managed to create accurate diagnostic models

for colorectal cancer from microbial gut data that transfer across
different populations. JADBio identified signatures of up to 25
features, out of the 849 available ones. Model construction did not
require any coding.

Qualitative comparison against state-of-the-art AutoML tools
We evaluate and qualitatively compare several AutoML platforms
in terms of provided functionalities, namely auto-sklearn17,
TPOT18, TPOT-MDR19, GAMA20, and AutoPrognosis (AP21). The
functionalities indicate the scope of applicability of the platform,
as well as the breadth of covering the needs of a translational
researcher. In Table 1, the presence of a functionality is indicated
with a ✓ symbol. Asterisks are explained in the text below.

● CASH: Combined Algorithm Selection and Hyperparameter
optimization is the ability to automatically try numerous
combinations of algorithms and their hyper-parameter values
to identify the one(s) to produce a final predictive model.
CASH methodology directly affects the quality of the models
produced.

● (Multiple) Biosignature Identification (Feature Selection):
Ability to select feature subsets that are of minimal size and
optimally predictive. This removes irrelevant but also redun-
dant features. It is the main tool for knowledge discovery.
Returning multiple such subsets provides choices to designers
of clinical multiplex assays (see also Methods). TPOT-MDR
does not guarantee biosignature identification, but it does
occur occasionally (denoted by an asterisk in the
corresponding cell).

● Feature Interpretation plots, like the ICE plot30 help the
biomedical scientist interpret the role of a biomarker as a risk

factor, a protective factor, or something more complex (risk or
protection depends on context). The “Selected Feature Added
Value” indicates the effect of the removal of this feature from
the model. It helps the designer of laboratory assays of clinical
value to gauge the cost effectiveness of including the marker
in the assay.

● Predictive Performance Estimation is necessary to judge the
quality of a model before clinical application. JADBio
embodies a combination of two algorithms in this category
(see Methods for more details). The first is the Generalized
cross validation (GCV) algorithm that estimates the out-of-
sample performance of each configuration to select the
winning one. GCV is a generalization of the standard CV that
can vary depending on the sample size and imbalance of the
outcome classes. The second one is the Bootstrap Bias
Correction Cross Validation (BBC-CV) protocol to correct the
estimate of the winning configuration for the “winner’s curse”.
The other tools apply CV for each configuration which is
expected to overestimate performance systematically. As a
result, it is necessary to withhold a separate test set and lose
samples to estimation. The asterisk on auto-sklearn and GAMA
indicates that performance estimates are not provided in the
user output but need to be extracted from their log files.
Confidence Intervals help the clinician gauge the uncertainty
of the quality of the model to interpret its practical value.

● Clustered or grouped samples (not to be confused with
clustering of samples) are profiles that are sampled in a
correlated way, e.g., repeated measurements on the same cell
culture or human subject. Ignoring the grouping of samples
may lead to overestimated performances.

● Optimization of clinical thresholds: JADBio facilitates the
choice of the classification threshold for optimal clinical use
to achieve the best trade-off between sensitivity and
specificity (see Methods for more details).

Quantitative study: large-scale, comparative evaluation on
public datasets set up
Computational experiments were conducted on a large corpus of
360 high-dimensional datasets, including transcriptomics (271
microarray, 23 RNA-seq), epigenomics (23), and metabolomics (43)
data. The datasets are related to 125 diseases or phenotypes, with
cellular proliferation diseases (i.e., different types of cancers) being
the most represented group with 154 datasets. Supplementary

Table 1. AutoML tools functionalities. The presence of a functionality in each tool is marked by a check symbol or by a short name/acronym.
Asterisks and short names are explained in the text.

JADBio auto-sklearn TPOT TPOT-MDR GAMA AP

CASH* ✓ ✓ ✓ ✓ ✓ ✓

BioSignature Identification* ✓ ✓*

(Multiple) Signatures Identification ✓

Selected Feature Interpretations ICE plot

Selected Feature Added Value ✓

Explains individual predictions ✓

Predictive Performance Estimation GCV, BBC-CV Holdout, CV* CV CV CV* CV

Confidence Intervals ✓ ✓

Classification (nominal) outcome ✓ ✓ ✓ ✓ ✓ ✓

Regression (continuous) outcome ✓ ✓ ✓ ✓ ✓

Time-to-event (survival) outcome ✓

Optimization of Clinical Thresholds ✓

Accepts missing values ✓ ✓ ✓ ✓ ✓ ✓

Handles clustered samples ✓ ✓
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Data 1 lists all datasets and respective characteristics. We run
JADBio by optimizing four different criteria, namely Performance
(JADBio-P), Interpretability (JADBio-I), Feature Selection (JADBio-
FS), and Aggressive Feature Selection (JADBio-AFS). We compare
against auto-sklearn17, TPOT18, GAMA20, AutoPrognosis21, and
Random Forest (RF22, scikit-learn implementation31). Each dataset
was partitioned into two equal-size sample sets, each serving as
the train and test set, respectively, leading to a total of 720
analyses. Further details in the Methods.

Quantitative study: JADBio enables knowledge discovery and
provides highly predictive models
Figure 4 reports the quantitative evaluation results. JADBio (all
settings) and RF successfully completed all 720 analyses (Fig. 4a,
Supplementary Fig. 3, Supplementary Table 3). GAMA and auto-
sklearn completed 696 (96.7%) and 667 (92.6%), respectively,
while TPOT-MDR and TPOT completed 645 (89.6%) and 318
(44.2%) runs. Failed runs either reached the time limit or were
interrupted by internal errors, with the latter being the most
common reason (Supplementary Table 3). AutoPrognosis failed to
complete any analysis and is omitted from the figures. Specifically,

in 405 (56.3%) datasets runs were halted because at least
50 samples were required to proceed with an analysis.
Figure 4b reports the median performance difference

between a given tool and JADBio-FS (y-axis, smaller is better
for JADBio-FS) against the median ratio of the number of
selected features by a given tool and JADBio-FS (x-axis, smaller
is better). Medians are computed only on the runs completed
successfully. All tools are on par with JADBio-FS with respect to
performance, except TPOT-MDR which shows a small (0.0034
AUC points), yet statistically significant advantage and JADBio-
AFS which is statistically significantly outperformed by JADBio-
FS by 0.011 AUC points (Bonferroni-adjusted p-values < 0.05,
Supplementary Figs. 4 and 5, Supplementary Table 4). When
the average difference is considered instead of the median, all
tools except JADBio-AFS outperform JADBio-FS’s, however the
differences are often negligible. Specifically, the differences are
<0.01, <0.01, 0.011, 0.017, and 0.031 against RF, GAMA, TPOT,
auto-sklearn, and TPOT-MDR, respectively. Only the differences
with TPOT-MDR and auto-sklearn are statistically significant
(Bonferroni-adjusted p-value < 0.05, Supplementary Figs. 6 and
7, Supplementary Table 5).
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Fig. 4 Results of the quantitative comparison in terms of predictive performance. a Number of successfully completed tasks out of 720 for
each tool. AutoPrognosis never completes any run and is not shown. JADBio-P and TPOT-MDR do attempt feature selection. The portion of
runs where feature selection led to a winning model is depicted with a darker shade in their respective columns. JADBio-FS always enforces
feature selection. b Comparison between JADBio-FS and all other tools in terms of relative dimensionality reduction and performance gain.
The dimensionality reduction with respect to JADBio-FS (x-axis) is computed as the ratio between the number of features selected by each
tool and the number of features selected by JADBio-FS (log2 scale). Values larger than one indicate that the tool selects more features than
JADBio. The performance gain is reported on the y-axis, and it is computed as the difference between the holdout AUC achieved by each tool
and the holdout AUC achieved by JADBio-FS. Values larger than zero indicate that the tool performs better than JADBio-FS. For each tool, we
plot a point on the median values for each axis. Errors bars showing the standard error are shown. The median values are computed only on
the completed runs. Cranberry-colored lines denote the baseline value, i.e., relative dimensionality reduction equal to one and performance
gain equal to zero. c Holdout AUC distribution for JADBio-FS over different number of selected features. The holdout AUC distribution is
reported both as a box and violin plot. d Contrasting the sample size in the training set (x-axis) and the number of equivalent signatures
identified by JADBio-FS (y-axis, log2 transformed). Only runs where an algorithm able to identify multiple signatures was selected are shown.
More than one signature was identified in a total of 68 runs out of 98, represented by the points with y coordinate larger than 1.
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The small performance advantage comes at the price of a
disproportionately large number of selected features. All tools
other than JADBio never or rarely apply feature selection, meaning
that their models are based on all available features. The default
maximum number of features to select for JADBio-FS is 25,
however, in most cases the upper limit is not reached (Fig. 4c).
This leads to an average dimensionality reduction of ~4000 times
against all other tools. Even when we focus on the 13 and 34 runs
where TPOT-MDR and TPOT do employ models with selected
features (points labeled as TPOT-MDR-FS and TPOT-FS in Fig. 4b),
they select a median of 164 and 197 features respectively, an
amount five times larger than what JADBio-FS selects, without any
statistically significant difference in performances (median differ-
ence: -0.008 and 0.0 for TPOT-MDR and TPOT, respectively).
Figure 4c reports the distribution of the number of selected

features binned in four different groups with respect to the
number of selected features. The distribution of the holdout AUC
for each category is also plotted at the top of the panel. In almost
half of the runs (313, 43.5%) JADBio-FS selects fewer than ten
features. Median holdout AUC performances for the four
categories are 0.96, 0.99, 0.93, and 0.89, sorted from the fewest
to more selected features. Models containing 5 < #features ≤ 10
features lead to statistically significantly higher AUC than models
with a larger number of selected features (Bonferroni-adjusted
Wilcoxon-test p-value 0.002 and 1.69e-6, respectively).
In Fig. 4d, we examine the identification of multiple signatures.

We focus on the 98 runs where there was a possibility to identify
multiple signatures, namely the runs where the winning config-
uration contained a feature selection algorithm able to identify
multiple signatures. JADBio-FS detects multiple signatures in 68
(69.39%) out of these 98 runs. The average number of signatures is
equal to 1106, peaking at 33360 (Fig. 4d). The number of
equivalent signatures tends to decrease with sample size (not in a
strongly statistically significant way, Pearson correlation -0.237,
p-value 0.052). This could be explained by the fact that when
sample size is low, it is harder to discern the truly optimal
signature32.
The results show that JADBio leads to models that require about

4000 fewer biomarkers to measure to achieve comparable
predictive performance against all other tools included in the
experiments.

Quantitative study: JADBio avoids overestimating
performances
We investigate whether performance estimates obtained from the
training set accurately reflect the ones computed on the holdout
set. This is important to correctly assess the clinical usefulness of a
model. The estimation bias is defined as the difference between
the AUC estimated on the holdout set and the one estimated on
the training set. A positive bias indicates systematically con-
servative estimates, while a negative one indicates optimistic
estimates. Figure 5a reports the bias for the five tools with the
highest predictive power. JADBio (all settings) uses Bootstrap Bias
Corrected (BBC) cross validation (CV), a protocol specifically
devised for removing the estimation bias28. RF uses Out Of Bag
(OOB) estimation22, auto-sklearn an internal holdout approach,
and all other tools employ the uncorrected cross-validation
estimate of the winning configuration33. We’d like to note
however, that the authors of GAMA and auto-sklearn are aware
of the estimation problems and warn against the use of the
training estimates without further validation on a separate
holdout set.
Figure 5a shows the distribution of the bias, along with the

median (M) and average (m) for each tool. JADBio-FS, JADBio-P,
and TPOT-MDR median estimation bias is statistically indistin-
guishable from zero (Fig. 5a, Supplementary Fig. 8, Supplementary
Table 6). RF using the OOB22 estimation protocol underestimates

performance having a strong positive bias (median value 0.014).
The tools auto-sklearn, GAMA, TPOT statistically significantly
overestimate performance with median bias values of (−0.035),
(−0.024), and (−0.024), respectively (Bonferroni-adjusted p-value
< 0.05, see also Supplementary Table 6). The average bias for auto-
sklearn, GAMA, TPOT, and JADBio-P are respectively (−0.1),
(−0.08), (−0.065), and (−0.018), respectively (Supplementary Table
7). Average bias values are in general more extreme than the
median ones due to the presence of outliers (Fig. 5a).
Although these levels of bias seem relatively innocuous, it is a

misleading conclusion due to a ceiling effect: numerous models
have high predictive power and hence there is no opportunity to
overestimate performance in these runs. We now restrict attention
to the more difficult tasks, specifically to the ones where RF
achieves an AUC less than 0.8 on the test set. The results are
shown in Fig. 5b and Supplementary Table 8. The median bias of
auto-sklearn in these runs is −0.25. This means that auto sklearn
may estimate the performance of a model to 0.75 AUC from the
training set, when the true performance on unseen data is equal
to random guessing 0.5 AUC. Similar results on auto-sklearn were
reported also in another recent publication34.
Panels (c) and (d) of Fig. 5 better visualize the difference in

estimation properties between AutoML platforms. Each dot
corresponds to a single run, where the x-axis reports the AUC
estimate on the training set and the y-axis the estimate on the
holdout set. The estimated training AUC is plotted against the
achieved holdout AUC. Points above/below the diagonal corre-
spond to runs underestimating/overestimating performance. The
LOESS regression lines are shown in bold. Notice that auto-sklearn
almost always overestimates performance. The stripe of dots on
the right of the panel corresponds to auto sklearn estimates of
exactly AUC= 1, while their holdout AUCs range from less than 0.5
to a perfect score of 1. In contrast, JADBio-FS runs are
symmetrically distributed around the diagonal demonstrating
that JADBio-FS estimates from the training set are on average
accurate (zero bias). Of course, there is still variance in the
estimation, which is why JADBio also reports confidence intervals.
Other JADBio settings have more conservative performance
estimates than JADBio-FS, possibly due to lower numbers of
configurations explored (Supplementary Table 9).
In summary, these results indicate that JADBio provides reliable

generalization performance estimates from the training set alone,
while auto sklearn, GAMA, and TPOT fail in this respect.

DISCUSSION
JADBio can analyze binary, multi-class (classification), right-
censored time-to-event (survival analysis), and quantitative
(regression) outcomes. It accepts nominal and continuous
predictive features, medical images (e.g., histopathological, x-rays,
and cell) and it has been applied to medical signals as well (e.g.,
electrocardiogram, ballistocardiogram)35. The dataset may contain
multi-omics measurements, clinical, epidemiological, or lifestyle
measurements. However, within the scope of this paper we focus
only on binary classification tasks from single omics datasets.
The results support the following claims. First, JADBio provides

useful automation and functionality for translational research,
predictive modeling, and corresponding decision support. Ana-
lyses handled may involve multi-omics data complemented with
clinical, epidemiological, and lifestyle factors resulting in hundreds
of thousands of measured quantities. Low-sample size (<40) can
be handled as well; while the variance in predictive performance
can be large, the user can still gauge the clinical utility of the
results by the reported confidence intervals. In general, no
statistical knowledge or expertise is required, nor any computer
programming abilities. However, some basic statistical knowledge
is still necessary to fully interpret all reported metrics and graphs.
Special emphasis is placed on facilitating biological interpretation
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and clinical translation10. To this aim, results are complemented by
(i) confidence intervals of performance to convey clinical utility, (ii)
ROC curves that allow one to choose the optimal trade-off
between false positive and false negatives for clinical operational
use, (iii) visualization of all identified signatures and biomarkers to
understand the underlying biology and design feasible laboratory
assays, (iv) metrics of marker impact to the predictive power
(importance weighting) to optimize the cost-benefit trade-off of
including all or some biomarkers in the model, (v) a visualization
of the role of each marker to the prediction (Individual Conditional
Expectation or ICE) plot to facilitate biological interpretation, (vi)
scatter plots of predictions to identify possibly mislabeled data,
(vii) interpretable models that trade-off predictive performance for
human interpretability, and (viii) automatically generated text
reports explaining the analysis that took place and summarizing
the results. The claim is supported by hundreds of omics analyses
performed as part of this paper, as well as by a use case
reproducing an analysis published in Nature Medicine23. In this
use case, we obtained models of quality comparable to the ones
produced by human expert analysts, employing fewer markers
with minimal human effort, no expert knowledge, and a few
minutes of computational time. In addition, a few dozen papers
with JADBio applications have already been published in the
literature36–65.
While other AutoML platforms automate the production of

predictive models, they often lack other important functionality
for translational research (Table 1). We argue that the current view
of AutoML is to automate the delivery of a model, rather than to
provide the full range of information required for successful
interpretation and application of the model. In our opinion, this
perspective is better described by the terms CASH (combined
algorithm selection and hyperparameter optimization) or HPO
(hyper-parameter optimization)66 and not AutoML. AutoML should
instead be a term that implies automation at a different level,
ideally delivering all information and insight that a human expert
would deliver. JADBio is a step towards this direction, although of
course, still far from fully realizing this vision.
A major AutoML functionality of JADBio that is missing from

other AutoML tools is feature selection (biosignature identifica-
tion, biomarker discovery), i.e., identifying a minimal-size subsets
of biomarkers that are jointly optimally predictive. Feature
selection is often the primary goal of the analysis. The selected
features lead to biological insights, cost-effect multiplex assays of
clinical value, and identification of plausible drug targets. Feature
selection is a notoriously difficult and combinatorial problem:
markers that are not predictive in isolation (high unconditional p-
value) may become predictive when considered in combination
with other markers. The reverse also holds: markers that are
predictive in isolation (low unconditional p-value), may become
redundant given the selected features (high conditional p-value).
JADBio embeds feature selection in the analysis process that
scales to hundreds of thousands of features often encountered in
(multi)-omics studies. GAMA and auto-sklearn do not attempt
feature selection at all, while TPOT and TPOT-MDR do try feature
selection methods, but they lead to the winning model only
occasionally (11% and 2% of the times).
Even more challenging is the problem of multiple feature

selection, i.e., identifying all multiple feature subsets of minimal
size that lead to optimally predictive models. In the case-study
above, there were three feature subsets identified in the FR cohort
(Fig. 3a), of five microbe species each, that lead to equally
predictive models. Each one suffices for predictive purposes. But,
when feature selection is used for knowledge discovery, it is
misleading not to report all three signatures. In addition,
identifying all of them provides design choices to the engineer
of a diagnostic assay. The multiple feature selection problem has
so far received relatively little attention by the community with
only a handful of algorithms available67–69. JADBio is the only tool

offering this type of functionality. Prior research has shown that
there are indeed multiple signatures present in molecular data32.
Our results also corroborate this finding with the SES algorithm69

discovering more than 10 signatures in 59% of the analyses where
it is employed in the optimal configuration.
Second, we claim that JADBio can significantly reduce the

number of selected features (biomarkers) without compromising
model quality in typical omics studies. This claim is supported by
Fig. 4 and Supplementary Table 4, showing that when feature
selection in JADBio is enforced (shown as JADBio-FS) the median
AUC is decreased by only 0.0034 points with respect to the
leading performing tool, namely TPOT-MDR, while the number of
features selected is reduced by about ~4000 times. Interestingly,
we note that Random Forests using the default settings can
achieve predictive performance comparable with the results of
much more sophisticated and computational-resource hungry
CASH platforms on omics data. When predictive performance is
the only goal in the analysis of an omics dataset, running solely
Random Forests may suffice.
The third claim is that JADBio provides accurate estimates of the

out-of-sample performance with no need of an independent
holdout set. This is supported by the results in Fig. 5 and
Supplementary Table 6. The statement has the following serious
ramifications: no samples need to be lost to estimating
performance by the user. The final model is trained on all
samples. JADBio automatically handles the estimation of perfor-
mance and its uncertainty (confidence intervals). To clarify, we
claim that the user does not need to hold out a separate test set to
statistically validate the final model. This is of particular
importance in omics datasets, often including a small number of
patients due to rare conditions and cost. We would like to add the
disclaimer however, that the estimates are valid only within the
same operating environment. If batch effects or other distribu-
tional changes are possible, a separate external validation set
should be employed. This property of JADBio is necessary for full
automation of analysis. Instead, the estimates by GAMA, TPOT,
and auto-sklearn are shown to systematically overestimate (Fig. 5),
arguably because such tools do not employ experimentation
protocols devised for performance estimation on the training set.
What are the key ideas that enable JADBio to overcome key

challenges? The use of an AI decision-support system that
encodes statistical knowledge about how to perform an analysis
makes the system adaptable to a range of data sizes, data types,
and user preferences. An automated search procedure in the
space of appropriate combinations of algorithms and their hyper-
parameter values, trying thousands of different machine learning
pipelines (configurations) automatically optimizes choices. Proto-
cols that estimate the out-of-sample predictive performance of
each configuration, particularly the Generalized Cross Validation
(see Methods) suitable for small sample sizes reduces the
uncertainty (variance) of estimation. Treating all steps of the
analysis (i.e., preprocessing→ imputation→ feature selection →
predictive modeling) as an atom, and cross-validating configura-
tions rather than just the final modeling step avoids over-
estimation. A statistical method for removing the performance
optimism (bias) due to trying numerous configurations (BBC-CV) is
also necessary to avoid overestimation. The use of a feature
selection algorithm that scales up to hundreds of thousands of
biomarkers, suitable for small sample sizes allows the identifica-
tion of multiple statistically equivalent biosignatures (SES
algorithm)69.
Lastly, notice that the final model suggested for clinical use is

constructed on all samples so that no samples are lost to
estimation. On average, the model fit on all data will be the most
predictive. So, how is its performance estimated, since we have no
data left for estimation? JADBio cross-validates the whole process
that produces final model and estimates the performance of this
process. This signifies a shift in estimation perspective: it is the
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model-producing method that is evaluated, not a specific model
instance.
There are numerous limitations in the study. First, the

conservative estimation of out-of-sample performance has only
been shown for a random splitting of the data into training and
test set. While this is standard in machine learning practice, it does
enforce that the joint distribution of both the predictors X and the
outcome Y remains the same between the train and the test set.
This may not be true, however, in clinical applications where there
is inter-tumor heterogeneity. For example, different tumor
subtypes may be more prevalent in the model’s operational
environment than in the training data. Thus, clinical expertise
must be applied before trusting the model estimates based on the
assumption above70.
The scope of automation and experimental validation concerns

low-sample, high-dimensional transcriptomics, methylomics, and
metabolomics datasets and binary outcomes. Transfer of the
conclusions to other types of molecular data (e.g., proteomics,
single cell, genetic) and outcome types needs further study. Note
however, that JADBio has already been successfully applied to
datasets with much larger samples36,50. The scope of the
experiments is limited with regards to imbalanced data, as the
most extreme class distributions tried contain at least 25%
samples in the minority class.
The automation architecture presented does not include

preprocessing steps of the raw molecular data and signal. Features
included in the biosignatures are selected on the basis of
statistical criteria, and the interpretation of their biological
relevance must be separately assessed, if needed. JADBio does
not encompass the full range of modern machine learning tasks,
such as clustering, representation learning, or causal discovery, to
name a few. Predictor types do not include free medical text or
measurements over time (longitudinal data). Prior medical
knowledge in the form of biological and medical ontologies or
pathways is not considered during the analysis (however, see our
recent work71 that converts gene expressions to pathway scores).
Datasets are analyzed independently of all other datasets publicly
available; recent research directions try to consider datasets in
their totality72 instead. Biosignatures identification and predictive
modeling are just one of the steps of a long process in bringing
new diagnostic or prognostic tests to the clinic. Propaedeutic
actions include, but are not limited to, devising a meaningful
study design and sampling procedures, while follow up steps
include independent validation studies, the development of tests
suitable for the clinical practice, and cost-benefit analyses.
In conclusion, we advocate that JADBio’s AutoML approach

could accelerate precision medicine and translational research.
Specifically, it could facilitate the discovery of novel biosignatures
and biomarkers leading to new biological insights, precision
medicine predictive models, drug targets, and non-invasive
diagnostics in cancer42 or other conditions53,60.

METHODS
Benchmark datasets used in the quantitative comparative
evaluation
We collected data from repositories offering datasets with case-control
binary outcomes and include both molecular profiles and curated meta-
data (i.e., study design information). BioDataome73 is such an online
repository with transcriptome (both microarray and RNA-seq) and
epigenetics (methylation array) datasets. BioDataome uniformly processes
and automatically annotates datasets from the Gene Expression Omnibus
database (GEO)1 and the RECOUNT database2. It uses a text-mining
pipeline for automatically separating profiles in controls and cases, if
applicable, obtaining a dichotomous target for prediction. This auto-
matically assigned status (cases vs. controls) was chosen as the binary
outcome of interest. Metabolomics datasets were obtained from the
Metabolomics Workbench3, a repository funded by the “NIH Common
Fund Metabolomics” initiative. We manually identified a suitable

dichotomous prediction target for each metabolomics dataset out of their
respective meta-data. As inclusion/exclusion criteria we selected all studies
from BioDataome and Metabolomics Workbench with at least 40 samples
for which a binary outcome could be identified. We also require at least ten
samples for each class. For BioDataome we focused on the GPL570
(Affymetrix Human Genome U133 Plus 2.0 Array) and GPL13534 (human
methylation 450k BeadChip array). These criteria lead to the selection of
271 transcriptomics microarray datasets (54675 measurements each,
31630 samples in total), 23 methylation datasets (485512 measurements
each, 2322 samples in total), 23 RNA-seq datasets (59037 measurements
each, and 2165 samples in total), and 43 metabolomics datasets (1491
measurement on average, sd. 4909, and 3792 samples in total).
The datasets are related to 125 diseases or phenotypes, with cellular

proliferation diseases (i.e., different types of cancers) being the most
represented group with 154 datasets. Other illnesses include chronic
obstructive pulmonary disease, psoriasis, and mental health diseases. In
total, we analyzed 39909 samples (molecular profiles), corresponding to
~2.98 × 109 data values, with each profile measuring between 15 and
485512 molecular quantities (variables, features), 76063 on average.
Supplementary Data 1 lists all datasets and respective characteristics.
Normalization of microarray gene expression data was performed in

BioDataome using the single-channel array normalization (SCAN) algo-
rithm74. SCAN normalizes each array independently, ensuring that
measurements from profiles in the test sets do not affect the preproces-
sing of profiles in the training sets; thus, there is no information leakage
from the test sets during cross-validation to the estimation of performance
from the training set. Count values for RNA-seq data were downloaded as
prepared by the RECOUNT repository. Each sample was then independently
normalized for library size (estimated as the sum of all its reads) and log2-
transformed. More sophisticated methods do exist both for library size
normalization and variance-stabilizing transformation (see for example the
approaches provided in the DESeq2 R package75), but they do not
preprocess samples independently and would require special treatment,
i.e., to be incorporated within the cross-validation procedure. Background
correction and normalization of methylation data was carried out with the
minfi R package76, with beta values used for all subsequent analyses77.

AutoML and CASH platforms included in the evaluation
We run JADBio by optimizing four different criteria, namely Performance
(JADBio-P), Interpretability (JADBio-I), Feature Selection (JADBio-FS), and
Aggressive Feature Selection (JADBio-AFS). These different settings lead to
the configuration and corresponding model that emphasize performance,
interpretability (selecting only among humanly interpretable models), and
number of features selected, respectively. JADBio-AFS runs feature
selection algorithms that perform more aggressive feature selection and
at the expense of predictive performance on average. Only one run for
JADBio is required; optimization for different preferences is performed
post-analysis without having to rerun the analysis.
We compare JADBio against auto-sklearn17, TPOT18, TPOT-MDR19,

GAMA20, AutoPrognosis21, and Random Forests22. Auto-sklearn is among
the state-of-art libraries for automated machine learning, winner of both
international AutoML challenges competed so far78. We use the Random
Forest algorithm22 with default parameters as implemented in the scikit-
learn library31. The latter is not considered an AutoML platform, but it is
used as a baseline method to gauge the benefits of AutoML tools. TPOT-
MDR is a recently introduced variant of TPOT that searches over a series of
feature selection and Multifactor Dimensionality Reduction (MDR) models
specifically to address high-dimensional, genomic data19.

Evaluation experimental design
Each dataset was split in half in terms of samples in a stratified way (i.e., the
distribution of classes was kept about the same in the two halves as in the
original). All tools and variants were executed on the first half to produce a
model and a training performance estimate and applied on the second
half to obtain a test performance estimate (holdout performance). The
roles of each half are then reversed leading to a total of 360 × 2= 720 runs
for each platform. GAMA, TPOT, TPOT-MDR and auto-sklearn all require an
indicative time limit for the completion of the analysis. This time limit was
set to the maximum between 1 h and the termination time of JADBio on
the same task. Despite the time-limit these tools may still take longer; runs
that exceeded twice the time limit were forcefully terminated. Each run
was performed in parallel on 20 CPUs, using 256 GB of RAM (400 GB for
methylation datasets). AutoPrognosis does not run in parallel, thus we run
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it on a single CPU giving 20 times the time used by JADBio as time limit.
Random Forest was not given any specific time limit and was also run on a
single CPU. Finally, and most importantly, all hyper-parameters of all tools
were set to their default values. The only exception was the performance
metric: AUC was employed by all tools for identifying the best-performing
model, regardless of their default metric, to ensure a fair comparison.
For this computational experiment, 79,603,051 predictive models were

constructed by JADBio alone. It was not possible to extract the number of
models trained by the other tools from the logs of the other platforms.

Permutation-based statistical tests for comparing predictive
performances
We assess the statistical significance of the median difference in holdout
AUC between two AutoML tools T1 and T2 through a permutation-based
test. Each tool successfully completed a subset of the 720 runs, namely
ST1 and ST2 , with Sc indicating their intersection, i.e., the runs both tools
completed. For each run i 2 Sc , both tools T1 and T2 produced a holdout
AUC, namely AUCi1 and AUCi2, which are computed on the exact same
holdout set and are thus directly comparable. We define the median
holdout AUC difference MT1�T2 between tools T1 and T2 as the median of
the vector AUCi1 � AUCi2; 8 i 2 Sc½ �. Under the null hypothesis that the two
tools have equal predictive capabilities, for each run i the performance of
the two tools should be exchangeable. We thus estimate the null
distribution of MT1�T2 by randomly exchanging each AUCi1 and AUCi2 with
probability 0.5 and recomputing the median of the differences. By
repeating this process 10,000 times, we obtain the distribution
½M1

T1�T2 ; ¼ ;M10000
T1�T2 �. A two-tailed p-value is computed by quantify the

proportion of absð½M1
T1�T2 ; ¼ ;M10000

T1�T2 �Þ larger or equal than abs MT1�T2ð Þ,
where abs indicates taking the absolute value.
A similar test is used for assessing whether the bias in performance

estimation for each tool is different from zero in a statistically significant
way. For each tool j and run i, our experimentation protocol computes
both the performance on the holdout set, namely AUCij, and an estimate
derived from the training set, namely TRAUCij. The corresponding bias is
defined as bij ¼ AUCij � TRAUCij , and the median bias for tool j, namely Bj,
is the median value of the vector bij ; 8 i 2 STj

� �
. If the null hypothesis that

the bias is symmetrically centered around zero is true, it is then possible to
randomly change the sign of each bij with probability 0.5. We applied this
procedure 10,000 times, generating the null distribution ½b1ij ; ¼ ; b10000ij �. A
two-tailed p-value is then computed by quantifying the proportion of
absð½b1ij ; ¼ ; b10000ij �Þ that is larger or equal than abs(bij).

The JADBio architecture
Figure 6 illustrates JADBio’s architecture. JADBio accepts data in a two-
dimensional table format; rows corresponding to samples and columns to
measured features (a.k.a. biomarkers, variables, quantities, predictors). One
of the table columns must define the outcome of interest. JADBio handles
dichotomous (binary classification), nominal (multi-class classification),
continuous (regression), and time-to-event (e.g., survival analysis, right-
censored outcome) type of outcomes. JADBio then analyzes the dataset
fully automatically. A JADBio analysis is a four-stage procedure consisting
of the Algorithm and Hyper-Parameter Space selection (AHPS) system, the
Configuration Generator (CG), the Configuration Evaluator (CE), and the
Performance Estimator and Final Model Generator (PE). Their role and
connections are explained below.

Algorithm and hyper-parameter space selection (AHPS)
Initially, the input data and user preferences are processed by the
Algorithm and Hyper-Parameter Space selection system (AHPS). AHPS is an
AI Decision Support System that decides which algorithms for preproces-
sing, imputation of missing values, feature selection, and modeling to
combine (when images are analyzed, a feature construction step is also
included; details are out of scope of this paper). It also decides on the
hyper-parameter values to try. Essentially, each combination is a unique
ML pipeline that takes a dataset and produces a predictive model; we call it
a configuration. The goal is of course, to identify the optimal configuration
that leads to the best possible model instance. An example of a
configuration is “impute missing values with their mean, run the
Statistically Equivalent Signatures algorithm for feature selection with
hyper-parameter values a= 0.05, and maxk= 3, then run a Support Vector
Machine with linear kernel and cost hyper-parameter C= 100”. Typically,

the number of possible configurations ranges between a few tens to a few
thousand.
AHPS represents knowledge using two methodologies: (a) a rule-based AI

Decision Support. A simple example of a rule is “when sample size is <100, try
the SES algorithm with hyper-parameter alpha (level of significance) in the
set {0.01, 0.05, 0.1}”. The result of all these rules determines the configuration
space, i.e., all configurations that are reasonable to apply to the problem at
hand. The rules have been determined by our personal expert experience
and preliminary experimentation. (b) Additional knowledge and rules are
induced from results of algorithms on past analyses. This technique is called
meta-level learning. Specifically, meta-level learning is the process of
analyzing the results of configurations on previous datasets, based on the
meta-level features of the data (e.g., sample size, dimensionality, feature type,
missing values percentage, etc.) to build meta-level models79. These models
predict which configurations are expected to exhibit high performance on a
new unseen dataset. As a result, non-promising configurations are filtered
out before execution to achieve computational savings without reducing
expected performance. Using meta-level learning, JADBio is expected to keep
self-improving with usage.
Finally, the AHPS decides on the configuration evaluation protocol, i.e.,

how to estimate the performance of each configuration and select the
winner to produce the final predictive model. All protocols are out-of-
sample protocols, i.e., they train a configuration with only a portion of the
data and evaluate the resulting model on the remaining held-out data (a.k.
a. validation data). The predictions of a model instance produced by a
configuration on samples not included in the training of the model are
called out-of-sample predictions. These protocols are explained in more
detail at JADBio algorithms section.

Configuration generator (CG) and configuration evaluator (CE)
Next, the Configuration Generator (CG) instantiates the set of configurations
to try within the space of choices output by AHPS. Each configuration is fed
to the CE for evaluation and selection of the winner. We should note that CE
evaluates each configuration as an atom: the preprocessing (imputation,
normalization, standardization), feature selection, and modeling algorithms
are jointly evaluated as one procedure. This avoids a common methodolo-
gical mistake where preprocessing, and feature selection are first applied on
the complete dataset and only the last step of modeling (e.g., the decision
tree algorithm) is cross-validated80. The error could lead to significant
overestimation of performance, overfitting, and invalidation of results: an
eye-opening pedagogical experiment is presented at page 245 of Hastie,
Tibshirani, and Friedman’s book81, where the true error rate is 50% but the
estimated error is only 3% if one applies first the feature selection step on all
data and only then cross-validates only the learning algorithm.

Performance estimator and final model generator (PE)
A typical requirement in predictive modeling is to separate the data, a
priori, in two parts; one to use for generating (training) the final model, and
another for estimating (testing) its performance. Assuming, however, that a
configuration produces better performing models as sample size increases,
training the winning configuration on the full dataset is expected to
produce the best possible model. For this reason, JADBio applies the
winning configuration as determined from the CE on the full dataset to
generate the final model instance and final selection of features. This
means that JADBio will not lose any samples to estimation of performance.
This begs the question however, how is performance estimated for the

final model? The answer is that JADBio does not directly estimates the
performance of the final model; instead, it estimates the performance of
the configuration (i.e., of the methodology) that produces the final model.
Using generalized cross validation, the CE has already estimated the out-
of-sample performance of the models produced by the winning
configuration. Unfortunately, this estimate is optimistic and should not
be returned to the user. This is because when selecting the best-
performing configuration among many, it is likely that it achieved this
performance because it got “luckier” than average on the specific
validation sets. This phenomenon is better known as the “multiple
comparison in induction algorithms problem”12, which is related to the
“winner’s curse” in statistics11. The overestimation has been proved
theoretically, but also shown empirically in Tsamardinos et al. (2018)28. To
correct for optimism, JADBio employs a recently developed28 protocol,
namely Bootstrap Bias Corrected CV (BBC-CV) to adjust performance for
multiple tries. BBC requires the out-of-sample predictions on each sample
for each configuration tried and stored by CG. To apply BBC, one needs to
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store the out-of-sample predictions made by all configurations on all
validation subsets during cross-validation. These are indicated as “out-of-
sample predictions for ai” in Fig. 6.

JADBio algorithms
A configuration in JADBio comprises of several types of algorithms, namely
algorithms for data preprocessing, data transformation, data imputation,
feature selection, and predictive modeling. In addition, JADBio employs
algorithms implementing the AHPS, the CE and the PE. Table 2 lists all
algorithms employed by JADBio. Each algorithm type is now explained in
detail.

AI decision support and meta-level learning algorithms
These algorithms implement the AHPS component. They determine the
configuration space and the configuration evaluation protocol. The
Decision Support system is implemented by defining rules on top of an
ontology for machine learning concepts that is defined in OWL. The Meta-

Level Learning (MLL) algorithm analyzes past runs of configurations to
induce new rules for configurations that should be filtered out and not
tried in an analysis, given the meta-level features of a dataset. A full
description of this system is out of scope of this paper, as its description
and validation experiments are extensive.

Data preprocessing algorithms
JADBio performs mean and mode imputation of the missing values for the
continuous and categorical features, respectively. Zero variance (or close to
machine epsilon) features are removed. Continuous features are standar-
dized to zero mean and standard deviation of 1. Categorical features are
treated using a 1-hot-encoding.

Feature selection algorithms
Feature selection algorithms try to discover the minimal size, optimally
predictive feature subset. JADBio employs two such algorithms at the
moment, namely, LASSO regularized regression82 and a (independence)

Fig. 6 JADBio architecture. Panel a visualizes the architecture at a high-level, while panel b visualizes the details. The Algorithm and Hyper-
Parameter Space selection system (AHPS), analyzes the dataset meta-features (characteristics of the data such as sample size) and user
preferences. Based on them, it selects the appropriate combinations of algorithms and hyper-parameter values to try which form the
configuration space to explore. It also decides the hyper-parameters of the generalized cross validation (GCV) algorithm, i.e., the protocol for
estimating each configuration’s performance. Based on these decisions, the Configuration Generator (CG) instantiates the configurations to be
evaluated. The Configuration Evaluator (CE) identifies the winning configurations using generalized cross-validation (GVC), i.e., by repeatedly
applying each configuration on different partitions of the data (“Train” boxes) to train a model and estimating performance on the remaining
data (out-of-sample predictions, “Validation” boxes). The Performance Estimator and Final Model Generator (PE) produces the final model and
its performance. It pools together all out-of-sample predictions during cross-validation and feeds them to the Bootstrap Bias Correction
algorithm. This is to remove the bias due to trying multiple configurations. The final model is produced on all available data using the winning
configuration.
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test-budgeted version of the Statistical Equivalent Signatures (SES69). SES is
arguably more appropriate for small samples sizes and tends to return
smaller feature subsets at the expense of predictive performance. It is
inspired by causal model and the theory of the Markov Blanket. Lasso is
arguably the most common feature selection algorithm and solves a global
optimization problem. It tends to perform better for larger sample sizes but
selects features. A major difference between the two algorithms is that SES
returns multiple feature subsets (signatures) that lead to statistically
indistinguishable predictive performances. The standard Lasso does not
(however, we have extended it to return multiple equivalent solutions37

but it is not yet incorporated into JADBio). The importance of returning
multiple equivalent feature subsets and the difference of feature selection
from standard differential expression analysis is elaborated in the
Discussion section.

Predictive modeling algorithms
JADBio incorporates a collection of model families that were chosen based
on (a) ease of interpretation and (b) their performance on large
comparative evaluations83. In the latter work the authors ask: “Do We
Need Hundreds of Classifiers to Solve Real World Classification Problems?”
to which the answer is negative: a few, carefully selected algorithms, tuned
correctly often suffice to achieve optimal performance. Specifically,
depending on the type of outcome (Table 2), JADBio tries Decision
Trees84, Ridge Logistic Regression85, Random Forests22, (linear, polynomial,
and RBF) Support Vector Machines86, Cox regression87 and Random
survival forests88 as well as the baseline algorithm that classifies to the
most prevalent class. However, we do note that this list is only indicative,
as we constantly keep enriching the algorithmic arsenal of JADBio. Most
implementations of these algorithms are in-house and optimized for speed
and quality. In addition, JADBio allow the user to customize an analysis
with additional publicly available algorithms through its API.

Configuration evaluation algorithm for performance
estimation
The configuration evaluation algorithm is an essential component of
JADBio and a major contribution of this paper. It affects predictive
performance as well as computational time. JADBio does not apply a one-
size-fits all protocol, e.g., a 10-fold cross validation (CV) on all datasets. If it
did, it would not scale up to hundreds of thousands of samples, scale down
properly to tiny samples, or correctly handle class imbalance. Instead,
JADBio chooses the optimal protocol among the possible instantiations of a
single configuration evaluation algorithm that we call Generalized Cross
Validation or GCV (not to be confused with the homonym algorithms for
spline smoothing89). GCV can emulate several protocols by appropriately
choosing its hyper-parameters, which are special cases of GCV, such as the

holdout (train-validate) protocol, K-fold cross-validation (CV), the incom-
plete CV28, the repeated CV28, and others. GCV is a stratified, R-repeated, K-
fold, N incomplete CV that accepts the values of R, K, and N as hyper-
parameters. We now explain these in turn.
CV is a standard technique where the sample size is partitioned to K folds of

approximately equal size; a configuration produces a model instance based
on all sample folds but one, and an out-of-sample performance estimate is
produced on the held-out fold. The predictions of the model on the held-out
fold are saved as out-of-sample predictions of that configuration. The
performance estimate of the configuration is the average performance over
all folds. There is an important subtle point in this methodology: it is the
performance of a configuration that is being estimated, not the performance
of a specific model instance. Thus, even though the final model returned by
JADBio is trained on all samples, the final estimate stems from estimating the
performance of the configuration that produced the model instance, and not
the performance of the model instance itself.
Stratification (based on the class in classification problems) implies that

each fold in cross-validation follows approximately the same distribution of
classes as the un-partitioned dataset33. R-repeated CV implies that the
cross-validation procedure runs R times with different partitions to folds to
reduce the variance in the estimation due to the specific partitioning and
to tighten the confidence intervals28. The reduced uncertainty in
performance estimation also implies that the true best-performing
configuration is selected with higher probability, thus repeating the CV
also improves predictive performance. By N incomplete CV we denote a CV
in which only N iterations out of the K are performed in the last repeat of
the CV. Let us present some examples. For large sample sizes, a 10% hold
out protocol can be emulated by setting R= 1, K= 10, N= 1: the dataset
will be partitioned once (R= 1) to 10 folds (K= 10), out of which only 1 (Ν
= 1) will serve as a test fold. Setting R= 1, K= 10, N= 3 would train three
models for each configuration on 90% of the data each improving the
performance estimates. To perform a standard 10-fold CV, we would set R
= 1, K= 10, N= 10. For tiny sample sizes, we would use R= 10, K=max, N
=max, i.e., repeat ten times the CV procedure with as many folds as
possible. JADBio sets the maximum number of folds to the number of
samples in the rarest class, so that each fold contains at least one sample
from each class. This requirement avoids some of the problems of standard
leave-one-out CV90. The values of R, K, and N are decided by the AHPS
system to reach a certain size of out-of-sample predictions, considering the
total sample size, the samples per class, the imbalance between classes,
and the number of censored outcomes in a time-to-event analysis. GCV is
also equipped with two heuristic algorithms, described below.

Configuration space search heuristics
After the AHPS decides which configurations will be tried, the model space is
explored. Currently, JADBio employs generic grid search for hyper-parameter

Table 2. Algorithms used by JADBio depending on the outcome of interest.

Algorithm Used for Class. Regr. Surv. Implemented by

AI Decision Support Knowledge Representation + + + in-house

MLL Configuration Filtering Meta-level learning + + + in-house

Mean/Mode Imputation Preprocessing + + + in-house

Standardization Preprocessing + + + in-house

Lasso82 (single) Feature Selection + + + glmnet91

SES69 (multiple) Feature Selection + + + in-house

Decision Trees84 Predictive modeling + + + in-house

Ridge Regression85 Predictive modeling + + in-house

Random Forests22 Predictive modeling + + in-house

Support Vector Machines86 Predictive modeling + + libsvm86

Cox Regression87 Predictive modeling + in-house

Random Survival Forests88 Predictive modeling + in-house

Generalized Cross-Validation28 Performance estimation + + + in-house

Early Dropping28 Configuration space search heuristic + + + in-house

Early Stopping Configuration space search heuristic + + + in-house

BBC-CV28 Performance correction + + + in-house

BBC4ROCs Threshold optimization + in-house
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optimization. Despite this being a simple static strategy, JADBio equips GCV
with two heuristics to reduce computations without compromising quality.
The Early Dropping heuristic28 stops cross-validating a given configuration
once it determines that it will not be the winning one with high probability.
The latter is determined by a statistical test. The Early Stopping heuristic stops
CE from repeating CV with different partitions early. It tracks the shrinkage of
the confidence intervals during each repeat of the CV and when there is no
progress achieved by the current repetition it terminates GCV. In the above
example where we set R= 10, K=max, N=max, this heuristic may stop CE at
the 5th repeat and R may never reach ten. Early Dropping requires a
minimum certain sample size for the statistical tests, so it is only applied when
AHPS determines it is safe to do so.

Performance correction algorithms
For estimating the performance of the final model, JADBio employs the
Bootstrap Bias Correction estimation algorithm or BBC28. BBC is
conceptually equivalent to adjusting p-values in hypothesis testing for
the fact that many hypotheses have been tested; similarly, BBC adjusts
prediction performances for the fact that many configurations (combina-
tions of algorithms) have been tried. The main idea of BBC-CV is to
bootstrap the configuration selection strategy on the out-of-sample
prediction matrix produced during the cross-validation. In this way, BBC-
CV removes the bias due to the multiple tries, hence, removing the need
for an external test set, provided it is applied on populations with the same
distribution as the training data. BBC-CV is one order-of-magnitude more
efficient than the previous protocol that corrects for multiple tries, namely
the nested cross-validation80. The BBC-CV protocol can output, with no
additional computational overhead, the probability distribution of the
expected performances and their 95% confidence intervals.
We would like to note that JADBio performs a BBC correction on all

performance metrics it reports unless it is explicitly specified. Particularly
for binary classification problems, we have developed the BBC4ROCS
algorithm that estimates the sensitivity, specificity, F1, accuracy, and other
threshold-dependent metrics for ten different classification thresholds.
These thresholds correspond to the respective quantiles of the out-of-
sample predictions of the best model so that their distribution is divided
into areas of equal probability. The metrics are then BBC corrected leading
to adjusted-for-multiple-tries ROC curves along with their confidence
intervals on the ROC curve. The CIs span both dimensions of the ROC
space, namely False Positive Rate and True Positive Rate, creating a CI
“cross” pattern. This allows the user to select the classification probability
threshold that leads to the desired trade-off between sensitivity and
specificity of the model, having corrected for multiple tries.

Methods for post-analysis explanation, visualization, and
model interpretation
Individual Variable Importance Plots: the purpose of this plot is to assess
the added value of each selected feature. Individual variable importance
measures the effect in predictive information when a single feature
(variable) is removed. For each variable in turn, individual variable
importance is computed as the ratio between the resulting cross-
validated performance when the variable is removed and the cross-
validated performance obtained on the original dataset; in both cases, the
winning configuration is employed to build the models. To be more
precise, a variable is not removed from the data, but its values are
permuted instead, thus ensuring that it carries no predictive information.
Virtually removing the variable through permutation, instead of removing
it completely during cross-validation ensures that the dimensionality of the
problem remains the same in both cases and that the best identified
hyper-parameter values for all algorithms do not need to be adjusted for
differences in the dimensionality of the learning task. The permutation
technique is conceptually similar to the calculation of importance
weighting in Random Forests22.
Individual Conditional Expectation (ICE) plots: these plots visualize

the effect of a given variable on the predictions provided by a specific
model. More in detail, let assume that a dataset D is composed by
several samples (e.g., patients), Di ; i ¼ 1¼ n. Each sample in turn is
measured over a set of variables Xj ; j ¼ 1¼ p. This means that
Di ¼ fX1 ¼ xi1; X2 ¼ xi2; ¼ ; Xp ¼ xipg, or Di ¼ fxi1; xi2; ¼ ; xipg for short,
where xi1; xi2; ¼ ; xip are the actual numerical or categorical values
making up the Di sample. A model f is able to provide predictions (e.g.,
the probability prk of belonging to a class k) for any sample:
prk ¼ f Dið Þ ¼ f xi1; xi2; ¼ ; xip

� �� �
.

The ICE plot for a variable Xj is built by first producing a line for each
sample Di. On the x-axis this line spans all the values that Xj assumes in
the dataset, while the y-axis values of this line are produced by
repeatedly applying f on Di, taking care each time to vary the value of Xj.
In formulae, f xi1; xi2; ¼ ; Xj ¼ χ; ¼ ; xip

� �� �
, where χ varies across all the

values Xj assumes in the dataset. Once a line is produced for each
sample, the ICE plot is easily obtained by averaging all lines in order to
obtain the mean behavior of the predictions as Xj varies. The 95%
confidence intervals are computed by taking the corresponding
percentiles across all lines. The method was first described by Goldstein
and co-authors30. The ICE plots convey useful information. The user can
gauge whether observing an increased value of a variable Xj results in
higher or lower probability for a specific outcome. It is possible for the
ICE curves to be not monotonic, e.g., as a drug dosage increases, the
probability of successful treatment increases and then decreases again, if
the drug dosage becomes toxic. Also, the variance (confidence intervals)
of the plot is quite informative: values of Xj with low variance imply that
the corresponding predictions are highly affected by Xj and less by other
variables. Conversely, values of Xj with high variance indicates that the
model relies heavily on other variables as well in order to provide the
corresponding predictions.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The paper is accompanied by the webpage https://jadbio.com/jadbio-extensive-
evaluation-resource-page/. This page contains all the data used in the analysis.
Alternatively, the datasets can be downloaded directly from Gene Expression
Omnibus (microarray, RNA-seq and methylation data, https://www.ncbi.nlm.nih.gov/
geo/) or Metabolomics Workbench (metabolomics data, https://www.
metabolomicsworkbench.org/). All datasets are also available in BioDataome
(http://dataome.mensxmachina.org/).

CODE AVAILABILITY
The companion webpage https://jadbio.com/jadbio-extensive-evaluation-resource-
page/ contains the scripts to reproduce all figures, as well as the script used for
running the AutoML tools that were contrasted against JADBio. JADBio is available as
SaaS platform at http://JADBio.com. A free version is offered. JADBio also has a REST
API interface and a Python wrapper of the API available at https://github.com/
JADBio/JADBioPythonClient. Open-source implementations of two main algorithms
in JADBio, namely the SES multiple feature selection algorithm, and the BBC-CV for
adjusting CV performance for multiple testing, are available at the MXM R Package.
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