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High TGF-β signature predicts immunotherapy resistance in
gynecologic cancer patients treated with immune checkpoint
inhibition
Ying Ni1, Ahmed Soliman2, Amy Joehlin-Price3, Peter G. Rose4, Anda Vlad5,6, Robert P. Edwards5,6 and Haider Mahdi 5,6✉

Various immune signatures predictive of resistance to immune checkpoint inhibitors (ICI) have been described in multiple solid cancers,
but still under-investigated in gynecological (GYN) cancer. For 49 GYN cancer patients included in our study, without transcriptome
signature, immune-related toxicity was the only clinical predictor of ICI treatment response (p= 0.008). The objective clinical response
was the only predictor of progression-free survival (ICI-PFS, p= 0.0008) and overall survival (ICI-OS, p= 0.01). Commonly used ICI marker
PD-L1 expression negatively correlated with progression-free survival (ICI-PFS) (p= 0.0019). We performed transcriptome and signaling
pathway enrichment analyses based on ICI treatment responses and the survival outcome, and further estimated immune cell
abundance using 547 gene markers. Our data revealed that TGF-β regulated signaling pathway was noted to play an important role in
immunotherapy failure. Using our 6-genes TGF-β score, we observed longer ICI-PFS associated with lower TGF-β score (8.1 vs. 2.8 months,
p= 0.046), which was especially more prominent in ovarian cancer (ICI-PFS 16.6 vs. 2.65 months, p= 0.0012). Further, abundant
immunosuppressive cells like T-regulatory cells, eosinophils, and M2 macrophages were associated with shorter ICI-OS and correlated
positively with CD274 and CTLA4 expressions. This study provides insight on the potential role of TGF-β in mediating immunotherapy
resistance and cross-talking to immunosuppressive environment in GYN cancer. The TGF-β score, if validated in a larger cohort, can
identify patients who likely to fail ICI and benefit from targeting this pathway to enhance the response to ICI.
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INTRODUCTION
Immunotherapy with immune checkpoint inhibitors (ICI) has
emerged as a promising option in other solid tumors like lung and
urothelial cancers and melanoma. In gynecologic cancers, the ICI
response rates range from 11–17% in the recurrent setting1–4.
Patients with deficiency in their DNA mismatch repair system have
been shown to respond well to PD-1 inhibitors with reported
response rates between 24–57% in recurrent settings5,6. However,
these patients account for only 20–30% of all endometrial cancer
cases and represent a significantly smaller (less than 10%) fraction in
other gynecologic cancers. In microsatellite stable endometrial
cancer, the response rate to ICI was only 6–13%2,7. Similarly in
ovarian cancer, the response rate to ICI was low, ranging from
11–15% in platinum-resistant, recurrent settings8,9. PD-L1 expression
has been associated with response to ICI in some cancers like lung
cancer. However, the predictive role of PD-L1 expression in
gynecologic cancers is controversial with mutually conflicting results.
Increasing evidence points to intratumor immune cell infiltration,
especially by activated CD8 T cells, as a reliable predictor of increased
survival10. Furthermore, tumors with increased tumor mutational
burden (TMB) display neoantigens, are T-cell inflamed, and respond
better to ICI11. Recently, an 18-gene T-cell inflamed gene expression
profile signature was identified in pretreatment tumor samples, as a
predictor of response to pembrolizumab in melanoma, gastric as well
as head and neck cancers12. However, if this signature also applies to
gynecologic cancers remains unclear. TMB has been shown to
correlate positively with response to anti-PD1 therapy. Recently, the

FDA approved pembrolizumab in the second line setting in patients
with TMB >10 mutations / megabase (mut/Mb)11. Nevertheless, the
optimal cutoff for TMB remains controversial, and it does not take
into consideration immunosuppressive factors that may contribute to
resistance to immunotherapy within the tumor immune microenvir-
onment (TME). Therefore, we need to better understand mechanisms
driving resistance to immune checkpoint inhibition and identify a
subset of patients who will better benefits from immunotherapy. It is
also critically important to establish and validate predictive
biomarkers that help identify immunosuppressive factors that can
be targeted in a rational combination immunotherapy approach.
These biomarkers provide a significant value in personalized
immunotherapy approach and need to be validated in future large
studies including prospective clinical trials to confirm their
predictive role.
Focusing on patients with recurrent gynecologic cancer, we

sought to perform a comprehensive transcriptomic analysis of the
TME and to identify factors could interact with TME and potentially
predict ICI treatment response or resistance in GYN cancer.

RESULTS
Immune-related toxicities correlate with response whereas
response to anti-PD-1/PD-L1 immunotherapy correlates with
survival outcome after starting ICI
To comprehensively assess the correlation between gene expres-
sion profile and immune response, we collected tumor samples
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from a retrospective series of 49 patients diagnosed with
gynecology cancer (included endometrial, cervical, or ovarian
cancers) who were treated with immune checkpoint inhibitors
such as nivolumab or pembrolizumab. Of all 49 patients, 19 (39%)
had an objective response (either partial or complete response by
RECIST 1.1). Baseline patient characteristics and available survival
and clinical data of our patients are summarized in Table 1.
When we evaluated all demographic and clinical character-

istics including disease site, response pattern, age at treatment
initiation, stage, MSI status, and immune-related toxicities in a
multivariable regression analysis, response to immune check-
point inhibition was found to be only positively correlated with
immune-related toxicity (p= 0.008, Table 2). Furthermore, based
on multi-variable survival analysis, response to immune check-
point inhibition was found to be the only factor significantly
associated with overall and progression-free survival (from initial
of immunotherapy treatment) (p= 0.010 and 0.0008 respec-
tively, Table 3). The lack of significance between immune-related
toxicity and outcome is likely related to its significant correla-
tion/interaction with a response. Responding patients (R) who
had an objective response (partial or complete response) to
immune checkpoint inhibition had a median overall survival
(OS) of 17.2 months compared to the 10.1 months of non-
responding patients (NR) (p < 0.001, log-rank test), as well as a
median progression-free survival (PFS) of 12.9 months in R
compared to the 2.6 months in NR patients (p < 0.001, log-rank
test, Figs. 1 and 2).

PDL1 expression correlates negatively with progression-free
survival on ICI
Tumor expression of immune checkpoint molecules like PD1, PD-
L1 (which binds to PD-1), and CTLA4 (a T-cell immune suppressant
that counteracts the stimulatory activity of CD28) are biomarkers
of interest to correlate with response to ICI. We investigated if PD1
(PDCD1), PD-L1(CD274), or CTLA4 mRNA expression are correlated
with response and survival outcome (PFS and OS) after initiating
ICI therapy in our cohort. No correlation was noted between PD1,
PD-L1 or CTLA4 and clinical response (p= 0.43, 0.33 and 0.98
respectively, Fig. 1C) or OS (p= 0.31, 0.28 and 0.72 respectively,
Fig. 1D–F) but high PD-L1 expression significantly correlated with
lower PFS (p= 0.0019, Fig. 1H). In contrast, PD1 and CTLA4
expression did not correlate with PFS (p= 0.65 and 0.30, Fig. 1G, I).

Genome-wide DEGs analysis identifies 12 genes signature in
response to immunotherapy outcome
Genome-wide gene expression data including 13812 genes
passed quality control for all patients. We identified 12 genes
that were significantly differentially expressed in R compared to
NR patients across the three cancer types (Fig. 2A), comprising 10
downregulated genes and 2 upregulated genes (ANXA4, TMEM101,
Fig. 2B). Using Ingenuity Pathway Analysis (IPA, Qiagen, Redwood
City, CA), we found among the upstream regulators of these 12
genes are important interferon regulatory factors (IRF3 and IRF9),
along with PML and SIRT1 genes (Fig. 2C).

Major up-regulators were analyzed in different disease sub-
cohorts
To highlight the specific signaling pathways particular to the cancer
location, differential gene expression analysis was also performed
for each cancer type (ovarian, cervical, and endometroid)
individually. In contrast to few genes expressed differently in
endometrial cancer patients who responded to immunotherapy
versus non-responders, there are 116 differentially expressed genes
(DEGs) in cervical cancer patients and 312 genes in ovarian cancer
patients stratified by responders and non-responders to immu-
notherapy (Supplementary Table 1, p.adjust <0.05, log2FC >1).

Table 1. Clinico-pathological summaries of 49 gynecology patients
included in this study.

Characteristic N= 49a

DiseaseSite

Ovarian 14 (29%)

Endometrial 27 (55%)

Cervical 8 (16%)

StageAtDiagnosis

I 13 (29%)

II 2 (4.4%)

III 17 (38%)

IV 13 (29%)

NA 4

MSI

Stable 16 (33%)

High 17 (35%)

NA 16 (33%)

Age 68 (62, 74)

NA 1

Histology

Adenocarcinoma 1 (2.1%)

Clear cell 5 (11%)

Endometrioid 16 (34%)

Mixed endometrioid and clear cell 1 (2.1%)

Serous 17 (36%)

Squamous 7 (15%)

Unknown 2

Cycles 8 (3, 11)

PriorChemotherapyLines

NA 1 (2.0%)

0 4 (8.2%)

1 19 (39%)

2 6 (12%)

3 9 (18%)

4 5 (10%)

5 1 (2.0%)

7 2 (4.1%)

8 1 (2.0%)

11 1 (2.0%)

PlannedRegimen

AVELUMAB 2 (4.1%)

NIVOLUMAB 19 (39%)

PEMBROLIZUMAB 28 (57%)

Toxicity 23 (48%)

NA 1

Response

Progressive disease 21 (45%)

Responded disease 20 (43%)

Stable disease 6 (13%)

NA 2

Death 29 (60%)

NA 1

Overall Survival (months) 13 (6, 21)

NA 1

Progression 33 (72%)

NA 3

Progression-Free Survival (months) 6 (3, 12)

NA 2

aStatistics presented: n (%); Median (IQR).
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Canonical pathways curated based on differentially expressed
genes using IPA are listed in Supplementary Table 2.
Consistent with the analysis performed with the entire cohort,

immune signaling showed up as a key regulator in both cervical
and ovarian cancers. Specifically, TGFB1, WNT3A, and their
targets are the top signaling pathway inhibited in immunother-
apy responded cervical cancer. KRAS and IGF1 are the top
activated signaling, along with WNT1 inhibited, in immunother-
apy responded ovarian cancer. Among all predicted signaling
up-regulators for ovarian and cervical cohorts, there are 6
molecules noted in both datasets: KRAS, ESR1, IGF1, CCN2, THRB,
and TGFB1 (Fig. 2D), and interesting to note, all these molecules
are all inter-connected.

TGF-β signaling pathway genes expression correlated with
survival benefit while on immunotherapy
Given that not only TGF-β interacted with all other 5 molecules
based on the above agnostic analysis, but also the potential
clinical application of TGF-β inhibitors in cancer immunotherapy
combination treatment, we investigated the role of TGF-β
signaling pathway in immunotherapy treatment responses in
our cohort. We first curated 65 genes regulated by TGF-β from
multiple pathway databases and compared their expression levels
among responders versus non-responders (Fig. 3A). Univariate
analysis showed that 6 genes (SLC20A1, XIAP, TGFBR1, BMPR2,
FKBP1A, and SKIL) had lower expression in patients who

responded to immunotherapy (p < 0.1, Supplementary Table 3,
Fig. 3B). We then generated a TGF-β score by applying single-
sample enrichment analysis13 as described in the Method section,
to use for subsequent analysis. Patients with low TGF-β scores had
significantly improved PFS while on immunotherapy (Fig. 3C,
8.15 months vs 2.8 months, p= 0.046), which was most noticeable
in ovarian cancer despite the smaller sample size (16.6 months vs
2.65 months, p= 0.0012, Fig. 3D and Supplementary Fig. 1). There
was a trend toward improved overall survival in the entire cohort
and the ovarian subtype (Supplementary Fig. 1).
To validate the association between TGF-β score and survival we

observed in our gynecology cancer patients, we tested our 6-gene
signature using the online tool TIDE: Tumor Immune Dysfunction
and Exclusion as described in Method. Interestingly, compared to
other existing biomarkers, our TGF-β score showed good predictive
value (AUC > 0.7) in 2 studies (Nathanson 2017_CTLA4_Melano-
ma_Pre and Miao2018_ICB_Kidney_Clear, Supplementary Fig. 2A)
and a significant negative association with available overall survival
in 2 studies (Liu2019_PD1_Melanoma_Ipi and Braun2020_PD1_-
Kidney_Clear, Supplementary Fig. 2B, C).

Immune cells landscape within tumor immune
microenvironment of gynecological tumors who received
immune checkpoint inhibition
Based on the observation that the molecular signaling alteration
in response to immunotherapy is enriched in immune signaling,

Table 2. Association of clinical features with IO response outcome, based on general linear regression model.

Estimate Std. error t value Pr(>|t|)

(Intercept) 1.406165 0.513224 2.74 0.01096*

DiseaseSite1OV2Endo3Cerv2 0.07354 0.245623 0.299 0.76701

DiseaseSite1OV2Endo3Cerv3 −0.023845 0.243281 −0.098 0.92267

Stage2 −0.520145 0.419982 −1.238 0.2266

Stage3 −0.425539 0.222825 −1.91 0.06726#

Stage4 −0.373122 0.243768 −1.531 0.13794

MSI1S2U3NA2 0.043776 0.244521 0.179 0.8593

MSI1S2U3NA3 −0.093975 0.211345 −0.445 0.66025

Age −0.013399 0.007415 −1.807 0.08236#

Toxicity (yes) 0.514275 0.177901 2.891 0.00766**

Signif. codes: **0.001 < p < 0.01; *0.01 < p < 0.05; #0.05 < p < 0.1.

Table 3. Association of clinical features with IO survival outcome, based on Cox proportional hazard model.

OS PFS

exp(coef) Pr(>|z|) exp(coef) Pr(>|z|)

Resp1resp0prog 0.17865 0.0106* 0.024631 0.000795***

DiseaseSite1OV2Endo3Cerv2 0.30678 0.1159 0.820203 0.741241

DiseaseSite1OV2Endo3Cerv3 0.38097 0.2344 0.826595 0.785085

Stage2 1.40738 0.8008 0.54165 0.638433

Stage3 1.01989 0.9796 1.171952 0.83355

Stage4 0.64347 0.5676 1.7394 0.492262

MSI1S2U3NA2 1.8205 0.4286 2.431407 0.261984

MSI1S2U3NA3 1.54989 0.5038 1.252915 0.661159

Age 1.0355 0.1851 1.007193 0.742769

Toxicity1 0.90657 0.8813 0.313008 0.088383#

Signif. codes: ***p < 0.001; *0.01 < p < 0.05; #0.05 < p < 0.1.
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we decided to look into the overall profile of the immune
microenvironment using our transcriptome data. We character-
ized 22 immune composition subsets in silico using our bulk
RNAseq data, by extracting genes representing these immune
cells and activating status14. We calculated the cell type
signature score (LM22 score) based on the representing genes
in each functional annotation in Fig. 4A (Heatmap of LM22)

(as referenced). Using this bioinformatic estimation, compared to
T cells, NK cells, and Mast cells, all patients had relatively higher
expression of genes related to macrophage-monocyte, B cells, as
well as dendritic cells (Fig. 4B). Neutrophils, eosinophils, and
plasma cells were also prominent. No difference was noted in the
composition of immune cells when stratified by the response,
MSI status, or cancer site (Supplementary Fig. 3).

Fig. 1 Survival curve for an entire cohort based on response to immunotherapy and major know molecular biomarkers CD274 (PD-L1)
and CTLA4 expression. A Kaplan–Meier curves of overall survival (OS) based on response to immunotherapy patient received; B Kaplan–Meier
curves of Progression-free survival (PFS) based on response to immunotherapy patient received; C Violin plot of CD274 (PD-L1), CTLA4, and
PDCD1 (PD1) expression between responders and non-responders; D–F Kaplan–Meier curves of OS based on PDCD1, CD274 (PD-L1), and CTLA4
expression; G–I Kaplan–Meier curves of PFS based on PDCD1, CD274 (PD-L1), and CTLA4 expression; For panels D–G, marker group “High” or
“low” was defined by median expression of each marker gene.

Y Ni et al.

4

npj Precision Oncology (2021)   101 Published in partnership with The Hormel Institute, University of Minnesota



T-regulatory, M2 macrophages and eosinophils (known major
source of TGF-β) were predictive of worse overall survivals
while on immunotherapy
To access the predictive value of immune cell abundance to
predict survival outcome, we performed multivariable Cox
regression analysis in our LM22 score dataset while adjusting for
age, stage, and disease site as co-variants. Among all 22 cell types
and activation states, higher expression of CD4 naïve T cells,
follicular helper and regulatory T cells, resting NK cells, M2
macrophage, resting mast cells, and eosinophils are associated
with worse overall survival. Whereas CD4 memory resting T cells,
gamma/delta T cells, and activated mast cells were associated
with better overall survival. For progression-free survival, follicular
helper T cells, resting NK cells, and eosinophils were associated

with worse survival; resting and activated memory CD4 T cells
showed association with better survival (Table 4).
Then we sought to assess the correlation of the immunosup-

pressive immune cells that were significantly associated with
worse OS or PFS with PD-L1 and CTLA4 expression. We noted
positive correlation between T regulatory cells, eosinophils, M2
macrophages with CD274 (correlation efficiency 0.64, 0.73, 0.68,
respectively) and CTLA4 (correlation efficiency 0.83, 0.83, 0.76,
respectively) expression respectively (Fig. 4C).

DISCUSSION
The role of PD-L1 expression in predicting immunotherapy
benefit has been controversial in gynecologic cancer with

Fig. 2 Differential expression profile in 49 gynecological cancer patients based on responses to immunotherapy. A Volcano plot of
genome-wide differential expression analysis, with x-axis as -Log2 (Fold Change), y-axis as -Log10 (adjusted p value). Green dots highlighted
genes with fold change ≥ 2, red dots highlighted genes with fold change equal or larger than 2, and adjusted p value ≤ 0.05, gray dots
presented as genes were not significantly expressed between responders and non-responders. B The list of 12 significantly expressed genes
between responders and non-responders, with corresponding log2(folder change), log2(folder change) standard error, p value attained by the
Wald test, adjusted p value corrected for multiple testing using Benjamini and Hochberg method. C IPA network of top upstream regulators,
based on the 12 significantly expressed genes among the entire cohort. D IPA network of 6 top common upstream regulators (KRAS, ESR1,
IGF1, CCN2, THRB, and TGFB1) derived from individual disease analysis.
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mutually controversial results. Interestingly, using mRNA expres-
sion, we observed that high PD-L1 expression correlated with
poor progression-free survival on ICI. This can be explained by
several mechanisms. First PD-L1 expression is a proxy of
immunosuppressive immune non-T cells like T-regulatory cells,
M2 macrophages, MDSCs, and others. Therefore, high PD-L1
expression could potentially be correlated with the high
abundance of these immune cells reflecting the immunosup-
pressive environment. We sought to assess such correlation and
noted a positive correlation between PD-L1 expression and these
immunosuppressive cells. Another explanation is that PD-L1 also
represents a prognostic factor. This has been reported by
Hamanishi et al., where the authors demonstrated the correlation
between high PD-L1 and lower survival as well as lower tumor-
infiltrating T cells in ovarian cancer15.
We demonstrated that the TGF-β signaling pathway was among

the top regulator genes and is interacting with WNT, KRAS, and
IGF pathways contributing to the prediction of immunotherapy
response. The 6-genes TGF-β signature we created showed
positive correlation with immunotherapy resistance, which is
most prominent in the ovarian cancer subtype despite the small
sample size. We showed that myeloid cells are very prominent in
the TME and correlated positively with the worse outcome while
on immunotherapy. Of particular interest, we described the role of
M2 macrophages, T-regulatory cells, and eosinophils which are
known to produce TGF-β within the tumor immune microenvir-
onment. The immunosuppressive role of eosinophils has not been
described before in these cancers in the setting of immunother-
apy which we hypothesize to be mediated by the TGF-β
immunosuppressive effect.

TGF-β has emerged as a critical mediator of cancer therapy
resistance, including ICI resistance16–24. Other studies have shown
that TGF-β attenuates the response to ICI and contributes to
immune exclusion and evasion in some solid tumors including
bladder, colon, and esophageal squamous cell cancers23–28.
However, the data on the role of TGF-β pathway in mediating
resistance to immunotherapy with ICI in gynecologic cancer in
general and especially ovarian cancer is limited. TGF-β signaling
has been shown to provide a favorable TME immune-mediated
tumor clearance by T cells and NK cells. For example, TGF-β
suppresses the function of cytotoxic T cells (CTL), while disruption
of TGF-β signaling enhances CD8+ T-cell-mediated and NK cell-
mediated anti-tumor immune responses29–31. In addition to the
suppression of T-cell and NK cell function, TGF-β also has a
significant impact on the myeloid cell lineages including recruiting
and promoting M2 TAMs. These cells will eventually compete with
dendritic cells and suppress antigen presentation. Further, TGF-β
can suppress the activation, maturation, and differentiation of
macrophages, dendritic cells, and neutrophils, which weakens the
innate immune system. Therefore, the suppressed innate immune
system will negatively affect the adaptive anti-tumor immune
response and allow cancer cells to escape the immune response.
TGF-β has been shown to induce polarization of TAMs toward the
M2 phenotype via up-regulation of SNAIL pathway32. Therefore,
high TGF-β within the TME can block the development of M1
TAMs and induce the formation and activation of the M2
immunosuppressive phenotype. TGF-β is also produced by M2
TAMs and myeloid-derived suppressor cells (MDSC) and plays a
significant role in inducing the expression of genes that are
involved in activating the M2 macrophage phenotype33. These
data are consistent with our findings of the negative correlation of

Fig. 3 TGF-β signaling pathway gene expression profile and survival curve based on TGF-β score generated. A Heatmap of all 65 curated
TGF-β pathway genes, sorted by responders and non-responders in each 3 disease types; B Violin plot of top 6 individual genes (SLC20A1, XIAP,
TGFBR1, BMPR2, FKBP1A, and SKIL) expression in TGF-β pathway between responders and non-responders; C Violin plot of the TGF-β score
generated using these 6 genes between responders and non-responders; D Kaplan–Meier curves of PFS based on TGF-β score in the entire
cohort; E Kaplan–Meier curves of PFS based on TGF-β score in ovarian cancer patients. For panels D and E, the TGF-β score group “High” or
“low” was defined by the median expression of the TGF-β score.
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M2 macrophages with survival outcome while on immunotherapy
in our cohort. This might indicate a potential dynamic interaction
of TGF-β with tumor-associated macrophages to promote M2
phenotype which eventually further feeds into the TGF-β cycle.
These data shed the light on the role of TGF-β in mediating
resistance to ICI in gynecologic cancer which has not been shown
before. Further, we were able to validate our 6-genes signature in
two other publicly available datasets.
Other differentially expressed pathways noted on our analyses

were KRAS, IGF, WNT, and IFN pathways, all of which interact with
the TGF-β pathway. Grasso et al showed that T-cells infiltration
and IFN-γ signaling signature were associated with increased
likelihood of response to immune checkpoint therapy in
melanoma34. Activation of the STING pathway can induce an
innate immune response and tumor rejection mediated by
phosphorylation of IRF3 and inducing strong production of IFN-
α/β35. TGF-β could therefore suppress IFN-α and β pathways
leading to suppression of the innate immune response limiting
tumor regression mediated by this pathway. Further, TGF-β
inhibition was found to restore the production of IFN-α by
activated MHCII tumor-associated macrophages and enables
tumor regression by STING pathway activation35.
Similarly, the RAS/RAF/MAPK pathway has been investigated

and correlated with response to immunotherapy with immune
checkpoint inhibition36–38. KRAS pathway has been shown to
interact with the TGF-β pathway. In one study, oncogenic RAS and
TGF-β signaling pathways have been shown to correlate with each
other and the cross-interaction is mediated by neuropilin-1

(NRP1), a receptor that can interact with multiple growth factors
including TGF-β for promoting tumorigenesis and immune
suppression36. Other mechanisms described include phosphoryla-
tion of SMAD by kinases controlled by the RAS pathway, which
ultimately control the translocation and activation of SMAD
proteins39. RAS activation phosphorylates smad2/3 through ERK/
MAPK pathway leading to blockade of their nuclear transcription
and thereby eventually genes transcriptions40. Lastly, both TGF-β
and RAS pathways regulate gene transcriptions39.
Another interesting finding in our study is the role of

eosinophils. Eosinophils are a type of granulated white blood
cells, circulating in the blood and marginating into tissue41 where
they are involved in regulating the innate and adaptive immune
response. Eosinophils secreted chemokines participate in immu-
nomodulation and tissue remodeling. The correlation between
eosinophilia and outcome has been controversial. Some studies
reported a positive correlation with survival outcome in colorectal,
breast, and prostate cancers42 as well as in head and neck cancers,
and bladder cancer43,44. In other settings, the positive correlation
with outcome was confined to early-stage disease, while a
negative correlation was noted in advanced-stage diseases like
oral squamous cell cancer45. Interestingly, tissue infiltrating
eosinophils produce CCL11, IL6, and a large amount of TGF-
β46,47. We hypothesize that our findings of the correlation of
eosinophils with poor ICI-based progression-free survival and
overall survival in our cohort are related to their production of
TGF-β leading to immune suppression. Interaction of tumor-
associated macrophages and eosinophils has been postulated48.

Fig. 4 Expression of different immune cell abundance. A Heatmap of all 22 immune cell abundance and status (LM22) in the entire cohort,
sorted by responders and non-responders in each 3 disease types, scaled within each sample. B Pie chart of the prevalence of each immune
cell abundance among all samples. C Correlation plot among marker genes PDCD1 (PD1), CD274 (PD-L1), CTLA4 and immune cells M2
macrophage, eosinophils, and regulatory T cells.
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Furthermore, eosinophils have been shown to produce other
growth factors such as VEGF. Eosinophils can therefore be
implicated in the tumor-related angiogenesis and neovasculariza-
tion, enhancing the immunosuppressive myeloid phenotype of
M2 macrophages and myeloid-derived suppressive cells while also
contributing to the formation of connective tissue and desmo-
plasia around cancer49.
In summary (Fig. 5), we hypothesize that TGF-β is produced by

the tumor, T-regulatory cells, and stromal cells resulting in
immune suppression of T cells and NK cells, as well as inducing
phenotype switch from M1 to M2 macrophages which further
amplifying immune suppression by producing TGF-β and recruit-
ing other cells like T-regulatory cells and eosinophils. Eosinophils
have been shown to produce large amounts of TGF-β, which
further play a role in recruiting and interacting with macrophages
to modulate the immunosuppressive microenvironment.
Our study is limited by its retrospective nature, possible

heterogenous patient population and small sample size as well
as possible selection and confounding biases. The possible
variability in therapy, surveillance patterns and follow up were
noted and warrant future external validation. As one of the few
studies that investigated the transcriptomic profile of the tumor
immune microenvironment in gynecologic cancer patients treated
with immunotherapy, our study reported interesting findings of
the role of immunosuppressive factors may mediate resistance to
immunotherapy. The signature can be potentially validated in
prospective clinical trials investigating the role of ICI in
gynecologic cancer. and potentially used both as a biomarker to
predict immunotherapy response and to provide the rationale for
combination immunotherapy to target TGF-β to enhance
response to immunotherapy in the clinic in a biomarker-based
approach. Given recent advances in clinical development of TGF-
β inhibitors in the clinic, one additional potential approach is to
utilize it in clinical trials assessing those receiving combination of
TGF- β and immune checkpoint inhibition.

METHODS
Patients population and tumor samples
Our patient cohort included endometrial, cervical, and ovarian cancers. The
study was approved by the Institutional Review Board and was an exempt
from patients’ consent given its retrospective nature. Patient characteristics
and available clinical and treatment data of our patients are summarized in
Table 1. Median follow up was 12.5 months (2–44 months).
Patients were classified as responders if they had evidence of decreased

radiologic tumor burden with a partial or complete response by RECIST 1.1
when evaluated by CT scan per judgment of their treating physician.
Patients had to have at least 2 cycles of immunotherapy with interval
imaging to assess response compared to pre-treatment imaging. The
details and frequency of immune-related toxicities were collected
retrospectively from the patient’s medical records. The progression-free
survival was calculated from the time of initiation of immunotherapy with
immune checkpoint inhibition to disease progression, last follow up or
death. Overall survival was calculated from the time of initiation of
immunotherapy with immune checkpoint inhibition to death or last
follow up. This was done to elucidate the impact of immunotherapy on
these survival endpoints.
Formalin-fixed paraffin-embedded (FFPE) tumor samples were col-

lected from the 49 patients at the time of initial diagnosis from primary
sites that had been enrolled into this retrospective study with Cleveland
Clinic institutional review board approval. The archival FFPE samples
were collected when sufficient (>20% tumor content) tumor material
was available.

Next-generation RNA sequencing and bioinformatics pipeline
FFPE specimens were processed and sequenced by MedGenome (Foster City,
CA). The archival FFPE samples were used for sequencing when sufficient
(>20% tumor content) tumor material was available. All 49 specimens passed
RNA extraction QC and RNA library prep QC and proceeded for mRNA
sequencing. Based on the quality report of fastq files we trimmed sequence
reads wherever necessary to only retain high-quality sequence for further
analysis. In addition, the low-quality sequence reads were excluded from the
analysis. Data quality checks were performed using FastQC (v0.11.8). The
paired-end reads were aligned to the reference human genome Feb. 2009
release downloaded from the UCSC database (GRCh37/hg19). The

Table 4. Multi-variate analysis for OS and PFS with LM22 in entire cohort, with age, clinical stage, and disease site as co-variates.

OS PFS

coef Pr(>|z|) coef Pr(>|z|)

Plasma.cells 7.74E+01 4.58E−02* T.cells.CD4.memory.resting −1.20E+02 1.55E−02*

T.cells.CD4.naive 2.40E+02 1.35E−02* T.cells.CD4.memory.activated −4.15E+01 1.87E−02*

T.cells.CD4.memory.resting −1.91E+02 8.74E−03** T.cells.follicular.helper 1.06E+02 5.68E−04***

T.cells.follicular.helper 2.34E+02 1.88E−04*** NK.cells.resting 4.36E+01 2.12E−02*

T.cells.regulatory.Tregs 1.18E+02 1.30E−02* Eosinophils 6.61E+01 3.46E−03**

T.cells.gamma.delta −5.10E+02 1.97E−03** Age 4.36E−02 3.28E−01

NK.cells.resting 2.07E+02 1.10E−03** Stage2 −3.80E−01 8.94E−01

NK.cells.activated −9.11E+01 4.98E−02* Stage3 3.58E+00 5.34E−03**

Macrophages.M2 1.52E+02 8.25E−03** Stage4 3.89E+00 2.64E−02*

Mast.cells.resting 2.83E+02 2.04E−03** DiseaseSite_Endo 2.09E+00 0.041474*

Mast.cells.activated −2.55E+02 1.18E−03** DiseaseSite_Cerv 2.39E+00 0.289849

Eosinophils 3.51E+02 1.15E−03**

Age 4.54E−01 7.47E−04***

StageII 6.61E+00 1.31E−01

StageIII 5.95E+00 8.91E−03**

StageIV −5.50E−01 8.67E−01

DiseaseSite_Endo −7.18E+00 0.019077*

DiseaseSite_Cerv −3.02E+01 0.008344**

Signif. codes: ***p < 0.001; **0.001 < p < 0.01; *0.01 < p < 0.05; #0.05 < p < 0.1.
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chromosome fasta file was downloaded from the following website (http://
hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/chromFa.tar.gz). GTF file
was downloaded from the following website (ftp://ftp.ensembl.org/pub/
release75/gtf/homo_sapiens/Homo_sapiens.GRCh37.75.gtf.gz). Alignment was
performed using STAR (v2.7.3a)50. The aligned reads were used for estimating
the expression of the genes using HTSeq (v0.11.2). Only reads mapping
unambiguously to a single gene were counted, whereas reads aligned to
multiple positions or overlapping with more than one gene were discarded.
Read count data were normalized and gene expression analysis was
performed using R/Bioconductor packages DESeq2 (v1.28.1)51. Pathway
analysis, gene signature, and upstream regulators were identified using
QIAGEN Ingenuity Pathway Analysis (IPA, QIAGEN, Redwood City, CA).

Gene signature score and immune cell abundance estimation
The signature-based scoring was calculated using the rank-based
single-sample gene set scoring method (simpleScore) provided by R
package13. Singscore method implements a simple single-sample gene-
set (gene-signature) scoring method which scores individual samples
independently without relying on other samples in gene expression
datasets.
Immune cell abundance estimation was based on LM2252, which is a

signature matrix file consisting of 547 genes that accurately distinguish 22
mature human hematopoietic populations isolated from peripheral blood
or in vitro culture conditions, including seven T-cell types, naïve and
memory B cells, plasma cells, NK cells, and myeloid subsets. Expression
levels for each LM22 cell type were estimated using simpleScore method
as described above.

TGF-β signature validation
We evaluated our 6-gene TGF-β signature for its predictive power of
response outcome and overall survival using online tool TIDE: Tumor
Immune Dysfunction and Exclusion, which applies custom biomarker gene
set to gene expression profiles of 23 cancer studies with immunotherapy,
and compared results to existing published biomarkers53 (http://tide.dfci.
harvard.edu).

Statistical analysis
We used the two-sided Student’s t test test for all comparisons of
continuous data and the Spearman correlation coefficient to analyze the
correlation between different variables. Fisher’s exact test was used to

compare the tumor grade, MSI status, signature score level between
different groups. Kaplan–Meier estimation and log-rank tests were used
for time-to-event analyses comparing between 2 groups based on
individual variables such as response and gene/score with the cohort
median value used as a cut-off. Survival analysis on continuous variables
such as gene expression was performed using a multivariable Cox
proportional hazards model to derive coefficients and P values as
determined by the default “efron” test. The statistical significance for
both pathway analysis and upstream regulator analysis was assessed via
Fisher’s exact test by IPA.
All statistical tests were two-sided, and a p value of less than 0.05

was considered significant across all analyses performed. Statistical
analyses were performed using R (version 4.0.3) and RStudio (version
1.3.1093).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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