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Genetic mutation and biological pathway prediction based on
whole slide images in breast carcinoma using deep learning
Hui Qu 1,7, Mu Zhou2,7, Zhennan Yan 2, He Wang3, Vinod K. Rustgi 4, Shaoting Zhang 5,8✉, Olivier Gevaert 6,8✉ and
Dimitris N. Metaxas 1,8✉

Breast carcinoma is the most common cancer among women worldwide that consists of a heterogeneous group of subtype diseases. The
whole-slide images (WSIs) can capture the cell-level heterogeneity, and are routinely used for cancer diagnosis by pathologists. However,
key driver genetic mutations related to targeted therapies are identified by genomic analysis like high-throughput molecular profiling. In
this study, we develop a deep-learning model to predict the genetic mutations and biological pathway activities directly from WSIs. Our
study offers unique insights into WSI visual interactions between mutation and its related pathway, enabling a head-to-head comparison
to reinforce our major findings. Using the histopathology images from the Genomic Data Commons Database, our model can predict the
point mutations of six important genes (AUC 0.68–0.85) and copy number alteration of another six genes (AUC 0.69–0.79). Additionally,
the trained models can predict the activities of three out of ten canonical pathways (AUC 0.65–0.79). Next, we visualized the weight maps
of tumor tiles in WSI to understand the decision-making process of deep-learning models via a self-attention mechanism. We further
validated our models on liver and lung cancers that are related to metastatic breast cancer. Our results provide insights into the
association between pathological image features, molecular outcomes, and targeted therapies for breast cancer patients.
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INTRODUCTION
Breast carcinoma is the most common cancer among women
worldwide that consists of a heterogeneous group of diseases
with different histological, prognostic, and clinical outcomes1.
Approximately 50% of all women diagnosed with breast cancer
can develop metastatic diseases, such as liver and lung cancers2.
In the past decades, substantial efforts have been made to deepen
our understanding of breast cancer risk factors, molecular
pathogenesis, and treatment development. Especially, high-
throughput molecular profiling reveals that multiple genetic
mutations and biological signaling pathways could have a great
influence on tumor progression and overall survival3.
Comprehensive genomic analysis has identified key driver

genetic mutations that are responsible for therapeutic implication
and outcome prediction of breast cancer. The tumor suppressor
gene TP53 is found altered in breast carcinoma in ~30% of all
cases with prognostic implication4. Overexpression of ERBB2 is
also an adverse prognostic indicator correlated with decreased
survival in breast cancer5. Given certain types of mutations,
targeted therapies for patient subgroups have been developed.
For example, the PI3K inhibitor is designed to be responsive for
patients with the PIK3CA mutation, which is a key driver gene
associated with oncogenesis and hyperactivity of the PI3K
pathway. The identification of driver mutations is essential for
targeted therapy and clinical diagnosis of breast malignancies.
Digital whole-slide images (WSI) can potentially offer a

computationally effective and efficient means to quantitatively
characterize cell-level heterogeneity of cancer specimens. Pathol-
ogists routinely use WSIs to identify nuclei features, diagnose
cancer status and measure the histopathological grade of cancer
tissues. However, there is a lack of research linking WSI with gene

mutations and pathway activities for advancing clinical assess-
ment in breast cancer. Preliminary evidence suggests that it is
possible to apply deep-learning approaches to automatically
predict cancer subtypes in multiple cancers6–8, predict mutations
in lung6 and liver cancers9, classify mesothelioma10, detect DNA
methylation patterns11, estimate human epidermal growth factor
receptor 2 status in breast cancer12, and predict pan-cancer
prognosis for patients13. However, pan-cancer studies14–16 are
unable to provide deep characterization of breast cancer across
histopathology, mutation, and pathway activity levels.
In this study, we develop WSI-based deep-learning classifiers for

predicting key mutation outcomes and important biological pathway
activities in breast cancer. We directly provide slide-level predictions
with a self-attention mechanism. This self-attention technique can
capture the relationship between patches and empower us to
visualize representative tiles during the decision-making process. Our
study highlights WSI visual interactions between mutation and its
related pathway, enabling a head-to-head comparison to reinforce
our major findings. Furthermore, we validate our analysis in a pan-
cancer setting on liver and lung cancer cohorts to gain additional
insights of mutation prediction across cancers based on the
metastatic associations derived from breast cancer.

RESULTS
Datasets
We collected 659 patients with breast invasive carcinoma from The
Cancer Genome Atlas (TCGA)17. Data inclusion criteria for each
patient contain: (1) one hematoxylin and eosin (H&E) stained
histopathology whole-slide image (WSI), (2) mutational data with the
point mutation status of 18 driver genes and copy number alteration
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(CNA) of 35 genes (see Methods), and (3) omics data with the mRNA
expression data and CNA data of all genes. The WSI data were
downloaded from Genomic Data Commons data portal (https://
portal.gdc.cancer.gov/) and the other molecular data were obtained
from the cBioPortal (https://www.cbioportal.org/). The 659 cases in
the TCGA-BRCA dataset were randomly partitioned into training,
validation and test sets based on 70%, 15%, and 15% ratios,
respectively. The characteristics of the breast cancer patients in each
set are shown in Table 1. In addition, we collected 350 patients with
lung adenocarcinoma from TCGA-LUAD cohort and 316 patients
with liver hepatocellular carcinoma from TCGA-LIHC cohort to
validate our method following the same data inclusion criteria. Each
dataset is randomly split into training and testing sets with 20 and
80% ratios, where the training set is utilized to fine-tune the
developed models trained from the breast cancer data. The patients’
characteristics of the lung and liver datasets are shown in Table 2.
After WSI tile extraction and tumor tile selection (see Methods), there
are 703,804, 140,981, and 167,530 tiles used in the training,
validation and testing sets of breast cancer, 130,659 and 465,925
tiles in the training and testing sets of lung cancer, and 116,635 and
570,073 tiles in the training and testing sets of liver cancer.

Prediction of gene mutation status in breast cancer from
pathology images
We trained our models on pathology images to predict significant
mutations profiles in breast cancer. More specifically, our deep-
learning model extracted mutation-specific feature vectors from
tumor tiles and predicted the gene mutation probability of the
corresponding patient (see Fig. 1 and Methods). We seek to
predict two types of gene mutations including point mutation and
CNA. Our model demonstrated high-level performance on
predicting the point mutation status of multiple important genes.
The AUC scores for point mutation and CNA are shown in Table 3
and Table 4, respectively, and the corresponding ROC curves are
shown in Fig. 2. For example, we found that our model is highly
predictive on TP53 (AUC= 0.729), which is the most frequently
mutated gene in breast cancer with prognostic implication. Our
models also showed good results on predicting mutations of RB1
(AUC 0.852), CDH1 (AUC 0.776), NF1 (AUC 0.768), NOTCH2 (AUC
0.740) in breast cancer.
We also found that our deep-learning classifier predicted well

(AUC > 0.65) on the CNA status in breast cancer, including six
genes of FGFR1, EIF4EBP1, KAT6A, HEY1, ZNF217, and RAB25. More
importantly, the use of the self-attention mechanism makes our

deep-learning approach explainable, which enabled us to identify
key tiles in the process of model prediction (Fig. 3). For example,
we computed each tile’s weight that contributes to the final global
feature vector and presented the weight map of a patient for TP53
in Fig. 3b and RB1 in Fig. 4b. The corresponding top 20 weighted
tiles are also shown in Figs. 3d and 4d, respectively. Additional
results of gene point mutation and CNA predictions can be found
in Supplementary Table 1, Supplementary Table 2a, and
Supplementary Table 2b.

Table 1. Patient characteristics on the 659 cases from TCGA-BRCA
cohort.

TCGA-BRCA

Train
(n= 461)

Val
(n= 99)

Test
(n= 99)

Overall
(n= 659)

Age (year)

Average 56.6 57.6 57.4 56.9

Range 27–90 26–90 34–90 26–90

Sex, n (%)

Male 7 (1.5) 3 (3.0) 0 (0.0) 10 (1.5)

Female 454 (98.5) 96 (97.0) 99 (100.0) 649 (98.5)

Stages, n (%)

I/IA/IB 78 (16.9) 14 (14.1) 18 (18.2) 110 (16.7)

II/IIA/IIB 273 (59.2) 56 (56.6) 56 (56.6) 385 (58.4)

III/IIIA/IIIB/
IIIC

95 (20.6) 25 (25.3) 24 (24.2) 144 (21.9)

IV 8 (1.7) 2 (2.0) 0 (0.0) 10 (1.5)

X 3 (0.7) 2 (2.0) 1 (1.0) 6 (0.9)

N/A 4 (0.9) 0 (0.0) 0 (0.0) 4 (0.6)

Subtypes, n (%)

Luminal A 186 (40.3) 47 (47.5) 44 (44.4) 277 (42.0)

Luminal B 105 (22.8) 17 (17.2) 20 (20.2) 142 (21.5)

Her2 34 (7.4) 6 (6.1) 5 (5.1) 45 (6.8)

Basal 91 (19.7) 13 (13.1) 20 (20.2) 124 (18.8)

Normal 14 (3.0) 5 (5.1) 3 (3.0) 22 (3.3)

N/A 31 (6.7) 11 (11.1) 7 (7.1) 49 (7.4)

Table 2. Patient characteristics on the 350 cases from TCGA-LUAD cohort and 316 cases from TCGA-LIHC cohort.

TCGA-LUAD TCGA-LIHC

Train (n= 70) Test (n= 280) Overall (n= 350) Train (n= 63) Test (n= 253) Overall (n= 316)

Age (year)

Average 64.6 64.9 64.9 59.7 59.3 59.4

Range 40–85 38–88 38–88 17–84 16–90 16–90

Sex, n (%)

Male 37 (52.9) 119 (42.5) 156 (44.6) 38 (60.3) 174 (68.8) 212 (67.1)

Female 33 (47.1) 161 (57.5) 194 (55.4) 25 (39.7) 79 (31.2) 104 (32.9)

Stages, n (%)

I/IA/IB 40 (57.1) 154 (55.0) 194 (55.4) 30 (47.6) 120 (47.4) 150 (47.5)

II/IIA/IIB 14 (20.0) 76 (27.1) 90 (25.7) 12 (19.0) 63 (24.9) 75 (23.7)

III/IIIA/IIIB/IIIC 8 (11.4) 37 (13.2) 45 (12.9) 13 (20.6) 54 (21.3) 67 (21.2)

IV 7 (10.0) 12 (4.3) 19 (5.4) 0 (0.0) 3 (1.2) 3 (0.9)

X 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0 0 (0.0) 0 (0.0)

N/A 1 (1.4) 1 (0.4) 2 (0.6) 8 (12.7) 11 (4.3) 19 (6.0)
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Prediction of biological pathway activity from histopathology
images
We developed deep-learning models to predict the activities of
ten canonical biological pathways18 identified in breast cancer for
each patient. The pathway activity levels were derived from either
mRNA expression data or the CNA data (see Methods) to supervise
the model training. The model structure and training method
were kept the same as in the mutation prediction task.
When using the mRNA expression data to represent pathway

activity, we found that the p53, PI3K, and cell cycle pathways are
predictable (AUC > 0.65, Table 4). When using the CNA data for
pathway activity, the Myc pathway achieves the highest AUC
(0.7950). The notch pathway (AUC 0.668) and p53 pathway (AUC
0.640) also have significant performance. Additional results of
pathway activity predictions can be found in Supplementary Table
3 and Supplementary Table 4.
We also explored the visual interpretation of biological pathway

activity and driver mutations as shown in histopathology images.
To allow a joint analysis, we chose the biological pathway18 that is
associated with the available driver gene mutations. For example,
the visualization of the weight map on the p53 pathway is shown
in Fig. 3c and the top 20 weighted tiles are also offered in Fig. 3e.
Meanwhile, we used the same patient as the result in gene
mutation prediction (Fig. 3), which shows the highlighted areas in
TP53 mutation prediction (Fig. 3b) and the top 20 weighted tiles
(Fig. 3d). We found that those tiles are highly correlated to both
TP53 mutation and p53 pathway activity. This finding increases
the confidence in our prediction because TP53 is a key gene in the
p53 pathway, and one would expect a relationship between the
mutation status and pathway activity (Tables 5, 6). Similarly, the
same observation can be found between RB1 mutation prediction
result and cell cycle pathway prediction result in Fig. 4. Additional
results can be found from Supplementary Fig. 1 to Supplementary
Fig. 10. Overall, we have seen a shared similarity among
highlighted tiles despite the complexity of biological pathway
activities.

Validation of our deep-learning model on lung and liver
cancers
Next, we validated our modeling approach in two different
cancers namely lung adenocarcinoma and hepatocellular carci-
noma. In the lung adenocarcinoma (TCGA-LUAD) cohort, 9 genes
for point mutation and 14 genes for CNA were used for model
testing (see Methods). Our fine-tuned models developed from the
breast cancer cohort can predict the point mutation of TP53 (AUC
0.705) and Notch2 (AUC 0.656), the copy number alteration of
FGFR1 (AUC 0.676), the p53 pathway activity (AUC 0.602) from
mRNA expression data, and the activities of Myc pathway (AUC
0.658) and PI3K pathway (AUC 0.601) from CNA data. Overall, the
responses on the pathway prediction are not as good as those on
mutation prediction. Notably, the mutations of TP53 gene occur in
about 50% of non-small cell lung cancer (NSCLC) and TP53
mutation is associated with worse prognosis with treatment
resistance19, therefore the prediction of TP53 mutation is also
helpful for the diagnosis of lung cancer.
In the liver hepatocellular carcinoma (TCGA-LIHC) cohort, the

numbers of tested genes are 7 and 25 for point mutation and
CNA, respectively. Our fine-tuned models can predict the point
mutation of RB1 (AUC 0.795), the copy number alteration of TGFβ2
(AUC 0.718), the pathway activity of cell cycle from mRNA
expression data (AUC 0.614), and Myc pathway activity from CNA
data (AUC 0.602). In particular, RB1 is a key inhibitor of cell cycle
progression in HCC patients20–22, and RB1 mutations are
significantly associated with reduced cancer-specific and
recurrence-free survival after resection in HCC patients20–22.
Therefore, the prediction of RB1 mutation has potential prognosis
value for those patients.
We also visualized the weight maps of TP53 mutation and p53

pathway of a representative patient in lung cancer in Fig. 5, and
those of RB1 mutation and cell cycle pathway in the liver cancer in
Fig. 6. In both examples, we can observe similar morphological
patterns identified from a pathologist’s perspective in the two
weight maps and tile appearances in the top 20 weighted tiles,
which are similar to our observations for breast cancer. More
results can be found in Supplementary Fig. 11 and Supplementary
Fig. 12.

DISCUSSION
In this study, we demonstrated that key gene mutation outcomes
and biological pathway activity of breast cancer can be predicted
by deep-learning classifiers from whole-slide images. We further
validated the deep-learning model to infer mutation status on
liver and lung cancers, respectively. Our WSI-based deep-learning
models can identify the point mutation status of six genes (RB1,
CDH1, NF1, NOTCH2, TP53, and MAP3K1) and the copy number

Table 3. AUC (with 95% CI) achieved by the models trained on the point mutation data of breast cancer.

Gene RB1 CDH1 NF1 NOTCH2 TP53 MAP3K1

AUC 0.852 (0.740–0.969) 0.776 (0.625–0.914) 0.768 (0.449–0.949) 0.740 (0.515–0.917) 0.729 (0.621–0.828) 0.682 (0.419–0.949)

The top 6 results are reported out of 18 genes.

ResNet-101 
without fc layer

…

Stacked feature vectors
× 2048matrix

Output

Fully-connected layers

Self-attention + average pooling layer

Fig. 1 The proposed network structure. Each color normalized tile
is fed into a pretrained ResNet-101 to extract a 2048-dimensional
feature vector. Feature vectors of all tiles of the same patient are
stacked and fed into a MLP with self-attention to predict the
mutation probability or pathway activity.

Table 4. AUC (with 95% CI) achieved by the models trained on the copy number alteration (CNA) data of breast cancer.

Gene FGFR1 EIF4EBP1 KAT6A HEY1 ZNF217 RAB25

AUC 0.794 (0.677–0.894) 0.742 (0.595–0.871) 0.732 (0.523–0.941) 0.715 (0.510–0.894) 0.693 (0.498–0.870) 0.686 (0.528–0.826)

The top 6 results are reported out of 35 genes.
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alteration of another six genes (FGFR1, EIF4EBP1, KAT6A, HEY1,
ZNF217, and RAB25) in breast cancer. To deepen our under-
standing of cancer biology, we explored the predictive power of
deep learning to predict underlying biological pathway activity,
which is a challenging task involving complex biological relations
among gene expressions. From the activity levels of 10 canonical
signaling pathways derived from the mRNA expression data and
copy number alteration inputs6, we found that three important
pathways (p53, pi3k, and cell cycle) measured by mRNA
expression and two pathways (Myc and Notch) measured by
copy number alteration can be well predicted from our analysis.
Cancers are caused by gene mutations and therefore the

prediction of key gene mutations based on whole-slide images
will positively impact the targeted treatment of cancer
patients4,23–29. For example, our models can predict TP53 point
mutation (AUC 0.729) and FGFR1 copy number alteration (AUC
0.794) with high accuracies. TP53 is a tumor suppressor gene that
plays a key role in many cellular pathways controlling cell
proliferation, cell survival, and genomic integrity23. It is mutated
frequently in breast cancer4,23 and has been associated with poor
prognosis4,23,24. The FGFR1 gene is a member of the fibroblast
growth factor receptor (FGFR) family that regulates important
biological processes including cell proliferation and differentiation
during development and tissue repair25. In breast cancer, FGFR1
amplification is the most frequent genomic aberration26, and may
lead to dysregulated FGF receptors and promote cancer growth
and metastasis. Extensive works26–29 have shown that FGFR1

could be a therapy target in breast cancer (e.g., the anti-FGFR1
dovitinib (TKI1258) therapy27). With the prediction of TP53
mutation and FGFR1 alteration, our models offered insights into
selecting patient subgroups for the targeted therapy from
digitalized WSI scans.
We extended our study to analyze biological pathway predic-

tion based on whole-slide images that has seldom been addressed
previously. Biological pathways are the interactions among
molecules in a cell that result in certain products or changes in
cancer30. Several important signaling pathways have been
identified as frequently and genetically altered in cancer18. We
showed that deep learning can predict pathology activity levels,
providing valuable information for prognosis and therapeutic
planning. For example, the p53 pathway activity (predicted with
0.798 AUC in our method) is associated with more aggressive
disease and worse overall survival in breast cancer31. The Myc
pathway (predicted with 0.795 AUC) acts as a key regulator of cell
growth and proliferation, which has been linked to the basal-like
breast cancer32,33, and can serve as a target for this aggressive
subtype in breast cancer.
To overcome the interpretability challenges of AI-powered

models, we employed a self-attention mechanism that is able to
visualize the region of interest that contributed to outcomes
prediction. In other words, we can display the weight map of each
tumor tile to understand the decision making of the classifiers,
highlighting the regions that contribute most to the final
prediction. An example of the visualized weights map when

(a) point mutation results in breast cancer                         (b) CNA results in breast cancer

(c) point mutation results in liver and lung                    (d) CNA results in liver and lung

Fig. 2 ROC curves of the top prediction outcomes. Results include (a) top point mutations and (b) top CNA predictions in breast cancer. Also
(c) and (d) provide the associated validation results on point mutation and CNA predictions respectively.

H Qu et al.
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predicting TP53 point mutation and p53 pathway activity is shown
in Fig. 3b, c, respectively. Tiles with brighter green colors have
larger weights, indicating that those tiles are most important in
the decision-making process. Interestingly, the highlighted
regions in both tasks are approximately located in the same part
of the whole-slide image, and the top 20 weighted tiles in the two
tasks shown in Fig. 3d, e, are also similar. The possible reason
could be that TP53 is a crucial gene in the p53 pathway thus the
predictions depend on similar image features in this example. This
type of methodology and visualization has the potential to enable
the improved exploration of the relationship between the image
morphological features and molecular outcomes, and the relation-
ship between genes and biological pathways, which can lead to
new discoveries in breast cancer development.
To validate our method, we further extended the trained deep-

learning models on lung and liver cancers with transfer learning.
We hypothesize that the models trained using breast cancer data
can also predict important gene mutations and pathway activities
in lung and liver cancers since they are two common sites for the
breast cancer metastatic spread34. Out of the well-predicted genes
in breast cancer, the point mutations of TP53 and Notch2, and the
copy number alteration of FGFR1 can also be predicted in lung
cancer (LUAD). In the liver cancer (LIHC), the well-predicted genes
are RB1 and TGFβ2. These genes are indeed highly related to the
diagnosis of lung cancer19,35,36 and liver cancer20,37. The different
results on liver and lung cancers may be caused by the tissue

differences of the two cancers. The pathway prediction results in
the two cancers are not as good as gene mutation predictions,
probably because pathways are more complicated than gene
mutations thus are more challenging to predict. However, the
well-predicted pathways in breast cancer still get the highest AUC
scores in lung (p53) and liver (cell cycle, Myc) cohorts.
Overall, our study highlights deep characterization of breast

cancer, its mutation outcome, and biological pathway activity. We
present unique insights into WSI visual interactions between
mutation and its pathway, enabling a head-to-head comparison to
reinforce our major findings. Our approach can be a useful
computational tool for gene mutation pre-screening, prior to the
costly gene mutation analysis such as next-generation sequen-
cing. Our evaluation strategy differs from pan-cancer studies14–16,
which evaluate performance on each cancer individually. We
measured the performance across cancer types by training on
breast cancer and validating on liver and lung cancers, which is
more challenging due to inherent differences of cancer tissues38.
In terms of model development, we directly provide slide-level
predictions without assuming that each tile or super-tile shares
the same label as the whole slide. Unlike the regular attention
mechanism used in the related works39,40 that calculates the
weight of each patch according to the prediction, the self-
attention in our work measures the similarities between each
patch and all other patches and can capture the relationship
between patches when making predictions. The self-attention

Fig. 3 Weight maps of tiles when predicting the point mutation status of TP53 and p53 pathway activity from mRNA expression data in
breast cancer. a Tumor tiles after data processing. b Weight map of tumor tiles in TP53 point mutation prediction. Brighter green tiles have
larger weights. c Weight map of p53 pathway activity prediction. d, e Top 20 weighted tiles for TP53 point mutation prediction and p53
pathway prediction, respectively. We marked four tiles that appear in both tasks. These tissues contain poorly differentiated breast carcinoma
with small nests, solid sheets, and single cells from a pathologist’s perspective.
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mechanism further enables us to visualize the importance of tiles
during the decision-making process, instead of the probabilities of
mutations or expression for tiles. This finding can be used to
better understand which image-based morphological features are
related to certain gene mutations or pathway activities. Finally, our

approach is a data-driven workflow that does not require nuclei
detection12 as a prerequisite for specific prediction tasks.
While building associations between histopathology and mole-

cular profiles is promising, the identified genotype–phenotype
relationships here are not intended to replace standard transcrip-
tomic tests. Given the confirmation from our collaborative pathol-
ogist that there is a lack of consensus on molecularly defined
patterns seen from histopathological scans, we expect our detectable
findings could complement pathologists’ routine workflow. The
identified pathological descriptions were only exploratory rather than
drawing conclusive associations, which warrant more clinical
examinations in future studies. A limitation of the study is that the
workflow is based on formalin-fixed, paraffin-embedded (FFPE) slides
given their quality of preserving microscopic characteristics of tissues,
while frozen tissues could also be considered for extended analysis in
the future. Our computational analysis has a dependence on the
feature extractor pretrained on natural images (ImageNet dataset41).
There is a domain gap between natural images and pathology
images. Therefore, the exploration of appropriate feature representa-
tions of pathology tiles and their parameters will be crucial to assess
the validity and reproducibility of algorithms. To maximize the power
of deep-learning approaches, it is also necessary to address data
scarcity in histopathology-related tasks. There are often a significant
portion of data samples that are insufficient and under-represented
for certain mutation prediction tasks (e.g., only <5%mutant samples).
High-quality, large-scale pathological data with precise molecular

Fig. 4 Weight maps of tiles when predicting the point mutation status of RB1 and cell cycle pathway activity from mRNA expression data
in breast cancer. a Tumor tiles after data processing. b Weight map of tumor tiles in RB1 point mutation prediction. Brighter green tiles have
larger weights. c Weight map of the cell cycle pathway activity prediction. d, e Top 20 weighted tiles for the RB1 point mutation prediction
and cell cycle pathway prediction, respectively. We marked four tiles that appear in both tasks. These tissues contain poorly differentiated
breast carcinoma with necrosis or hemorrhage from a pathologist’s perspective.

Table 5. AUC (with 95% CI) achieved by the models trained on the
pathway activity derived from mRNA expression data of breast cancer.

Pathway p53 PI3K Cell cycle

AUC 0.798 (0.696–0.890) 0.666 (0.544–0.777) 0.654 (0.543–0.760)

The top 3 results are reported out of 10 canonical pathways.

Table 6. AUC (with 95% CI) achieved by the models trained on the
pathway activity derived from copy number alteration data of breast
cancer.

Pathway Myc Notch p53

AUC 0.795 (0.671–0.893) 0.668 (0.536–0.795) 0.640 (0.344–0.939)

The top 3 results are reported out of 10 canonical pathways.

H Qu et al.
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annotations will be needed to boost model development. Alter-
natively, transfer learning has proven to be useful in computer vision
tasks when training samples are less available42,43. Therefore, a
pretrained classifier built from diverse pathological datasets may
provide superior results compared with our cancer-type-
specific model.
In conclusion, we demonstrated that deep neural networks can be

used to predict molecular outcomes in breast cancer including gene
mutations and biological pathway activities from histopathology
whole-slide images. Our extensive results highlighted new findings
among genotype–phenotype associations, offering insights into the
identification of targeted therapies for breast cancer treatment.

METHODS
Data selection
The original TCGA-BRCA cohort consists of 1098 patients with H&E stained
whole-slide images, genomic data, and additional clinical information. We
analyzed the 1133 Formalin-Fixed Paraffin-Embedded (FFPE) slides that
were generated by fixing a specimen in formaldehyde and then
embedding it in a paraffin wax block for cutting. We further filtered out
low quality FFPE slides according to the following criteria: (1) There is no
diagnostic time information in a slide with low visual quality. (2) A slide has
extensive blurred areas or is abnormally stained with little informative
tissue areas. For patients with multiple slides, we only kept the slide with
the best visual quality. After slide selection preprocessing, we collected
659 slides (659 patients) along with the corresponding omics data (mRNA

expression and copy number alteration). The same selection process is
performed on the validation datasets of TCGA-LUAD and TCGA-LIHC,
resulting in 350 and 316 cases with both pathology images and omics
profiles, respectively. The slide lists of the three cancers after data selection
can be found in the Supplementary Note 1. These public TCGA cohorts
were available online without restriction and authentication.

Histopathology data preprocessing
For each slide, we extracted nonoverlapping tiles of 512 × 512 at ×20
magnification and removed background tiles (Fig. 7a). A background tile
was determined if its mean pixel value is higher than 220. We focused on
tumor areas in the whole-slide images therefore we adopted a semi-
automatic labeling method to identify tumor tiles. The labeling process
was implemented by the initial clustering and manual refinement. In the
first step, k-means clustering was performed on all tiles for each slide.
Specifically, each 512 × 512 tile was downsampled to 128 × 128, which was
then flattened into a 49152-length feature vector. These feature vectors
were then clustered into two groups (i.e., tumor and nontumor regions). In
the second step, a pathologist (20 years of clinical experience) additionally
verified the segmentation quality of tumor regions and revised inaccurate
results of slides to ensure the tumor labeling results were reasonable. For
example, the tiles with artefacts in the annotated slides were removed
manually if they were left after the clustering step. We then performed
color normalization using the method44 to eliminate the color variations in
different slides. The tiles of the same slide were processed by using the
same slide-level pixel mean and standard deviation during the
normalization.

Fig. 5 Weight maps of tiles when predicting the point mutation status of TP53 and p53 pathway activity from mRNA expression data in
lung cancer. a Tumor tiles after data processing. b Weight map of tumor tiles in TP53 point mutation prediction. Brighter green tiles have
larger weights. c Weight map in p53 pathway activity prediction. d, e Top 20 weighted tiles for the TP53 point mutation prediction and p53
pathway prediction, respectively. We marked four tiles that appeared in both tasks. These tissues contain moderately differentiated lung
carcinoma with papillary growth pattern from a pathologist’s perspective.

H Qu et al.

7

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2021)    87 



Mutated genes and pathway activity identification
To ensure a sufficient amount of training WSIs for mutated genes, for point
mutation we selected 18 important genes in breast cancer, which were
related to cell functions (e.g., cell cycle, p53 signaling, notch signaling, and
DNA damage response) and they were mutated at least 3%. For CNA data,
we selected 35 genes with mutation percentage greater than 5%. In the
validation tasks of lung and liver cancers, we used the same criterion to
select gene profiles, resulting in 9 point mutation genes and 14 CNA genes
in the lung cancer and 7 point mutation genes and 25 CNA genes in the
liver cancer for analysis.
In the pathway activity prediction task, we identified ten canonical

signaling pathways with frequent genetic alterations. The pathway activity
in each patient was obtained by a weighted sum of the genes’ expression
data or CNA data in the pathway. Then the activity was binarized as
activated if it is greater than zero and inactivated otherwise. For each
pathway, we generated two types of activity labels from mRNA expression

data or CNA data for each patient as follow:

vs;i ¼ 1
Ni
gene

PNi
gene

n¼1
ws;i
n us;in ; i ¼ 1; 2; ¼ ; 10; s ¼ 1; 2; ¼ ; 659 (1)

ls;i ¼ 1 if vs;i > 0

0 otherwise

�
; (2)

where vs,i is the activity level of pathway i in patient s, ls,i is the binary
activity label of pathway i in patient s, Ni

gene is the number of important
genes that are involved in the pathway i according to Sanchez-Vega et al.’s
work18, us;in is the expression level or CNA level of gene n in pathway i and
patient s, ws;i

n is the corresponding weight, which takes value 1 if the gene
is an oncogene and −1 if it is a tumor suppressor. The CNN aims to predict
the binary label ls,i, i.e., whether a pathway is activated (ls,i= 1) or
inactivated (ls,i= 0) in a patient.

Fig. 6 Weight maps of tiles when predicting the point mutation status of RB1 and cell cycle pathway activity from mRNA expression data
in liver cancer. a Tumor tiles after data processing. b Weight map of tumor tiles in RB1 point mutation prediction. Brighter green tiles have
larger weights. c Weight map in cell cycle pathway activity prediction. d, e Top 20 weighted tiles from RB1 point mutation prediction and cell
cycle pathway prediction, respectively. We marked four tiles that appeared in both tasks. These tissues contain hepatocellular carcinoma with
clear cell change from a pathologist’s perspective.
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Model structure
We developed deep-learning models to predict mutation status and
pathway activity from histopathology images. Our model architecture
consists of two main sections (Fig. 1):

● Feature extractor: This module aims to obtain a feature vector
representing the input tile. We use the convolutional layers of ResNet-
10145 as the feature extractor, which is widely used in image
classification tasks and has shown powerful feature representation
ability in various applications. This subnetwork is pretrained on the
ImageNet dataset41 and kept unchanged during training and testing.
Through the feature extraction, each input tile is represented by a
2048-dimensional feature vector, resulting in a feature matrix of N ×
2048 for slide of patient s, where N is the number of tumor tiles in the
slide and varies from slide to slide.

● Multi-layer perceptron (MLP) predictor with self-attention: This subnet-
work follows the feature extractor to output the final prediction. It
consists of three fully connected layers and one self-attention layer (Fig.
1). The first two fully connected layers have 512 and 128 neurons,
respectively, reducing the size of feature matrix to N × 128. The self-
attention layer is used to compute the importance weight of each tile’s
feature vector and guide the network to pay more attention to the
crucial tiles. Self-attention has been used successfully in a variety of tasks
in natural language processing46–48 and computer vision49 to
model relationships between widely separated spatial regions. In this
paper, we make slight modifications based on the method in Zhang
et al.49:

f xð Þ ¼ Wfx; g xð Þ ¼ Wgx (3)

αi;j ¼ softmax f xið ÞTg xj
� �� �

(4)

oj ¼
PN
i¼1

αj;ixi; y ¼ x þ γ � o (5)

where x is the input feature matrix, Wf and Wg are 1 × 1
convolution filters, αj,i indicates how much attention the model
pays to the ith tile’s features when computing the jth tile’s
activation oj, γ is a trainable parameter controlling the scale of the

attention. y is the output of the self-attention layer after an
average pooling, which is the global feature vector representing
all tumor tiles of a slide. The final fully connected layer transforms
the global feature to a prediction.
In our study, the gene mutation status prediction and pathway activity

prediction are formulated as classification tasks, and thus cross-entropy
loss is used to train the models.

Model training and evaluation
The feature extractor subnetwork (ResNet-101 without fully connected (FC)
layer) is pretrained and fixed during training for all prediction tasks.
Therefore, we extract the feature vectors of tumor tiles for all patients
beforehand and save them to the disk. Training the prediction module
from the saved feature vectors can greatly accelerate the training speed.
During feature extraction, each 512 × 512 tile is resized to 224 × 224 image
and normalized by the mean and standard deviation of the ImageNet
dataset39 before feeding to the pretrained ResNet-101. The prediction
subnetwork is trained with the Adam optimizer for 30 epochs. The initial
value of γ in the self-attention layer is 1. The learning rate of γ is set to
0.001 and all other parameters have a learning rate of 0.0001. The best
model is saved when achieving the best performance on the validation set.
For different tasks (e.g., point mutation, pathway activity), the models for
breast cancer are all trained from scratch. It took ~6min to train the MLP
with self-attention (30 epochs, batch size 8) on a NVIDIA TITAN Xp GPU.
Our training is efficient because our method can directly provide slide-level
prediction instead of tile-level predictions as done in Fu et al15.
To evaluate the model’s performance on the validation set (for model

selection) and test set, we use the area-under-the-curve (AUC) in both
mutation prediction and pathway activity prediction tasks. The AUC is
the area under the ROC curve, which is created by plotting the true
positive rate (TPR) against the false positive rate (FPR) at various
threshold settings. AUC informs the capability of a model in
distinguishing between classes. The 95% confidence interval (CI) of
each AUC score is calculated by 1000 bootstrapping to estimate the
uncertainty of AUC.

Model fine-tuning on the lung and liver cancers data
During model fine-tuning, we fix the parameters of the first two fully
connected (fc) layers of the prediction subnetwork and fine-tune the

Whole slide images Extracted tiles Tumor tiles Normalized tumor tiles

(1a) (1b) (1c)

(2) (3)

Mutation status 
of all genes

Mutation status of 
selected key genes mRNA expression

or CNA of all genes Pathway activities

Training set

Validation set

Testing set

Data processing

Model training and evaluation

Patients

Model training

Model testing

WSI, mutation and 
pathway labels

Predicted mutation 
and pathway labels

Result

Fig. 7 Illustration of the deep-learning workflow for data processing and model evaluation. We processed the WSI data by extracting tiles
(1a), identifying tumor titles (1b), and generating small nonoverlapping tiles with color normalization. We selected key mutational genes (2)
and identified biological pathways from mRNA (or CNA) expressions (3). Model training was based on a pretrained ResNet-101 model with an
attention mechanism. After model selection, the trained model was used to test tiles and assess their prediction performances.
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self-attention layer and the last fc layer. We assume that image features
learned from breast cancer data could be also useful in a pan-cancer
setting. This fine-tuning strategy could help to investigate if there is
any underlying relationship between the data of breast cancer and lung
or liver cancer. We did not fine-tune models for all possible gene
profiles from TCGA, because the point mutation and CNA percentage of
some genes are extremely low in lung or liver cancers. Only genes with
>3% point mutation or >5% CNA were fine-tuned and tested in
our study.

Visualization
The self-attention layer in our model can produce the importance weights
of tiles in a slide in the prediction tasks, which is helpful for us to explore
the biological interpretation value of deep-learning classifiers. We compute
the log value of the weight of each tile and project it to the original
location in the whole-slide image, resulting in the weight map (Fig. 3). The
weight βi is computed according to Eqs. (3), (4), (5):

βi ¼ 1þ γ
PN
j¼1

αi;j (6)

Besides, we select tiles with top 20 largest weights in a slide to show the
appearance of important tiles (Figs. 3d and e).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The whole-slide images used in this study are publicly available through the Genomic
Data Commons data portal (https://portal.gdc.cancer.gov/). The omics data (muta-
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through cBioPortal (https://www.cbioportal.org/), and the download links are
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