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Quantitative MRI-based radiomics for noninvasively
predicting molecular subtypes and survival in glioma patients
Jing Yan1,10, Bin Zhang2,10, Shuaitong Zhang3,4,5,10, Jingliang Cheng1, Xianzhi Liu6, Weiwei Wang7, Yuhao Dong8, Lu Zhang2,
Xiaokai Mo2, Qiuying Chen2, Jin Fang2, Fei Wang2, Jie Tian3,4,5,9✉, Shuixing Zhang 2✉ and Zhenyu Zhang 6✉

Gliomas can be classified into five molecular groups based on the status of IDH mutation, 1p/19q codeletion, and TERT promoter
mutation, whereas they need to be obtained by biopsy or surgery. Thus, we aimed to use MRI-based radiomics to noninvasively
predict the molecular groups and assess their prognostic value. We retrospectively identified 357 patients with gliomas and
extracted radiomic features from their preoperative MRI images. Single-layered radiomic signatures were generated using a single
MR sequence using Bayesian-regularization neural networks. Image fusion models were built by combing the significant radiomic
signatures. By separately predicting the molecular markers, the predictive molecular groups were obtained. Prognostic nomograms
were developed based on the predictive molecular groups and clinicopathologic data to predict progression-free survival (PFS) and
overall survival (OS). The results showed that the image fusion model incorporating radiomic signatures from contrast-enhanced
T1-weighted imaging (cT1WI) and apparent diffusion coefficient (ADC) achieved an AUC of 0.884 and 0.669 for predicting IDH and
TERT status, respectively. cT1WI-based radiomic signature alone yielded favorable performance in predicting 1p/19q status (AUC=
0.815). The predictive molecular groups were comparable to actual ones in predicting PFS (C-index: 0.709 vs. 0.722, P= 0.241) and
OS (C-index: 0.703 vs. 0.751, P= 0.359). Subgroup analyses by grades showed similar findings. The prognostic nomograms based on
grades and the predictive molecular groups yielded a C-index of 0.736 and 0.735 in predicting PFS and OS, respectively.
Accordingly, MRI-based radiomics may be useful for noninvasively detecting molecular groups and predicting survival in gliomas
regardless of grades.
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INTRODUCTION
Every year, ~100,000 people worldwide are diagnosed as having
gliomas1. Gliomas are the most common primary malignant
central nervous system cancer, which accounts for almost 80% of
malignant brain tumors, with the highest mortality and morbid-
ity2. They can be classified into lower-grade (grade II/III) and
higher-grade gliomas (grade IV) based on World Health Organiza-
tion (WHO) criteria3.
Patients with gliomas may have substantially varied survival

within grades4. Treatment planning, response monitoring, and
overall prognosis assessment for glioma patients depend heavily
on the genetic and epigenetic factors in each individual tumor.
The new classification announced by the WHO in 2016 recognized
several new entities of glioma based on isocitrate dehydrogenase
(IDH) mutation and 1p/19q codeletion in addition to the histologic
grades5. Early evidence has confirmed that gliomas with IDH
mutation and 1p/19q codeletion have better survival, whereas
glioblastoma with telomerase reverse transcriptase (TERT) pro-
moter mutation have worse survival6. A recent study7 defined five
molecular groups using three genetic markers: triple-positive,
mutations in both TERT and IDH, a mutation in IDH only, a
mutation in TERT only, and triple-negative. The molecular groups
had different overall survival (OS). Intra-tumoral genetic

heterogeneity is known to exist, however, it needs to be evaluated
by molecular assay following invasive biopsy or surgical resection.
Histopathological assessment is invasive and has sampling errors8.
Therefore, a noninvasive and repeatable technique is of great
scientific and clinical significance to predict the molecular
alternations of gliomas and assess their prognostic value, which
helps to designate a proper treatment strategy.
Brain magnetic resonance imaging (MRI) can noninvasively

provide more comprehensive information about tumor hetero-
geneity than focal tissue samples, however, such information is
behind the images that beyond visual perception9.
Recent advances in glioma stratification depend on biological

genotypes and application of deep learning and/or radiomics
based predictive models using MRI biomarkers to non-invasively
assess the genotypes, providing potential benefits for persona-
lized and effective treatment plans9. Radiomics is an emerging
field that converts medical imaging data into high-dimensional
hand-crafted features using an automated data mining algorithm,
such as machine learning10,11. By contrast, deep learning is a
method to mine high-dimensional numeric information by
learning relevant features (termed “deep features”) directly from
images12. By analyzing tumor spatial and temporal heterogeneity,
high-throughput hand-crafted or learned features enabled to
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characterize diseases for molecular diagnosis, prognosis, and
treatment monitoring13–17. These computational techniques may
exhibit prospective possibilities of overcoming limitations of tissue
sampling, as it considers the complete spatial extent of the tumor.
In the field of gliomas, recent reviews have shown the potential of
MRI-based deep learning alone, radiomics alone, and their
combination (i.e., deep learning-based radiomics) in grading,
molecular subtyping, and survival prediction of patients9,18–20.
Grading of gliomas is an essential but critical issue related to
prognosis and survival. Many attempts have been made to
investigate the value of multi-modal MR imaging biomarker
analysis based on radiomics and deep learning classification, in
the noninvasive assessment of tumor heterogeneity towards the
gliomas grading with encouraging findings21–26.
Non-invasive tumor decoding and phenotyping of gliomas have

attracted extensive attention in recent years. Dozens of studies
employing multimodal MRI-based models to identify IDH muta-
tion status, followed by 1p/19q codeletion with high accuracies of
more than 85%27–46. To date, three pilot studies applied radiomics
to discriminate TERT promotor genotype in gliomas with an
accuracy of around 80%47–49. Nevertheless, most of the previous
works focused on the prediction of single genetic alteration. Also,
radiomic features extracted from tumor and edema have shown
the incremental value of survival prediction in gliomas when
added to clinical, pathological, and genetic profiles50. The
combination of deep features and radiomic features may achieve
improved performance for survival prediction51,52, however, the
deep features are not easy to be interpreted by physicians.
We hypothesized that the quantitative radiomic profiles from

brain MRI could represent the underlying tumor genetic informa-
tion and prognostic importance. To the best of our knowledge, we
firstly predicted molecular groups of gliomas based on the status
of IDH mutation, 1p/19q codeletion, and TERT promoter mutation
using multiparametric MRI radiomics. In addition, we assessed the
association of predictive molecular groups with progression-free
survival (PFS) and OS. We developed prognostic nomograms
incorporating the predictive molecular groups and clinicopatho-
logic data to individually predict the PFS and OS of grade II–IV
gliomas. In addition, we also performed subgroup analyses by
WHO grade to determine the performance of radiomic models in
molecular subtyping and survival prediction.

RESULTS
Clinical and genetic characteristics of patients
The clinical characteristics of the training and validation cohorts
are summarized in Supplementary Table 2. No significant
differences were observed between the two cohorts (P=
0.075–0.897). Among the 357 glioma cases, 111 (31.1%) were
grade IV, 76 (21.3%) were grade III, and 170 (47.6%) were grade II.
A total of 175 (49%) patients had tumors with peritumoral edema.
165 (46.2%) cases had the IDH mutation, 95 (26.6%) had the 1p/
19q codeletion, and 185 (51.8%) had TERT promoter mutation.

Radiomic feature extraction and selection
For gliomas with peritumoral edema, 8730 (=873*5*2) features
were extracted from the multiparametric MRI data, whereas for
gliomas without edema, 4365 (=873*5) features were extracted
from the tumor region. The extracted radiomic features are
available at https://doi.org/10.5061/dryad.j3tx95xd9. Supplemen-
tary Table 3 shows the number of retained features after each step
of feature selection. More than 99% of irrelevant or highly
correlated features were reduced. Supplementary Table 4 shows
the final features involved in single-layered radiomic signatures for
predicting IDH, 1p/19q, and TERT status. A heatmap chart with a
radiomic feature dendrogram is illustrated in Fig. 1, which shows

close associations between the selected MRI radiomic features and
the three genetic alterations.

Constructing image fusion models
Tables S5–7 demonstrate the performance of single-layered
radiomic signatures for the prediction of IDH, 1p/19q, and TERT
status, respectively. For prediction of IDH mutation status (Table
1), the image fusion model incorporating radiomic signatures
based on contrast-enhanced T1-weighted imaging (cT1WI) and
apparent diffusion coefficient (ADC) achieved the highest value,
which was significantly superior to a clinical model based on age
and tumor location (P < 0.001 in the training and P= 0.002 in the
validation cohort). After adding age and tumor location to the
image fusion model, no improvement was reached (P > 0.05).
Thus, the image fusion model was used as the final model, with an
area under the curve (AUC) of 0.884 (95% confidence interval [CI]:
0.830–0.934), accuracy of 0.824 (95% CI: 0.765–0.882, sensitivity of
0.750 (95% CI: 0.656–0.841), specificity of 0.898 (95% CI:
0.831–0.962), positive predictive value (PPV) of 0.882 (95% CI:
0.804–0.956), and negative predictive value (NPV) of 0.779 (95% CI:
0.693–0.857). Subgroup analysis by grades II/III versus IV showed
similar accuracies. For prediction of 1p/19q codeletion status
(Table 1), the cT1WI-based radiomic model achieved the best
performance, which significantly outperformed the clinical model
based on age and tumor location (P < 0.001 in the training and
P= 0.008 in the validation cohort). The addition of age and tumor
location to the cT1WI-based radiomic model showed no
improvement in prediction (P > 0.05). Thus, the cT1WI-based
model was used as the final model, with an AUC of 0.815 (95%
CI: 0.751–0.878), accuracy of 0.723 (95% CI: 0.655–0.790),
sensitivity of 0.794 (95% CI: 0.686–0.906), specificity of 0.694
(95% CI: 0.608–0.772), PPV of 0.509 (95% CI: 0.409–0.625), and NPV
of 0.894 (95% CI: 0.828–0.955). The radiomic model in grade II/III
gliomas also yielded similar accuracy. For predicting TERT
promoter mutation status (Table 1), the image fusion model
combing cT1WI- and ADC-based radiomic signatures achieved the
best performance, with an AUC of 0.669 (95% CI: 0.580–0.748),
accuracy of 0.655 (95% CI: 0.588–0.723), sensitivity of 0.841 (95%
CI: 0.766–0.915), specificity of 0.446 (95% CI: 0.339–0.554), PPV of
0.631 (95% CI: 0.549–0.718), and NPV of 0.714 (95% CI:
0.585–0.833). Among the candidate clinical variables, age was
the only predictor of TERT genotype, however, integration of age
to the image fusion model showed no improvement in
performance (P > 0.05). Subgroup analysis by grades II/III versus
IV showed similar accuracies. Confusion matrix of the prediction of
three molecular markers was provided as Supplementary Note 3.
Supplementary Note 4 shows the formula of radiomic models for
predicting IDH mutation, 1p19q codeletion, and TERT promoter
mutation status. The prediction value for each patient, divided by
training cohort and validation cohort are shown in Supplementary
Fig. 3.

Prognostic performance of the model-predicted molecular
groups
Supplementary Fig. 4 shows the radiomic models could stratify
most patients into five molecular groups, with significantly
different PFS and OS (all log-rank tests, P < 0.001). The prognostic
performance of the predictive molecular groups was comparable
to the actual molecular groups in the training cohort (PFS: C-index,
0.757 vs. 0.745, P= 0.946; OS: C-index: 0.759 vs. 0.764, P= 0.911)
and validation cohort (PFS: C-index, 0.709 vs. 0.722, P= 0.241; OS:
C-index: 0.703 vs. 0.751, P= 0.359) (Table 2). When stratified by
WHO grade (II/III or IV), the prognostic value of model-predicted
and actual molecular groups also had no significant differences (all
P values > 0.05) (Table 2).
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Prognostic performance of the combined nomograms
The prognostic nomogram for predicting PFS included WHO
grade and predictive molecular groups, achieving a C-index of
0.799 (95% CI: 0.731–0.868) and 0.736 (95% CI: 0.628–0.844) in the
training and validation cohorts, respectively. The prognostic
nomogram for predicting OS included WHO grade and predictive
molecular groups, achieving a C-index of 0.806 (95% CI:
0.740–0.872) and 0.735 (95% CI: 0.621–0.848) in the training and
validation cohorts, respectively. The nomograms and calibration
curves for predicting PFS and OS are shown in Fig. 2. The
Hosmer–Lemeshow test yielded a nonsignificant statistic (all
P values > 0.05 for PFS and OS), which suggested a good
agreement between the prediction and actual observation. The
hazard ratios (HRs) and 95%CI for WHO grade and the predictive
molecular groups were shown in Supplementary Note 5.

DISCUSSION
We constructed MR-based radiomic models for predicting the
status of IDH mutation, 1p/19q codeletion, and TERT promoter
mutation prior to surgery in gliomas. These machine learning
models could stratify most patients into molecular groups, with

significantly different PFS and OS. The model-predicted molecular
groups were comparable to the actual molecular groups in
predicting PFS and OS in both grade II/III and IV gliomas. The
prognostic nomograms could individually predict PFS and OS with
good discrimination and calibration abilities.
Multiple studies have focused on the tasks of separating IDH

mutant from IDH wildtype before surgery in gliomas utilizing
multimodal MR images and associating the radiophenotypic
characteristics to the mutation27–37. Extraction of multiple imaging
features such as radiomic features and/or deep features, and
pooling them into a multivariate framework may provide more
predictive power than a single feature of interest. Previous studies
on large and small subjects (tens to hundreds) using noninvasive
MRI-based models have demonstrated that IDH genotype can be
identified with mean accuracies of over 80%27–37. The majority of
the studies to date have mainly used online open-source data,
such as The Cancer Imaging Archive and The Cancer Genome
Atlas. Our real-world data for the prediction of IDH status achieved
high accuracy. A consensus from previous studies shows that the
attributes computed from cT1WI and T2-fluid attenuated inversion
recovery (T2-FLAIR) have been highly distinctive of IDH mutation
than the ones computed from T1-weighted imaging (T1WI) and

Fig. 1 Radiomic heatmap. a Unsupervised clustering of patients with gliomas is shown on the x-axis, and radiomic features selected by
LASSO for prediction of IDH mutation, 1p/19q codeletion, and TERT promoter mutation status are shown on the y-axis, revealing clusters of
patients with similar radiomic expression patterns. b Correspondence of radiomic feature groups with the clustered expression patterns.
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T2-weighted imaging (T2WI) MRI27–37, which were in line with our
study. Ren et al.32 found that the histogram features on the ADC
map obtained by diffusion-weighted imaging (DWI) were the
most powerful factor for discriminating IDH status. However, a
biological understanding of these findings remains to be
elucidated. In this current study, ADC features were also a
significant component of IDH status prediction. Tan et al.30

showed that MRI-based radiomics for the prediction of IDH status
performed much better than the clinico-radiological model.
Similar findings were also illustrated by our study in which age
and tumor location were associated with IDH mutation but the
addition of both failed to improve the accuracy of
radiomic model.
Variety of radiomic features such as shape, size, histogram,

texture, and wavelet have been analyzed for 1p/19q status
prediction. Out of these, texture features carried a greater
discriminative power when compared with other types of
features43–46. Our study also indicated that textural features were
the most crucial features for identifying 1p/19q co-deletion status.
To date, the value of MRI-based radiomics for 1p/19q status
prediction has not been fully explored. Our study showed that for
identifying 1p/19q, feature sets derived from cT1WI had
significantly higher predictive power than those from other MR
sequences. Age and tumor location played a vital role in 1p/19q
discrimination53,54 However, Han Y et al.43 found that integration
of clinical variables into MRI-based radiomic model could not
improve the prediction, which was supported by our study.
Very few studies have applied non-invasive MRI-based models

to predict TERT promoter mutation is lower-grade or high-grade
gliomas. Tian et al.49 developed a radiomic model integrating
radiomic signature, age, necrotic volume percentage, Cho/Cr, and
Lac to evaluate TERT status in high-grade gliomas. Tumor location
was not a useful predictor for TERT status49. Jiang et al.47

concluded that MRI-based tumoral radiomic signature could
evaluate TERT status in low-grade gliomas regardless of IDH
status. However, the inclusion of peri-tumoral features did not
improve the predictive performance47. Interestingly, our study
observed similar findings. All radiomic features selected for
identifying TERT status were tumor-related, which differed from
the feature spectrum of IDH and 1p/19q status. This may partly
explain why the accuracy of radiomic model for TERT was lower
than the models for IDH and 1p/19q. Further studies are
warranted to explore the role of MRI-based noninvasive models
in delineating TERT status, for instance, deep learning.
Until now, only several studies predicted molecular subtypes of

gliomas using radiomic approach. The analysis of molecular
groups in gliomas will enable a more comprehensive under-
standing of imaging-to-molecular associations. Arita H. et al.48

identified three molecular subtypes (IDH-mutation, IDH-mutation
with TERT promoter mutation, and IDH-wild type) in grade II/III
gliomas, with an accuracy of 0.56. Similarly, Lu et al.35 built a
three-level binary classification model to predict five molecular
subtypes based on histology, IDH, and 1p/19q, achieving an
accuracy of 81.8%. By discriminating the status of three tumor
genetic markers, we obtained the molecular groups for indivi-
duals. The results of this study showed that the predictive
molecular groups may have the potential to surrogate pathology-
proven molecular groups and could serve as an independent
prognostic factor for PFS and OS of gliomas. The prognostic
model combing WHO grade and the predictive molecular groups
yielded a favorable C-index. Considering the features of impor-
tance have been highly dependent on the grade of the tumor, we
performed subgroup analyses by grade on radiomic and
prognostic models. The results showed that the prognostic value
of model-predicted molecular groups was comparable in both
lower-grade and higher-grade gliomas. However, the predictive
performance of radiomic and prognostic models was better in
lower-grade than that in higher-grade gliomas.Ta
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This study also has some limitations in addition to those due to
its retrospective nature. Firstly, this study was performed in a
single center because TERT promoter mutation status was not
detected in routine clinical practice. We tested TERT status for the
purpose of research. We would like to use data of gliomas from
different centers that are publicly accessible in open-source
datasets to perform an external validation, but the MR sequences,
genetic, and survival data were insufficient. Secondly, the
inclusion of advanced MR imaging parameters in addition to the
conventional modalities should be considered to construct more
comprehensive functional and metabolic radiomics in the genetic
characterization of glioma55. However, these advanced imaging
techniques are not routinely used in a clinical settings but usually
used for the purpose of research. Thirdly, post-operative MR
images were not available in ~90% of patients. The change in the
radiomic features pre- and post-operation may correlate better to
the clinicopathologic data and provide additional prognostic
information to the models. Fourthly, our study included images
acquired from different MR systems with various acquisition
parameters that may affect the reliability and reproducibility of
radiomic features. Hence, we performed image data preprocessing
to facilitate quantification analysis and to obtain more repeatable

and comparable results. Furthermore, we carried out strict feature
selection and in particular, excluded the radiomic features with
significant variation among different machines and parameters.
Finally, we did not separate the tumor into enhancing and
necrotic regions because we included 68.9% of lower-grade
gliomas.
Conclusively, our study demonstrates that three radiomic

models based on pre-operative MR data for noninvasive,
individualized prediction of IDH mutation, 1p/19q codeletion,
and TERT promoter mutation in gliomas patients regardless of
grades. Our radiomic models could successfully stratify most
patients into five molecular groups, with similar prognostic
performance with pathology-confirmed molecular groups. We
developed prognostic nomograms that can be used in clinical
settings to individually predict the PFS and OS of glioma patients.
Our radiomic models can be easily integrated into the clinical
setting, as it is a post-processing approach that does not require
changes the current brain MR-imaging protocol and will allows
clinicians to make more informed decisions for better patient care.
This work may benefit the patients’ diagnosis, treatment planning,
and prognosis evaluation without increasing health care expenses.

Table 2. Prognostic performance of the predictive and actual molecular groups for predicting PFS and OS.

WHO grade Dataset Predictive
molecular groups
PFS C-index (95% CI)

Actual
molecular groups
PFS C-index (95% CI)

P value Predictive
molecular groups
OS C-index (95% CI)

Actual
molecular groups
OS C-index (95% CI)

P value

II–IV Training 0.757 (0.724–0.791) 0.745 (0.709–0.781) 0.946 0.759 (0.720–0.798) 0.764 (0.730–0.800) 0.911

Validation 0.709 (0.656–0.763) 0.722 (0.666–0.778) 0.241 0.703 (0.644–0.762) 0.751 (0.696–0.806) 0.359

II/III Training 0.743 (0.676–0.810) 0.739 (0.678–0.799) 0.918 0.752 (0.681–0.823) 0.778 (0.722–0.835) 0.540

Validation 0.707 (0.624–0.790) 0.638 (0.538–0.737) 0.254 0.703 (0.611–0.796) 0.715 (0.622–0.810) 0.819

IV Training 0.530 (0.476–0.585) 0.538 (0.468–0.608) 0.879 0.534 (0.481–0.588) 0.500 (0.431–0.568) 0.296

Validation 0.542 (0.456–0.628) 0.528 (0.430–0.626) 0.824 0.542 (0.459–0.626) 0.522 (0.422–0.621) 0.742

WHO World Health Organization, PFS progression-free survival, OS overall survival, CI confidence interval.

Fig. 2 The nomograms and calibration curves. (a) Combined nomogram incorporating the predictive molecular groups and WHO grade for
predicting PFS; (b-c) Calibration curves of the nomogram (a) in the training and validation datasets, respectively; (d) Combined nomogram
incorporating the predictive molecular groups and WHO grade for predicting OS; (e-f) Calibration curves of the nomogram (d) in the training
and validation datasets, respectively.
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METHODS
Patient cohort
The institutional review board in all participating centers approved this
retrospective study and waived the need to obtain written consent. We
identified 656 consecutive patients with newly diagnosed gliomas at the
neurosurgery department between January 1, 2011 and October 1, 2016.
Inclusion criteria were as follows: (a) adult patients who had a
histopathological diagnosis of WHO grade II–IV gliomas; (b) patients had
no history of biopsy or surgery for a brain tumor; (c) baseline
multiparametric MRI inclusive of T1WI, cT1WI, T2WI, T2-FLAIR, and DWI
performed prior to surgery; (d) patients were treated by surgical resection;
and (e) patients had known molecular alteration status, including IDH
mutation, 1p/19q codeletion, and TERT promoter mutation. Patients were
excluded if (a) incomplete or absent sequences in the baseline MRI (n=
167); (b) inadequate MR imaging quality due to substantial motion or
susceptibility artifacts (n= 23), or (c) patients were lost to follow-up after
surgery (n= 109). Finally, 357 patients were included and they were
randomly divided into the training cohort (n= 238) and validation cohort
(n= 119) at a ratio of 2:1. Supplementary Fig. 1 illustrates the inclusion and
exclusion criteria. The clinical, imaging, and histopathological data
included age, sex, Karnofsky performance status (KPS) score, tumor
location, tumor laterality, histologic type, WHO grade, the extent of
resection, molecular markers, and treatment regimens. Formalin-fixed,
paraffin-embedded tissues for IDH, 1p/19q, and TERT detection were
available in these cases. Mutational hotspots in IDH1, IDH2, and the TERT
promoter were detected by Sanger sequencing. Chromosome 1p/19q
status was evaluated by fluorescence in situ hybridization. Detailed
protocols of IDH, 1p/19q, and TERT detection have been previously
described56. Supplementary Fig. 2 presents the representative images of
identifying IDH mutation, 1p/19q codeletion, and TERT promoter mutation.

Radiomic pipeline
The radiomic process mainly comprises: (a) image pre-processing; (b)
tumor and edema image segmentation; (c) feature extraction; (d) feature
selection; and (e) radiomic analysis (Fig. 3).

MR imaging and preprocessing
All patients underwent MRI examinations within one week prior to surgery.
MR images were acquired in the routine clinical workup using two 1.5 T MR
scanners including Achieva (Philips Medical Systems, Best, Netherlands)
and Magnetom Avanto (Siemens Healthcare, Erlangen, Germany) as well as
three 3.0 T MR systems, including Discovery MR750 (GE Healthcare,
Milwaukee, WI, USA), Magnetom Skyra (Siemens Healthcare, Erlangen,
Germany) and Magnetom Verio (Siemens Healthcare, Erlangen, Germany).
The axial imaging sequences included T1WI, cT1WI, T2WI, T2-FLAIR, and

DWI. ADC map was obtained by DWI (0 and 1000 s/mm2). The details of the
MR protocol are shown in Supplementary Table 1.
Firstly, all pre-operative multimodal MR images were re-oriented to the

right-anterior-inferior coordinate system using SwapDimensions function
in the Functional Magnetic Resonance Imaging of the Brain (FMRIB)
software library (FSL; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL). Then the re-
oriented MR images were registered to the re-oriented cT1WI MR images
using the linear image registration tool57,58 with a mutual information
algorithm, a Tri-Linear interpolation method, and a six degree of freedom
transformation. Finally, the registered MR images were resampled to a
uniform voxel size of 1 × 1 × 1mm across all patients for radiomics
construction using linear interpolation in SimpleITK (https://www.simpleitk.
org).

MR images segmentation
The three-dimensional segmentation was conducted by an open-source
software ITK-SNAP (www.itk-snap.org). The region of interest (ROI) of
tumor region including contrast enhancing portion (i.e., active enhancing
tumor) and non-enhancing central tumor component (i.e., necrosis, if
existed) was delineated on cT1WI. The edema portion was segmented
using the T2-FLAIR sequence; this region was assessed based on the
peritumoral hyperintensity seen on the T2-FLAIR sequence. The ROIs
delineated on cT1WI and T2-FLAIR images were automatically transferred
to the identical site on the T1WI, T2WI, and ADC images. The image
segmentation was performed by a neuroradiologist (with 10 years of
experience in neuro-radiology) and then validated by an experienced
neuroradiologist (with 20 years of experience in neuro-radiology).
Discrepancies between the two neuroradiologists were resolved by
consensus. Neuroradiologists were blinded to the patients’ clinical and
genetic information.

Radiomic feature extraction
Prior to radiomic feature extraction, the MR images were subjected to
signal intensity normalization by centering them at the mean with
standard deviation (SD). Radiomic features were then extracted by using
Pyradiomics 2.0.0, an open-source Python package platform (http://www.
radiomics.io/pyradiomics.html). A total of 873 tumor features and 873
edema features were then extracted from T1WI, cT1WI, T2WI, T2-FLAIR, and
ADC images, respectively. These features could be grouped as follows: (i)
histogram-based features (n= 18), (ii) shape and size-based features (n=
13), (iii) textural features (n= 68), (iv) wavelet-based features (n= 430), (v)
Laplacian of Gaussian (LoG) filter-based features (n= 258), and vi) features
from gradient magnitude of the given MRI volumes (n= 86). Supplemen-
tary Note 1 provides the descriptions of image normalization and radiomic
features.

histogram features

textural features

IV) Feature selec�onIII) Feature extrac�on V) Analysis

shape and size

Wavelet
Laplacian of Gaussian
Gradient

tumor edema

molecular markers

machine learning 
lasso

Lasso
LR
rbf-SVM
Linear SVM
DT
RF

clinical data

survival analysis

radiomic features

I) Image preprocessing II) Image segmenta�on

T1WI cT1WI

T2WI T2-FLAIR

ADC

T1WI cT1WI

T2WI T2-FLAIR

ADC

Fig. 3 Schematic diagram of the proposed radiomic workflow for molecular subtyping and survival prediction. The study design contains
five main phases: image preprocessing, image segmentation, feature extraction, feature selection, and radiomic analysis.
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Machine learning-based single-layered radiomic signatures
High-dimensional data usually contain a majority of irrelevant, redundant,
and noisy features, which could result in the curse of dimensionality and
model overfitting. Therefore, feature selection should be performed to
construct better generalization models when machine learning algorithms
were used on high-dimensional data. Before feature selection, all features
were normalized using a z-score approach.
A five-step feature selection process was employed by using several

dimensionality reduction techniques. First step, the effect of different
machine and acquisition parameters on the robustness of radiomic
features was determined using the Kruskal–Wallis test, and those features
that showed significant variation were excluded. Second step, Variance-
Threshold was applied to exclude the features with low variance (threshold
of 1 for IDH and 1p/19q, and threshold of 0.001 for TERT). Third step,
Mann–Whitney U test was applied to remove features with no significant
difference between the two groups (P ≥ 0.05). Fourth step, Pearson
correction (PCC) analysis was used to assess the correlation between
feature pairs and one feature was randomly excluded from each pair with a
correlation coefficient > 0.9. Finally, the least absolute shrinkage and
selection operator (LASSO) regression with 10-fold cross-validation was
used to select the informative features with non-zero coefficients. After
that, we generated five single-layered radiomic signatures based on T1WI,
T2WI, T2-FLAIR, cT1WI, and ADC separately using Bayesian-regularization
neural networks (BRNN). To optimize the parameters of this classifier
(epoch, neuron, and mu), 10-fold cross-validation was done in the training
cohort, and the optimal set of parameters for each of the classifiers was
determined by the average classification performance of the classifiers in
the 10 folds. The hyper-parameters of BRNN and results of 10-fold cross-
validation were reported in Supplementary Note 2.

Construction of image fusion model for predicting the
molecular groups
We used multivariate logistic regression based on the stepwise bidirec-
tional selection method to select the significant single-layered radiomic
signatures and then developed image fusion models for each glioma
marker prediction. Bayesian information criterion was used as the stopping
rule. We also applied multivariate logistic analysis based on preoperative
clinical data (age, sex, KPS score, tumor laterality, and tumor location) to
build three clinical models. Predicted IDH mutation, 1p/19q codeletion,
TERT promoter mutation is used to classify gliomas into five groups,
mimicking the procedure to obtain the molecular groups.

Prognostic performance of the predictive molecular groups
The primary outcomes were PFS and OS. PFS was defined as the interval
between the date of surgery and either disease progression or death,
censored at the last follow-up visit. Disease progression was diagnosed
according to the Response Assessment in Neuro-Oncology working group
criteria59. OS was defined as the interval from the date of initial diagnosis
(date of first surgery) until the date of death, censored at the last follow-up
visit. We used Kaplan–Meier survival curves with a log-rank test to compare
the PFS and OS of predictive molecular groups. Also, we compared the
prognostic performance (C-index) of model-predicted molecular groups
with the actual molecular groups.

Prognostic nomogram building
The candidate prognostic indicators included age, sex, KPS score, tumor
location, laterality, histologic type, WHO grade, the extent of resection,
radiotherapy, chemotherapy regimen, and the predictive molecular
groups. The independent prognostic factors for PFS and OS were identified
using a univariate and multivariate Cox regression analysis in the training
cohort. Variables with P < 0.05 in the univariate Cox analysis that entered
into multivariate Cox analysis. Those independent variables (P < 0.05) from
the multivariate analysis were used to build a nomogram using the
multivariate Cox proportional hazard model. The nomogram was
independently verified in the validation cohort.

Statistical analysis
As for continuous variables, data were expressed as mean ± SD, while for
categorical variables, data were expressed as counts and percentages (n,
%). Continuous and categorical variables were compared by t tests,
Mann–Whitney U test, Chi-square, if appropriate. Radiomic feature
extraction and selection were conducted by using Python 3.6.0 and

model building was implemented by using R software (version 3.5.0). The
functions within the scikit-learn package were as follows: ‘Lasso’ for LASSO,
‘brnn’ for BRNN, ‘rms’ for logistic regression analysis, Cox regression
analysis, nomogram, and calibration curve, ‘ResourceSelection’ for
Hosmer–Lemeshow test, ‘survminer’ for Kaplan–Meier survival curve, and
‘survival’ for C-index. To assess the association of MRI radiomic features
with IDH mutation, 1p/19q codeletion, and TERT promoter mutation status,
a heatmap analysis with unsupervised hierarchical clustering, one of the
radiomic approaches, was performed using ‘pheatmap’ package. The AUC,
accuracy, sensitivity, specificity, NPV, and PPV were calculated for
prediction models and C-index was used for prognostic models. The
95% CI was obtained by 1000 stratified bootstrap replicates. The
performance of prediction models was compared using the Delong test.
The comparison of prognostic models using a package of ‘compared. A
two-tailed P < 0.05 was considered statistically significant.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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