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Comprehensive molecular profiling of pulmonary pleomorphic
carcinoma
Masaaki Nagano1,2, Shinji Kohsaka 1✉, Takuo Hayashi3, Toshihide Ueno1, Shinya Kojima1, Aya Shinozaki-Ushiku4, Shigeki Morita5,
Masumi Tsuda 6, Shinya Tanaka 6, Toshiya Shinohara7, Yuko Omori7, Fumiko Sugaya8, Hiroaki Kato9, Yoshiaki Narita9, Jun Nakajima2,
Kenji Suzuki10, Kazuya Takamochi10 and Hiroyuki Mano 1✉

Information regarding the molecular features of pulmonary pleomorphic carcinoma (PPC) is insufficient. Here, we performed next-
generation sequencing to determine the genomic and transcriptomic profiles of PPC. We sequenced the DNAs and RNAs of
78 specimens from 52 patients with PPC. We analyzed 15 PPC cases to identify intratumoral differences in gene alterations, tumor
mutation burden (TMB), RNA expression, and PD-L1 expression between epithelial and sarcomatoid components. The genomic
alterations of six cases of primary tumors and corresponding metastatic tumors were analyzed. KRAS mutations (27%) were the
most common driver mutations, followed by EGFR (8%), and MET (8%) mutations. Epithelial and sarcomatoid components shared
activating driver mutations, and there were no significant differences in CD274 expression or TMB between the two components.
However, PD-L1 was highly expressed in the sarcomatoid component of several cases compared with the epithelial component.
Primary and metastatic tumors shared oncogenic mutations among genes such as KRAS and TP53, and additional alterations
including NOTCH4 mutations were specifically identified in the metastatic regions. Our data suggest that therapies targeting
activating driver mutations may be effective for patients with PPC and that immune checkpoint inhibitors of PPC may be
recommended after careful assessment of PD-L1 expression in each epithelial and sarcomatoid component.
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INTRODUCTION
Pulmonary pleomorphic carcinoma (PPC) is a rare subtype of non-
small cell lung cancer (NSCLC) that accounts for 0.4–1.6% of
malignant lung tumors1,2. According to the 4th edition of the
World Health Organization Classification of Lung Tumors3, PPC is
defined as a poorly differentiated NSCLC comprising ≥10% spindle
or giant cells. These tumors, which predominantly arise in men
who heavily smoke, are characterized by a poor response to
cytotoxic chemotherapy and a worse outcome than other types of
NSCLC4,5. Two studies identified EGFR-activating mutations in
approximately 20% of PPCs6,7, some of which exhibit a partial
response to gefitinib8. However, insufficient information is
available regarding the molecular features of PPC and effective
therapeutic targets.
Many PPCs comprise an admixture of sarcomatoid (spindle or

giant cell elements or both) and epithelial components (adeno-
carcinoma, squamous cell carcinoma, or undifferentiated NSCLC).
Previous studies indicated that genomic intratumoral heteroge-
neity in cancers is one of the leading determinants of treatment
failure and drug resistance9,10. Intratumoral heterogeneity in large-
cell neuroendocrine carcinoma (LCNEC) combined with NSCLC is
characterized by a relatively high (71%) median concordance rate
of genomic mutations between these components11. To our
knowledge, however, published studies do not comprehensively
define the intratumor heterogeneity of PPC.
Immunotherapies targeting the programmed death-1 (PD-1)/PD

ligand 1 (PD-L1) axis yielded promising results for patients with

NSCLC, and several studies suggest that PD-L1 expression may
predict the response to this type of immunotherapy12,13.
Interestingly, >90% of patients with PPC have PD-L1-positive
disease, supporting the conclusion that immunotherapy may
serve as a potential option for this patient population14. However,
this study14 demonstrates higher levels of PD-L1 in sarcomatoid vs
epithelial components, and the potential effect of this intratu-
moral difference in PD-L1 expression on treatment efficacy is
unknown. Further, a high tumor mutation burden (TMB) serves as
a biomarker of the tumor response to PD-1/PD-L1 targeted-
immunotherapy15,16. However, little is known about the effect of
the TMB in PPC.
Here we performed next-generation sequencing to analyze the

molecular profiles of PPCs. For certain PPC samples, we extracted
genomic DNA and RNA from the sarcomatoid and epithelial
components and compared them to detect intratumoral differ-
ences in gene mutations, RNA expression, and PD-L1 expression.
We further compared the gene alterations in several cases
between primary tumors and the corresponding metastatic
tumors.

RESULTS
Patients’ characteristics
The demographic features of 52 patients with PPC are described in
Table 1. Their median age at the time of sample collection was 68
years (range, 36‒84 years), 43 (83%) were male, and 47 (90%) were
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smokers. The median primary lesion diameter was 4.6 cm (range,
1.5–10.3 cm). Their pathological stages were as follows: stage I, n
= 15 (29%); stage II, n= 17 (33%); stage III, n= 15 (29%); and stage
IV, n= 5 (10%). Forty-nine patients underwent surgical resection,
and 44 (90%) underwent lobectomy.

Genomic alterations in PPC
The study is summarized in Supplementary Fig. 1. From 4
hospitals, 78 specimens were collected from 52 consecutive
patients with PPC in this study. Four FFPE specimens from 3

patients (all were male and current smokers) were excluded from
the DNA analysis because of low quality, and 74 specimens from
49 patients were subjected to DNA sequence analyses to detect
genomic alterations. Among the 74 specimens, whole-exome
sequencing of 12 fresh-frozen tissue samples from 12 patients and
target-capture sequencing of 62 FFPE samples from 37 patients
were performed. Sixty-six samples were from the primary tumors,
and the other eight samples were obtained from the metastatic
regions. The genomic DNAs of the sarcomatoid and epithelial
components of tumors of 34 samples of 17 patients were
individually analyzed (Fig. 1a).
An overview of the mutations in the primary lesions is

presented in Fig. 1b. We placed emphasis on determining the
genomic alterations associated with lung cancer detected in
previous comprehensive genomic studies17. TP53 was the most
frequently mutated gene, detected in 35 (71%) patients. KRAS
mutations (13 patients, 27%) were the most prevalent oncogenic
mutations (G12A—2 cases, G12C—5 cases, G12D—1 case, G12R—
1 case, G12S—1 case, and G12V—3 cases), followed by EGFR (8%),
HRAS (4%), MAP2K1 (4%), PIK3CA (4%), NRAS (2%), and BRAF (2%).
Other recurrent mutations were identified in PTPRD (22%), ARID2
(14%), and NF1 (12%). Comprehensive mutation list is shown in
Supplementary Data 1.
RNA sequencing of the remaining samples identified an EML4-

ALK fusion in one patient (2%) and MET exon 14 skipping in four
(8%) (Fig. 1b). In the sample harboring the EML4-ALK fusion,
Sanger sequencing of the EML4-ALK cDNA revealed that exon 13
of EML4 was ligated to exon 20 of ALK with an insertion of 24 base
pairs corresponding to ALK intron 19 and six base pairs of
unknown origin (Supplementary Fig. 2a). This fusion produces an
in-frame transcript with strong oncogenic transforming potential
indicated by the focus formation assay (Supplementary Fig. 2b).
We further searched for genomic alterations using the Memorial

Sloan Kettering-Cancer Center (MSKCC) cohort data18 (http://www.
cbioportal.org) (Supplementary Fig. 3). Among 17 cases of PPC,
TP53 and KRAS mutations were detected in 10 (59%) and 5 (29%)
samples, respectively. These mutation rates were similar to the
results of our cohort.

Comparison of genomic alterations between epithelial and
sarcomatoid components
The genomic alterations in epithelial and sarcomatoid compo-
nents were compared in 17 PPC cases. The mean number of
shared nonsynonymous mutations detected in both components
was 5.5 (range, 0‒20), whereas the mean numbers of private
nonsynonymous mutations (detected in one component) were 2.7
(range, 0‒9) and 1.8 (range: 0‒7) in epithelial and sarcomatoid
components, respectively (Fig. 2a). The recurrent nonsynonymous
mutations are listed in Fig. 2b. Notably, oncogenic KRAS and EGFR
mutations were shared by both components. Mutations of ARID2,
ASPM, NF1, and PIK3CG were detected in the sarcomatoid
components, while EPHB1 mutations were observed only in the
epithelial components. A phylogenetic tree of each tumor was
generated using the LICHeE method (Supplementary Fig. 4)19.

Comparison of genomic alterations between primary and the
corresponding metastatic tumors
We determined the differences in genomic alterations between
primary and the metastatic tumors of six cases. Notably, a higher
number of nonsynonymous mutations were observed in the
metastatic tumors (mean, 17.3; range, 3‒28) compared with those
in primary tumors (mean, 11.5; range, 1‒33) (Fig. 2c). The
oncogenic mutation in KRAS, NRAS, or MAP2K1 was identified in
one case each, which was detected in the primary and metastatic
region. TP53mutations were detected in both tumors of five cases.
PDE4DIP, ROBO1, and NOTCH4 mutations were observed only in
metastatic tumors, whereas mutations specific to primary tumors

Table 1. Demographic features of the 52 patients with pulmonary
pleomorphic carcinoma.

Feature No. of patients (N= 52)

Median age, years (range) 68 (36–84)

Sex, N (%)

Male 43 (83)

Female 9 (17)

Smoking status, N (%)

Current 31 (60)

Former 16 (31)

Never 3 (5.8)

Unknown 2 (3.8)

Tumor size (cm), median (range) 4.6 (1.5–10.3)

T-stage, N (%)

1 8 (15)

2 18 (35)

3 17 (33)

4 9 (17)

N-stage, N (%)

0 30 (58)

1 11 (21)

2 9 (17)

3 2 (3.8)

M-stage, N (%)

0 47 (90)

1 5 (9.6)

Pathologic stage, N (%)

I 15 (29)

II 17 (33)

III 15 (29)

IV 5 (9.6)

Surgical resection, N (%) 49 (94)

wedge 1 (2.0)

segmentectomy 1 (2.0)

lobectomy 44 (90)

pneumonectomy 3 (6.1)

Recurrence after surgery, N (%)

No persistence or recurrence 33 (63)

Recurrence after surgery 14 (27)

Survival status at last census, N (%)

Alive, no evidence of disease 26 (50)

Alive with disease 1 (1.9)

Died of disease 17 (33)

Died of other cause 8 (15)

Follow-up time in months, median (range) 29 (0.5–122)
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were undetectable (Fig. 2d). Phylogenetic trees of these six cases
were generated using the LICHeE method (Supplementary Fig. 5).

RNA expression profiles in PPC, pathological stages I and II
Even patients with early-stage PPC face a significant risk of
recurrence after undergoing complete surgical resection1,2. There-
fore, reliable prognostic biomarkers are desirable to identify such
patients. For this purpose, association between the RNA expres-
sion of each gene and recurrence-free survival (RFS) of patients
with pathological stage I or II PPC who underwent complete
surgical resection was assessed using a univariate Cox propor-
tional hazards regression model. Among the 32 patients with
stage I or II in our cohort, 25 patients were analyzed using FFPE
samples and the others were analyzed using fresh frozen samples.
Because the difference in starting material can cause difference in
the representation of RNA expression, survival analysis was
performed using only FFPE samples from 25 patients. As a result,
we found that the expression of 15 genes significantly correlated
with RFS (q < 0.05, Fig. 3a). The patients were then divided into
high and low groups according to the average expression level of
each gene, and pairwise comparisons of RFS were performed
using the log-rank test. High expression of CAPN14, LIN7A, LNX1, or
PDGFRA significantly correlated with shorter RFS (p < 0.05, Fig. 3b).
In contrast, high expression of the other 11 genes correlated with
longer RFS (Supplementary Fig. 6).

Comparison of RNA levels between epithelial and sarcomatoid
components
We next compared the RNA levels of 30 FFPE specimens from
each of epithelial and sarcomatoid components of 15 cases.
Hierarchical clustering using the most variable 100 genes revealed
that the epithelial and sarcomatoid components of respective
cases were clustered next to each other, suggesting that the
differences among the patients were greater than those between
the epithelial and sarcomatoid components (Fig. 4a). Gene Set
Enrichment Analysis (GSEA) of the gene sets “SHEDDEN_LUNG_-
CANCER_POOR_SURVIVAL_A6” and “SHEDDEN_LUNG_CANCER_-
GOOD_SURVIVAL_A4” revealed that they were enriched in the
sarcomatoid or epithelial component, respectively (Fig. 4b). GSEA
further identified specific and significant enrichment of gene sets
related to the cell cycle in the sarcomatoid group. When we
searched for biomarkers that distinguished between epithelial and
sarcomatoid components using the Wald test, we found that
ACE2, AQP3, BCAS1, BNIPL, FHDC1, MUC21, PARM1, PGC, SCGB3A2,
and SFTA) were significantly expressed only in the epithelial group
(q < 0.05, Fig. 4c).

PD-L1 expression and TMB
When we used IHC to determine the levels of PD-L1 among 56
FFPE specimens compared with those of CD274 mRNA from the
RNA-seq dataset, we found a significant correlation with the latter
(Pearson correlation coefficient r= 0.63; p < 0.001) (Fig. 5a). Using
the cut-off thresholds 1% and 50%, according to previous

a

b
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Fig. 1 Representative images and genomic alterations of pulmonary pleomorphic carcinomas. a This case comprises adenocarcinoma
(green area) and sarcomatoid (yellow area) components (hematoxylin and eosin staining). Magnified images of the epithelial (E) and
sarcomatoid (S) components are shown. b Mutations in KRAS were detected in 13 patients (27%). Other activating mutations were detected in
EGFR (8%), HRAS (4%), NRAS (2%), BRAF (2%), and MAP2K1 (4%). MET exon 14 skipping (4%) and EML4-ALK fusion (2%) were detected using RNA
sequencing. These driver mutations were mutually exclusive.
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studies20,21, we found that the level of CD274 mRNA was
significantly upregulated in the high PD-L1 expression group
(≥50%) (p < 0.05, Fig. 5b). There was not a significant correlation
between the TMB and PD-L1 level in the same specimens (r=
−0.21; p= 0.13) (Supplementary Fig. 7).
The levels of CD274 mRNA and PD-L1, as well as the TMB, were

compared between the epithelial and sarcomatoid components of
15 PPC cases. There was a significant correlation between the level
of CD274mRNA or the TMB score between the two components (r
= 0.95; p < 0.001 or r= 0.82; p < 0.001, respectively) (Fig. 5c and d).
In contrast, several cases exhibited higher levels of PD-L1 in the
sarcomatoid components compared with those in the epithelial
components (Fig. 5e and f), indicating that post-transcriptional
processes may regulate the levels of PD-L1. We therefore searched
for genes whose expression levels correlated with those of PD-L1.
The strongest positive correlation was observed for the levels of
CD274 mRNA, supporting the validity of this approach. The
strongest negative correlation was observed for the gene
encoding Pellino E3 ubiquitin protein ligase family member 2
(PELI2, r= −0.64) (Fig. 5g). Notably, the correlation coefficient of
the association of PELI2 and PD-L1 was stronger than that
between CD274 mRNA and PD-L1 (absolute r= 0.82 vs 0.60) when
the analysis separately considered the epithelial and sarcomatoid
components.

DISCUSSION
To the best of our knowledge, this is the first relatively large-scale
(n= 49) study to conduct a comprehensive evaluation of the
molecular profiles of PPCs. The macrodissection analysis of the
epithelial and sarcomatoid components of PPCs found that both
components harbored similar genomic alterations, including
activating driver mutations. Further, the expression level of PD-

L1 was more frequently higher in the sarcomatoid components,
and the levels of CD274 mRNA and the TMB were highly
concordant between the two components.
Here, we show that 57% (28/49) of the PPC samples harbored

activating mutations, which is consistent with the results of other
studies17. Mutations within members of the RAS gene family were
particularly frequent (16/49, 33%), suggesting that therapies
targeting the RAS pathway may be effective for PPC. For example,
ongoing clinical trials targeting KRAS G12 mutations are showing
promise for patients with NSCLC22. Further investigations of the
abilities of RAS-targeted inhibitors to improve the treatment
outcomes of patients with PPC are required.
In the present study, our cohort included four patients (8%) with

MET exon 14 skipping. This frequency was higher than that
observed in studies of patients with lung adenocarcinoma
(0.9–2.2%)23,24, although it was consistent with other reports
(3–22%) on PPC25,26. Capmatinib and tepotinib are selective
inhibitors of the receptor MET, which was recently approved by
the United States Food and Drug Administration (FDA) for patients
with NSCLC with MET exon 14 skipping; therefore, these drugs
would be promising for PPC with MET exon 14 skipping.
Our present comparison of the epithelial and sarcomatoid

components of 17 patients revealed that 11 (65%) carried the
same driver mutations in both components. These patients may
benefit from therapies specifically targeting EGFR, MET, and BRAF
mutations. Moreover, TP53 and KEAP1 alterations were detected in
both components of numerous cases, suggesting that these
alterations occurred early during tumor progression. These results
are consistent with studies that analyzed intratumoral hetero-
geneity of patients with NSCLC27,28.
In contrast, private alterations, which likely arose during tumor

progression, were identified in 16 patients (94%). Further, private
mutations in ARID2, ASPM, NF1, and PIK3CG were detected in the

Fig. 2 Comparison of genomic alterations according to the intratumoral component and primary or metastatic tissue. a Bar chart of the
average numbers of shared and unshared nonsynonymous mutations between the epithelial and sarcomatoid components. b Individual
repeatedly detected mutations in each component. Activating mutations were shared between components, while ARID2, ASPM, NF1, and
PIK3CG mutations were only detected in sarcomatoid components. The number of patients who harbor the mutations of indicated genes is
shown in parentheses. c Average numbers of nonsynonymous mutations in primary and metastatic tumors, revealing more in metastatic
tumors relative to primary tumors. d Individual mutations detected in primary and metastatic tumors. The number of patients who harbor the
mutations of indicated genes is shown in parentheses. Error bars, standard error of the mean.
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sarcomatoid components of multiple cases. ARID2, NF1, and
PIK3CG mutations are associated with poor tumor differentiation
and the epithelial–mesenchymal transition29–31. Thus, private
alterations may contribute to the transition to a sarcomatoid
phenotype associated with poor prognosis. Moreover, the private
alterations in ASPM and ARID2, whose functions are to regulate the
cell cycle31,32, may partly explain the enrichment of a gene set
related to the cell cycle in the sarcomatoid component.
Primary and metastatic tumors exhibit a high concordance of

genomic alterations, including oncogenic mutations of KRAS and
TP53. Two studies of various primary tumors show that matched
metastatic regions exhibit a high degree of similarity with respect
to genomic alterations33,34. Notably, several alterations occur only
in the metastatic tumors of PPC, which may be acquired during
disease progression. For example, NOTCH4 mutations promote the
metastasis of melanoma cells35. The identification of the molecular
mechanism of metastasis may lead to the prevention and
treatment of metastasis.
The expression of multiple genes may be related to a high risk

of recurrence after curative surgery, including patients with early-
stage PPC. Here we show that the strong expression of CAPN14,
LIN7A, LNX1, and PDGFRA was significantly associated with poor
prognosis after surgery. LNX1, which is strongly expressed in soft
tissue sarcoma36, contributes to tumor growth by destabilizing
p5337. Moreover, strong expression of PDGFRA may serve a
significant indicator of poor disease-specific survival. PDGFRA

regulates mesenchymal cell activity in the tumor microenviron-
ment through mechanisms including vascular reorganization,
proliferation, and pericyte recruitment38,39. Therefore, FDA-
approved drugs targeting PDGFRA, such as regorafenib for
colorectal carcinoma and pazopanib for renal carcinoma40,41,
may inhibit tumor progression of PPC with high PDGFRA
expression. Few studies evaluated the relationship between
cancer progression and LIN7A or CAPN14 expression.
Here we show that PD-L1 was expressed at significantly higher

levels in the sarcomatoid components of several PPCs compared
with the epithelial components. For example, PD-L1 levels differ
among intratumoral the components of PPC14. PD-1 expression
serves as a predictive biomarker for immune checkpoint inhibitors
(ICI)12,13. Therefore, treatment with ICIs may eradicate the
sarcomatoid component, which is regarded as resistant to
chemotherapy. In contrast to the intratumoral heterogeneity in
PD-L1 expression, we found that both components had similar
TMBs, and thus a TMB score in a portion of a tumor likely
represents the TMB of the entire tumor.
The correlation of CD274 mRNA levels with those of PD-L1 is the

subject of at least two studies42,43. Notably, in the present study,
we found that compared to CD274 expression, PELI2 expression
was more strongly associated with PD-L1 expression. PELI2
encodes a member of the E3 ubiquitin ligase family (PELI2) that
plays regulatory roles in immune pathways44, including promotion
of the ubiquitination of IRAK145. IRAK1 promotes the induction of
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Fig. 3 RNA expression in pathological stages I and II pulmonary pleomorphic carcinomas. a The expression level of each gene was
calculated and normalized using the DESeq2 package. The association between the RNA expression of each gene and recurrence-free survival
(RFS) of 25 patients with pathological stage I or II PPC was assessed using univariate Cox proportional hazard regression model, showing the
expression levels of the 15 genes strongly correlated with RFS (q < 0.05). The midline in each box represents the median, and the lower and
upper boundaries indicate the first and third quartiles, respectively. Whiskers represent the 95% confidence intervals of the mean values. b
Kaplan–Meier analysis of RFS of 25 patients according to the average RNA level of each gene demonstrated that strong expression of four
genes was associated with shorter RFS (p < 0.05).
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PD-L1 expression by associating with MyD88 and TRAF6 through
the IFN-γ and TLR signaling pathways46,47. Further research
investigating a direct connection of PD-L1 with PELI2 is warranted.
Three limitations of this study must be considered. First, the

different tumor components were separately investigated in
approximately one-third of samples. Therefore, it was difficult to
draw definite conclusions regarding the significance of the
comparison of epithelial and sarcomatoid components within
PPC. To our knowledge, however, the present study is the first
study to separately analyze the PPC components, and thus the
results may help to evaluate intratumoral heterogeneity and
tumor evolution, which may affect the selection of treatment
options. Second, this study lacked sufficient information regarding
therapeutic efficacy of molecular targeted drugs and ICIs.
Therapeutic efficacy data was not included because half of the
tumors did not recur after surgery, and ICI or MET inhibitors have
only recently been approved in Japan. Therefore, therapeutic
efficacy of these drugs for PPC and its association with biomarkers,
such as TMB, PD-L1, or PELI2 expression, should be confirmed in
future clinical studies. Third, association between the RNA
expression of each gene and RFS was evaluated using univariate
analysis in the study because of the sample size; thus, the
implications of the findings are limited. Other parameters, which
affect RFS, such as lymphovascular invasion, and spread through
alveolar spaces, should be included and assessed using multi-
variate analysis in large future cohort studies.
In conclusion, both epithelial and sarcomatoid components

shared activating driver mutations, suggesting that these truncal
mutations can be identified by testing either component, and that
matched targeted therapy may be effective for PPC patients with
druggable mutations. Moreover, there is a significant enrichment
for MET exon 14 alterations in PPC, indicating that PPC tumors
with negative DNA-based testing for a driver mutation need

additional examination by RNA-based testing. Finally, the combi-
nation of cytotoxic chemotherapies and ICIs may represent an
option for PPC cases without any druggable mutations when they
harbor a sarcomatoid component that expresses high levels
of PD-L1.

METHODS
Samples
Tumor specimens were obtained from 52 patients with PPC (surgically
resected samples from 49 patients and autopsy tumor samples from three
patients) at four Japanese hospitals from 2005 through 2016. However,
three cases were excluded because of poor DNA quality. All surgically
resected samples were from chemotherapy-naïve patients. Pathological
diagnoses were performed by the pathologists A. Ushiku, T. Hayashi, and S.
Morita, according to the 4th edition of the World Health Organization
Classification of Lung Tumors. Pathologic tumor-node-metastasis (TNM)
staging was based on the 8th American Joint Committee on Cancer
guidelines. The follow-up endpoint was December 31, 2017. The
Institutional Review Board (IRB) of the National Cancer Center, Japan
approved this study (research project number: 2015-202). Written informed
consent was obtained from all participants except those we were unable to
contact due to a loss to follow-up or death at registration. For these latter
cases, the Institutional Review Board at each participating institution
granted permission for the use of existing tissue samples for research
purposes. None of the samples used in this study were obtained from
patients who had opted out of study participation.

Genomic DNA extraction and sequencing
Genomic DNA was extracted from 12 fresh-frozen tissue samples of 12
patients using a QIAamp Fast DNA Tissue Kit (Qiagen, Hilden, Germany)
and sheared using a Covaris LE220 (Covaris, Woburn, MA, USA). Adjacent
normal lung fresh-frozen tissue samples were also extracted from each
patient as a source of matched normal DNA. Whole-exome sequencing
libraries were prepared from 1 µg of genomic DNA using the Agilent
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SureSelect Human All Exon Kit v6 (Agilent Technologies, Santa Clara, CA,
USA) and sequenced using a HiSeq 2500 (Illumina, San Diego, CA, USA)
with the paired-end option. Genomic DNA was extracted from 66 formalin-
fixed, paraffin-embedded (FFPE) samples of 40 patients using a GeneRead
DNA FFPE Kit (Qiagen). FFPE samples from adjacent normal lung tissue
were also extracted from each patient as a source of matched normal DNA.
The genomic DNA was separately extracted from 18 PPC samples of cores
taken from the sarcomatoid and epithelial components (Fig. 1a). Genomic
DNA was fragmented using a KAPA HyperPlus Library Preparation Kit (Kapa
Biosystems, Wilmington, MA, USA), and 750 ng of each sample was
subjected to target fragment enrichment using a custom target-capturing
panel (SureSelectXT Custom Kit, Agilent Technologies). The Todai
OncoPanel (TOP) included all exons of 465 cancer-relevant genes48. The
target capture libraries were sequenced using a HiSeq 2500 with the
paired-end option. Raw.fastq files were analyzed using FastQC v0.11.3, and
the sequencing reads were mapped to the human reference genome
GRCh38 using BWA, Bowtie2 (http://bowtie-bio.sourceforge.net/bowtie2/
index.shtml), and NovoAlign (http://www.novocraft.com/products/
novoalign/). Samples in which <80% of bases were covered at a depth
of 100× were considered low quality and excluded from the analyses.
Somatic mutations were called using MuTect (http://www.broadinstitute.
org/cancer/cga/mutect) and SomaticIndelDetector (http://www.
broadinstitute.org/cancer/cga/node/87). Mutations were excluded if the

variant allele frequency (VAF) was <10%, or the number of variant reads
was <10. False-positive calls were discarded through visual inspection.
Further, the heterogeneity and evolutionary trajectory between primary
tumors and paired metastatic tumors were evaluated using the LICHeE
method19, which was developed in 2015 to construct phylogenetic trees
for multiple tumors according to the VAFs of somatic single-nucleotide
variants. Using the TOP, the TMB was calculated as the total number of
nonsynonymous and synonymous mutations divided by the length of the
total target region (3.12 Mb).

RNA sequencing
Total RNA was isolated from 12 fresh-frozen tissue samples of 12 patients
using RNA-Bee (Tel-Test, Gainesville, FL, USA) and purified using an RNeasy
Mini Kit (Qiagen). After poly(A)-RNA selection, the library was prepared
using 1 µg of each sample and an NEBNext Ultra Directional RNA Library
Prep Kit (NEB, Ipswich, MA, USA) and sequenced using a HiSeq 2500 with
the paired-end option. Total RNA was isolated from 66 FFPE samples of 40
patients using an RNeasy FFPE Kit (Qiagen) and purified using an RNeasy
Mini Kit. RNAs from 18 patients were separately extracted from cores taken
from the sarcomatoid and epithelial components. RNA quality was
calculated using a 2200 TapeStation (Agilent Technologies). The synthesis
of cDNAs and library preparation were performed using a TruSeq RNA
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Access Library Prep Kit (Illumina) and 300 ng of each sample. The libraries
were sequenced using a HiSeq 2500 with the paired-end option. Raw.fastq
files were analyzed using FastQC v0.11.3, and read mapping to the
reference genome GRCh38 was performed using BWA, Bowtie2 (http://
bowtie-bio.sourceforge.net/bowtie2/index.shtml), and NovoAlign (http://
www.novocraft.com/products/novoalign/). We excluded samples that did
not meet the post-sequencing quality control criteria for a good-quality
RNA-seq experiment, namely >50% of housekeeping gene regions (ACTB,
B2M, GAPDH, HPRT1, HSP90AB1, PPIA, RPL13A, RPLP0, TFRC, and UBC) with
>100× coverage. Gene fusions were detected using the deFuse pipeline
(https://bitbucket.org/dranew/defuse)49. MET exon 14 skipping was
detected by generating reference sequences of the 3ʹ junction of MET
exon 13 and the 5ʹ junction of exon 15 and counting split reads that
supported 60-mers of the junction.

RNA expression analysis
The expression level of each gene was calculated and normalized using the
DESeq2 package (https://bioconductor.org/packages/release/bioc/html/
DESeq2.html). Genes were excluded from our analyses if the maximum
number of normalized counts of all samples was <20, or if ≥4 samples had
normalized counts = 0. Heat maps of the expression data were created
using the pheatmap package (https://cran.r-project.org/web/packages/
pheatmap). Ward’s clustering method and correlation distances were used
to generate hierarchical clusters of genes and samples from the heatmaps.

Gene-set enrichment analysis (GSEA)
The log fold-change in the expression level of each gene between the
epithelial and sarcomatoid components was calculated using the DESeq2
package. All genes were ranked in descending order according to log fold-
change values and analyzed using GSEA version 2.2.0. GSEA PreRanked
software was used to calculate the normalized enrichment scores (NES)
and false discovery rates (FDRs) of gene sets obtained from the MSigDB
database, which are publicly available at http://www.broadinstitute.org/
gsea/msigdb50. A gene set was considered significantly enriched if its NES
had an FDR q-value < 0.01.

Immunohistochemistry (IHC)
FFPE sections (4-µm thick) were subjected to IHC using an antibody
directed against the extracellular domain of human PD-L1 (clone 22C3;
Dako, Glostrup, Denmark) with 1:50 dilution. The slides were stained using
a Dako Autostainer Link 48 platform with an automated staining protocol
validated for the PD-L1 IHC 22C3 pharmDx assay. The pathologists A. U.
and T. H. used a light microscope to score the percentage of positive tumor
cells in each sample.

Detection of EML4-ALK
We obtained the sequences of complete EML4-ALK transcripts from clinical
specimens by subjecting total RNA extracted from fresh-frozen samples to
reverse transcription with SuperScriptTM IV VILO (Thermo Fisher Scientific,
Waltham, MA, USA) followed by PCR using PrimeSTAR HS DNA polymerase
(Takara Bio, Shiga, Japan) for 35 cycles at 98 °C for 10 s, 60 °C for 5 s, and
72 °C for 4 min. The primers used were 5ʹ-GCTTGAATT-
CACTCTGTCGGTCCGCTGAATGAAG-3ʹ (sense) and 5ʹ-GAATACGCGTTCC-
CAAGGAAGAGAAGTGAGTGTG-3ʹ (antisense). The PCR products were
sequenced using the BigDye Terminator version 3.1 Cycle Sequencing
Kit (Applied Biosystems, Foster City, CA, USA) and analyzed using a 3730
ABI capillary electrophoresis system.

Focus formation assay
The cDNAs encoding GFP, ALK, or EML4-ALK were each inserted into the
pcx4 retroviral plasmid. The recombinant plasmids were transduced
together with packaging plasmids (Takara Bio) into human embryonic
kidney (HEK) 293 T cells to produce recombinant retroviral particles. 3T3
cells grown in 6-well plates were infected with ecotropic recombinant
retroviruses in the presence of 4 μg/mL polybrene (Sigma-Aldrich, St. Louis,
MO, USA) for 24 h. 3T3 cells expressing various mutant proteins were
cultured for 2 weeks in Dulbecco’s modified Eagle’s medium-F12
supplemented with 5% bovine calf serum, 2mmol/L glutamine, and 1%
penicillin/streptomycin (all from Thermo Fisher Scientific). The cells were
then stained with Giemsa solution to detect foci. HEK 293 T cells and 3T3

cells were purchased from the American Type Culture Collection
(Manassas, VA, USA).

Statistical analysis
Univariate Cox regression analysis was performed to evaluate the
correlation between the expression level of each gene and recurrence-
free survival (RFS) of patients with pathological stages I and II PPC. Only
genes with q-value < 0.05 were considered candidates in the correlation
analysis. Recurrence-free survival (RFS) curves were generated using the
Kaplan–Meier method and compared using the log-rank test. P < 0.05
indicates a significant difference. The log fold-change in the expression
level of each gene between the epithelial and sarcomatoid components
was evaluated using the Wald test, and differences with q < 0.05 indicate a
significant difference. The correlation between the normalized count of
each gene and the level of PD-L1 in each sample was calculated using
Pearson’s correlation, and statistical significance was defined as q < 0.05.
Furthermore, the correlations of the levels of PD-L1 with the levels of
CD274 mRNA, which encodes PD-L1, and the TMB were evaluated using
the Mann–Whitney test, and p < 0.05 indicates a significant difference.
Statistical analyses were performed using the R platform (version 3.5.1;
https://www.r-project.org/) and associated packages.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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