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Cancer-specific immune evasion and substantial heterogeneity
within cancer types provide evidence for personalized
immunotherapy
Martin Thelen 1✉, Kerstin Wennhold1, Jonas Lehmann1, Maria Garcia-Marquez1, Sebastian Klein2,3, Elena Kochen 1,
Philipp Lohneis2, Axel Lechner4, Svenja Wagener-Ryczek2, Patrick Sven Plum 2,3,5, Oscar Velazquez Camacho2, David Pfister6,
Fabian Dörr7, Matthias Heldwein7, Khosro Hekmat7, Dirk Beutner8, Jens Peter Klussmann 9, Fabinshy Thangarajah10,
Dominik Ratiu 10, Wolfram Malter10, Sabine Merkelbach-Bruse2, Christiane Josephine Bruns1,5, Alexander Quaas2,
Michael von Bergwelt-Baildon1,11,12 and Hans A. Schlößer1,5

The immune response against cancer is orchestrated by various parameters and site-dependent specificities have been poorly
investigated. In our analyses of ten different cancer types, we describe elevated infiltration by regulatory T cells as the most
common feature, while other lymphocyte subsets and also expression of immune-regulatory molecules on tumor-infiltrating
lymphocytes showed site-specific variation. Multiparametric analyses of these data identified similarities of renal and liver or
lung with head and neck cancer. Co-expression of immune-inhibitory ligands on tumor cells was most frequent in colorectal,
lung and ovarian cancer. Genes related to antigen presentation were frequently dysregulated in liver and lung cancer.
Expression of co-inhibitory molecules on tumor-infiltrating T cells accumulated in advanced stages while T-cell abundance was
related to enhanced expression of genes related to antigen presentation. Our results promote evaluation of cancer-specific or
even personalized immunotherapeutic combinations to overcome primary or secondary resistance as major limitation of
immune-checkpoint inhibition.
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INTRODUCTION
Immunotherapies targeting immunological checkpoints have
become additional pillars for the therapy of hematologic
malignancy and solid cancer1–5. Release of T-cell inhibition with
subsequent enhancement of pre-existing or induction of de-
novo anti-tumor immune responses leads to durable clinical
benefit in a subset of patients, while the majority does not
respond6,7. Response prediction is challenging as multiple
factors (e.g., antigen presentation, immune checkpoint and
neoantigen expression) may enhance or inhibit immune-
mediated destruction of tumor cells. Abundance of tumor-
infiltrating lymphocytes (TILs), tumor-mutational burden (TMB),
gene expression analyses and expression of programmed death
ligand 1 (PD-L1) are related to an anti-PD-(L)1 treatment
response8. Pretherapeutic selection of patients based on TMB
or PD-L1 expression was included into FDA drug approvals9,10,
but these parameters have limited specificity and need further
exploration11–13. For example, PD-L1 expression on both, host
and tumor cells, contributes to PD-(L)1-mediated immune
evasion, but PD-L1 expression on TILs is often neglected14,15. In
view of an increasing number of clinical studies investigating

combinations of drugs targeting different immune checkpoints,
these observations highlight the translational relevance of
immune-modulating molecules in the tumor microenvironment
(TME)16. While expression of immune-checkpoint ligands on
tumor cells has been studied across a wide range of malig-
nancies17–20, expression patterns on TILs are only described in
very few studies on selected cancers and do not allow
comparisons of cancers from different primary sites21,22. Avail-
able comparative data is mainly derived from transcriptomic
analyses and the cellular source of immune-checkpoint targets is
often unknown23. Moreover, these studies usually do not report
on antigen presentation or antigen processing24,25.
Here, we report the first cancer- and patient-specific

comprehensive analysis of the immune microenvironment
and immune evasion including a broader spectrum of cancers.
We provide analyses of expression patterns of 34 immune-
checkpoint targets in samples obtained from 146 treatment-
naïve tumor patients from 10 different types of primary cancer.
Our study demonstrates substantial inter-individual variations
but also cancer-born patterns.
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RESULTS
Infiltration by regulatory T cells is the most common feature
across cancer types while other lymphocyte subsets show
cancer-dependent variation
While changes of lymphocyte subsets have been described for
selected cancers, differences between cancer types are poorly
understood. We aimed to elucidate cancer-type specific changes
of the lymphocyte compartment using flow cytometric analyses of
tumor-infiltrating lymphocytes (TILs, n= 141), peripheral blood
mononuclear cells (CA PBMCs, n= 137) and normal tissue (NT,
n= 89) of previously untreated cancer patients across 10 different
cancer types. We additionally included PBMCs of 20 healthy
controls (HC PBMCs) to allow comparison of CA PBMCs to their
normal counterparts. CD45+ lymphocytes in flow cytometry and
CD3+ cells in immunohistochemistry (IHC) as surrogates of TIL
abundance varied substantially between cancer types. Head and
neck squamous cell carcinoma (HNSCC) and non-small cell lung
cancer (NSCLC) showed the highest infiltration, while it was
moderate or low in renal cell carcinoma (RCC), testicular germ cell
carcinoma (TGCT), esophago-gastric adenocarcinoma (EGA), color-
ectal cancer (CRC), hepatocellular carcinoma (HCC), ovarian
carcinoma (OVCA), urothelial carcinoma (UCC) and breast carci-
noma (BCA) (Supplementary Fig. 1a, b).
Relative fractions of lymphocyte subsets in PBMCs of cancer

patients and healthy controls revealed minor differences (Fig. 1a
and b, Supplementary Fig. 2a). In contrast, the immune-cell
composition of TILs was distinct to PBMCs and NT. Lymphocyte
recovery from normal tissue was low and only allowed analyses of
lymphocyte subsets, whereas the majority of tumor samples
contained sufficient TILs for detailed analyses. Fractions of T and B
cells were increased, while NK cells were decreased in TILs
compared to assessable NT (Fig. 1a). Comparison of TILs to CA
PBMCs showed an enrichment of CD8+ T cells and a decrease of
NK cells in the TME (Fig. 1a). CD3+CD4+CD25+FoxP3+ Tregs were
elevated in TILs compared to HC PBMCs, CA PBMCs and NT
(Fig. 1a). Increased Tregs was the most common feature of
analyzed TILs and their percentage was significantly higher than in
NT for all cancer types despite RCC and HCC (Fig. 1b and
Supplementary Fig. 2b). Comparison of lymphocyte differentiation
and activation across cancer types revealed cancer-dependent
differences for some subsets (e.g., CD25+ T cells, CD137+ T cells or
memory B cells), while others showed less variety (e.g., CD69 or
effector memory T cells) (Fig. 1d–f and Supplementary Fig. 3a–e).

Cancer-specific expression patterns of co-inhibitory and
co-stimulatory molecules on TILs
Next, we aimed to elucidate cancer-type specific expression
patterns of immune-regulatory molecules and their relative
abundance on different lymphocyte subsets in peripheral blood
and TILs. Expression of 23 co-inhibitory and 11 co-stimulatory
molecules was assessed by flow cytometry on bulk CD45+

lymphocytes, T, B and NK cells in TILs, CA PBMCs and HC PBMCs.
While 32/34 (94%) immune-regulatory molecules were differen-
tially expressed on at least one of the analyzed lymphocyte
subsets when comparing TILs to HC PBMCs, only 18/34 (53%)
showed differences between CA PBMCs and HC PBMCs. In TILs, 12/
23 (52%) co-inhibitory molecules were upregulated on bulk
CD45+ lymphocytes, 14/23 (61%) on T cells, 6/17 (35%) on B cells
and 7/20 (35%) on NK cells. Downregulation of co-stimulatory
molecules occurred in 4/11 (36%) on CD45+ lymphocytes, 4/11
(36%) on T cells, 4/8 (50%) on B cells and 1/7 (14%) on NK cells
(Fig. 2a, for corresponding exact values see Supplementary Table
1). Expression levels were variable with some molecules being
expressed by a minor fraction (e.g., CD160, Gal9, VISTA and
CD158k) and others by >50% of T, B or NK cells (e.g., PD1, and
NKG2A, Fig. 2b). Expression patterns of immune-regulating
molecules on TILs showed cancer-specific variations for many

molecules (Fig. 2c and Supplementary Figs. 4–6). For example,
expression of PD-1 was similar for most cancer types but
decreased in BCA. High fractions of LAG3 and Tim3 expressing
lymphocytes were common in TGCT and low in BCA and RCC,
respectively (Fig. 2c). Mean percentages of positive cells for each
molecule on CD45+, T, B and NK cells in the different cancer types
are shown in supplementary table 2 and illustrated in Supple-
mentary Figs. 4–6. We included immune subsets (Fig. 1a),
expression of markers for activation and differentiation (Fig. 1c)
and expression of immune-regulatory molecules (Fig. 2a) by using
t-distributed stochastic neighbor embedding (t-SNE) analysis to
elucidate cancer-dependent patterns of TILs. Following feature
selection based on chi-square (χ2) selection, the t-SNE analysis
revealed 3 clusters with RCC and HCC in one cluster and NSCLC
with HNSCC in another cluster. Interestingly, the results were more
heterogeneous for other cancer types (Fig. 2d).

Co-expression patterns of immune-regulatory molecules on
immune-cell subsets and cancer cells
As ligation of several immune-regulatory molecules may affect
responsiveness or activation of more than one lymphocyte
lineage, we aimed to assess expression patterns of upregulated
immune-modulatory molecules on different TIL subsets26–28. Five
molecules were not significantly upregulated (CD160, HVEM,
BAFFR, CD226, CD305). While differential expression of most
molecules was restricted to one or two lymphocyte subsets, PD1,
CD66ace and CD48 were upregulated on T, B and NK cells. 6/24
(25%) molecules were increased on T cells and 2/24 (8%) on NK
cells only. The remaining molecules were simultaneously upregu-
lated on T and NK cells (5/24, 21%) or T and B cells (3/24, 13%)
(Fig. 3a). To identify patterns of co-regulation, we performed
hierarchical cluster analyses and spearman correlation of immune-
modulatory molecule expression on different lymphocyte subsets.
We found a highly correlated upregulation for a set of immune-
regulatory molecules on tumor-infiltrating T (Fig. 3b), B and NK
cells (Supplementary Fig. 7). For example, expression of Tim3 on
T cells appeared highly correlated to that of LAG3, while it was
negatively correlated to CD28 (Fig. 3b).
Additionally, expression of ligands for immune-inhibitory mole-

cules on tumor cells in different cancer types was included into our
analyses. We found positive staining of tumor cells in IHC staining
for VISTA in 2.1% (3/145), Galectin-9 in 36.6% (53/145), PD-L1 in
40.7% (59/145), CEACAM-1 in 57.2% (83/145), HVEM in 74.5% (108/
145), PVR in 77.9% (113/145) and HLA-E in 84.8% (123/145) of
patients (Fig. 3c)29–33. Loss of HLA-I on tumor cells as another
important immune-escape mechanisms was detected in 17.9% of
included samples (26/145; Fig. 3c). Co-existence of these immune-
escape mechanisms was frequently observed (6–8 co-existing
factors in 10.3%, 4–5 in 55.2%, 2–3 in 31.0% of patients) with
cancer-dependent variety reaching from positivity for combinations
of ≤3/8 factors in >60% of RCC, HCC and TCGT to ≥4/8 in >80% of
NSCLC, OVC and CRC samples (Fig. 3d, for combinations of co-
occurring molecules see Supplementary Fig. 8). In complementary
analyses of the tumor microenvironment (TME) on a transcriptional
level, we found significant upregulation for 6/21 included immune-
regulatory factors in bulk RNA compared to matched normal
mucosa. This confirms increased expression of immunosuppressive
genes in the TME of included cancers. However, NanoString analyses
are not directly comparable to our results of immunohistochemistry
or flow cytometry, as they do not allow conclusions regarding the
cellular source of increased gene expression (Fig. 3e).

Impaired expression of genes involved in presentation or
processing of antigens is frequent in HCC and NSCLC but rare
in RCC
Dysregulation of HLA-I molecules or genes involved in antigen
processing is an important immune-escape mechanism in cancer
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Fig. 1 Infiltration by regulatory T cells is the most common feature across different cancer types while other lymphocyte subsets show
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and was also included into our cross-cancer comparison24,25. We
used NanoString to assess expression of 24 genes involved in
antigen-presentation, which were selected based on down-
regulation in a fraction of patients for one or more of the
included cancer types based on The Cancer Genome Atlas (TCGA)
and Genotype-Tissue Expression (GTEx) data using the web server
GEPIA (http://gepia.cancer-pku.cn). Despite downregulations in
selected patients, mean expression levels for 7/24 genes were
increased (>2-fold) in the TME of tumor samples compared to
normal tissue. Interestingly, expression of interferon-gamma was
related to overexpression of 12/24 genes involved in antigen
presentation (Supplementary Fig. 9)34. Considering a 2-fold
change as cut-off for impaired gene expression35, all genes
despite PSMB5 were downregulated in the TME of at least one
patient. B2M, HLA-A, HLA-B, HLA-C, ERAP1, ERAP2, PDIA2, NLRC5,
UBB, UBC and LMP10 were decreased in >10% of analyzed tumor
samples. We found reduced expression of ≥3 (≥12.5%) of included
genes in 45/142 patients (32%) and in 33/142 (23%) patients we
did not observe alterations. Expression patterns of the 24 genes
across different tumor types were heterogeneous. Simultaneous
affection of ≥3 (≥12.5%) of included genes was not seen in RCC,
while it was found in 75% (TGCT), 50% (HCC), 41% (NSCLC), 37%
(HNSCC), 33% (CRC), 31% (BCA), 29% (OVCA), 25% (EGA) and 14%
(UCC) of other cancer types (Fig. 4).

Increased antigen presentation is related to high T-cell
infiltrates, while expression of immune-checkpoint molecules
is increased in advanced cancers
To elucidate differences regarding the composition of immune
infiltrates and presence of immune-escape mechanisms in patients
with high and low immune infiltrates, we classified tumor samples
as immune-score (IS)-high (III–IV), IS intermediate (II) or IS-low (0-I)
(Fig. 5a, Supplementary Fig. 10)36,37. In IS-high samples, increased
expression of PD-L1 (27.9% in IS-low vs. 48.2% in IS-high; p= 0.0336),
HLA-E (73.8% vs. 90.7%; p= 0.0282) and PVR (70.5% vs. 87.0%; p=
0.0415) on tumor cells was detected (Fig. 5b). FACS based immune
phenotyping of TILs in IS-high and IS-low patients revealed no
differences regarding percentages of lymphocytes subsets and
markers for activation or maturation despite CD69 on T cells
(Fig. 5c, investigated subsets and molecules in Fig. 1a and c).
Expression of most immune-modulatory molecules on T, B and NK
cells was similar in IS-high and IS-low samples. Increased percentages
of Tim3+ T an B cells and CD96+ NK cells were the only differences
(Fig. 5c, investigated molecules in Fig. 2a). Immune-score stratifica-
tion of NanoString results revealed increased expression of immune-
regulatory cytokines (IFNG and TNFSF13B) and enhanced expression
of 9/24 (37.5%) included genes related to antigen processing and
presentation (B2M, TAP1, TAP2, LMP2, LMP10, TAPBP (not shown), HLA-
B, PSMB2 and NLRC5; Fig. 5d) in IS-high patients.
We categorized tumor samples in early (UICC stage I and II, 8th

edition) and advanced stages (stage III and IV) to evaluate
progression-related changes in the immune TME. Comparison of
TILs revealed differences regarding immune-cell subsets, activa-
tion, differentiation and expression of immune-modulating
molecules. T cells were increased, and NK cells were decreased
in advanced stages. Markers for T and B cell activation (CD69,
CD25, 41BB and CD86) and T-cell differentiation (CD45RA-CCR7-

effector memory T cells) were elevated in TILs of advanced stage
cancers (Fig. 6a). We also found an increase of Tregs and
upregulation of 7/23 (30%, investigated molecules in Fig. 2a) of
co-inhibitory molecules on T cells in advanced stages. T cells in the
TME of advanced cancer showed increased expression of PD1,
CTLA4, CD39, PD-L2, LAG3, TIGIT, Tim3 and decreased expression
of CD73 (Fig. 6a, b and Supplementary Fig. 11a). In contrast,
NanoString analyses revealed unchanged expression of 21/24
analyzed genes related to antigen presentation (see Supplemen-
tary Fig. 11c for differentially expressed molecules). Regarding

expression of immune-inhibitory factors, we found expression of
HLA-E in 94.2% of advanced stage tumors compared to 76.6% in
early stages as only difference (Supplementary Fig. 11b). Strikingly,
advanced tumor stages were related to increased expression of
immune-modulatory molecules (Fig. 6b), whereas T-cell abun-
dance was related to enhanced antigen presentation (Fig. 6c). This
observation was supported by cluster-dependent (Louvain)
enrichment of advanced-stage tumor samples in a t-SNE analysis
of immune-modulatory molecules and cluster-dependent (Lou-
vain) accumulation of IS-high patients in a t-SNE analyses of genes
related to antigen presentation (Fig. 6b and c).

DISCUSSION
Susceptibility of patients to single agent or combined immu-
notherapies is highly dependent on the immune microenviron-
ment, which is difficult to assess and poorly defined for most
cancers8,38–40. Litchfield et al. recently reported about a pooled
analysis of transcriptomic and genomic features related to
immune-checkpoint therapy response in twelve clinical trials.
Their study included data from patients with advanced melanoma,
renal cell, lung, urothelial or colorectal cancer and highlighted the
predictive role of tumor-cell intrinsic parameters (e.g., tumor
mutational burden) as well as parameters related to the immune
microenvironment (e.g., CXCL9, CD8A, CXCL13)41. This publication
further emphasizes the relevance of the immune infiltrate which is
usually described in a selected cancer type, whereas studies
comparing different types of cancer are rare42. One of the few
publications covering a broad range of cancers, estimated
patterns of TILs based on systematic deconvolution of gene
expression data using the TCGA database. In line with our results,
this study identified HNSCC, NSCLC and RCC as tumors with the
highest lymphocytic infiltrates23. Our data provide a comprehen-
sive picture of the immune microenvironment across different
cancer types. The composition of lymphocyte subsets in TILs
described for our cohort are consistent with available single
cancer studies43,44. While other lymphocyte subsets showed high
variability, an increase of Tregs was a common feature of most
included cancer types and the challenging selective targeting of
this subset appears broadly applicable45.
Expression of ligands for immunosuppressive molecules leads

to inactivation of tumor reactive T, B and NK cells and promotes
tumor growth14,18,31,46. We found cancer-specific variation
regarding co-expression of immune-inhibitory ligands by tumor
cells. The highest number of co-expressions were detected in CRC
and OVCA and the lowest in TCGT, HCC and RCC. The high
frequency of naturally occurring co-expressions of immune-
inhibitory ligands possibly impairs susceptibility to immunother-
apy and may be further increased by immune-checkpoint
inhibitors47,48. Against the original assumption that expression
of PD-L1 on tumor cells is the major immunosuppressive
mechanism in the TME, recent studies demonstrate the
importance of its expression on non-malignant cells14,15. This
highly relevant aspect has been neglected for most immune-
regulating molecules49. One of the few publications addressing
expression of immune checkpoints by TILs analyzed six immune
checkpoints on T cells in the TME of melanoma. The authors
described the highest expression for PD-1, intermediate levels for
ICOS, Tim-3 or VISTA and low levels of GITR and OX4021. The
described percentages are similar to our results for other cancers,
and we provide detailed information regarding cellular distribu-
tion (T, B and NK cells), co-occurrence and cancer-dependent
differences of immune-regulatory molecules. In line with previous
results from gene expression data, cluster analyses showed few
cancer-dependent patterns and high intra-cancer variability23,48.
Impaired processing or presentation of antigens has been
described for several types of cancer and may also lead to
resistance against immunotherapy24,50,51. According to our
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results, impaired expression of antigens is most frequent in the
TME of HNSCC, NSCLC, CRC, HCC and TCGT, while it was rare in
other cancers. 32% of patients showed downregulation of 3 or
more analyzed genes and might be candidates for therapeutic
enhancement of antigen presentation52,53. Cancer-type depen-
dent patterns and also the clonal distribution of defective antigen

processing or presentation merit further investigation (e.g., using
single cell RNA sequencing).
Finally, we correlated our analyses of the TME to T-cell

abundance and tumor stage as clinically important parameters.
Abundance of T cells in the TME is related to prognosis, response
to immunotherapy and highly variable within one cancer
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type36,49,54. We found a strong correlation between enhanced
expression of genes related to antigen presentation and the
immune-score. This aspect needs further investigation as mechan-
isms underlying “hot” vs. “cold” tumors are poorly understood and
comparable data to our unexpected result is scarce44,55. Interest-
ingly, the phenotype of immune cells was similar in IS-high and IS-
low tumors but frequently different when comparing TILs of
patients with early and advanced cancer. This supports an
accumulation of multiple immune-escape mechanisms over time
as suggested by the cancer immunoediting hypothesis56.
Some important limitations of our study have to be addressed

in the future. We only included a small number of samples for
some tumors and our results need further validation in
independent cohorts. We included surgically resected tumor
samples, assuming that these relatively large tumor samples
better reflect tumor heterogeneity. However, spatial heterogeneity
of tumor cells and the immune infiltrate may still be under-
estimated in our study. We focused our analyses on T, B and NK
cells as important lymphocyte effector subsets in cancer.
Expression of immune-modulatory molecules by myeloid cells
can however be of similar relevance and may also show cancer-
type dependent differences in expression patterns, which merit
further investigation57,58. We selected druggable immune-
regulatory molecules and additional pathways may be of similar
importance. Single-cell RNA sequencing is a scalable alternative to
flow cytometric analyses also allowing conclusions on a single cell
level and could provide additional insights into the expression
patterns of immune-regulatory molecules in cancer.
The efficacy of anti-PD-L1 plus anti-CTLA-4 highlights the

potential benefit of combined immunotherapy and we provide a
source for the selection of cancer-dependent or even individua-
lized combinations12,59,60. Co-inhibitory gene modules have been
described and preclinical studies focusing on synergistic and
antagonistic effects of the different targets on immune-cell
subsets may identify synergistic combinations of drugs affecting
immune modulatory molecules61. However, tailored immunother-
apeutic combinations based on individualized pretherapeutic
evaluation of immune escape as suggested by the “cancer
immunogram” may be needed to address the high intratumoral
heterogeneity62,63.

METHODS
Patients and samples
146 treatment-naïve cancer patients were included. Samples from
peripheral blood (n= 137), tumor (n= 141), corresponding healthy tissue
(n= 89) and formalin-fixed paraffin-embedded (FFPE) tumor (n= 145) and
paired corresponding heathy tissue (n= 145) were collected. Patient
characteristics are summarized in Supp. Table 3. PBMCs were isolated and
tissue specimens were processed to single cell suspensions using a
standardized protocol (see Supplementary Methods), resuspended in FBS
+ 10% DMSO and stored in liquid nitrogen until analysis. Written informed
consent was signed by all patients and this study was approved by our
institutional ethics committee (no. 17–282).

Flow cytometry, immunohistochemistry (IHC) and tissue micro
arrays (TMAs)
TILs and PBMCs were stained for 10-color flow cytometry (detailed
antibody list, Supplementary Table 4). An extensive literature research
focusing on druggable targets was performed to select immune-regulatory
molecules. Representative literature and clinical studies underlying the
classification in co-inhibitory or co-stimulatory molecules is included in
Supplementary Table 1. Samples were acquired on a Gallios flow
cytometer (Beckman Coulter, USA) and analyzed using Kaluza v2.1 (Kaluza,
RRID:SCR_016182, Beckman Coulter, USA; gating strategy in Supplemen-
tary Fig. 12). FFPE sections containing tumor tissue and healthy tissue were
selected for each patient. The tumor front was delineated digitally on
scanned slides using Aperio ImageScope v12.4.0 (Leica, Germany). Whole
section slides and tissue micro arrays (∅ 1.2 mm) of tumor specimens were

stained on a Leica BOND-MAX or Roche Ventana platform according to the
manufacturer’s instructions (details in Supplementary Table 4).

Automated immune-score analysis
FFPE sections covering the whole cross section of the primary tumor
including sufficient adjacent healthy tissue from 135 patients of the cohort
were available for IHC analysis of CD3 and CD8 infiltration (details in
Supplemnetary Methods).

RNA isolation and NanoString
For each patient, FFPE sections containing tumor tissue and separate
sections of corresponding healthy tissue, furthest from the tumor area,
were selected and scratched from slides using a scalpel. RNA was isolated
using the Maxwell® RSC RNA FFPE Kit (Promega, USA) and analyzed using
NanoString according to the manufacturer’s instructions (details in
Supplementary Methods). The selection of genes for the applied
customized NanoString was based on relevant targets identified in the
systematic literature research. We included ligands for co-inhibitory
molecules and soluble immunosuppressive factors, which could not be
measured in flow cytometry (e.g., IDO). We additionally selected genes
with described functional roles in antigen presentation64–67.

Statistical analyses and visualizations
Non-parametric tests were used as a fraction of samples did not pass the
D’Agostino Pearson omnibus-k2 test of normality. Group sizes, levels of
statistical significance, definition of error bars and applied tests were
included in figure legends. For dimensional reduction using T-distributed
Stochastic Neighbor Embedding (t-SNE) we used implementations in
Python v3.7 (Python Programming Language, RRID:SCR_008394). Input
data for t-SNE was selected after extracting features that differ between
groups (feature selection) using a chi-square (x2) -test. Input values were
normalized, and clustered according to Louvain clustering. Plots were done
using Matplotlib (MatPlotLib, RRID:SCR_008624). Detailed information
regarding software used for statistical analyses and creation of figures is
included in the Supplementary Methods.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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