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Knockout of immunotherapy prognostic marker genes
eliminates the effect of the anti-PD-1 treatment
Naixue Yang1,2,5, Fansen Ji1,3,5, Liqing Cheng1,3,4,5, Jingzhe Lu1,5, Xiaofeng Sun1,3, Xin Lin1,3,4✉ and Xun Lan 1,3✉

The efficacy of immunotherapy is largely patient-specific due to heterogeneity in tumors. Combining statistic power from a variety
of immunotherapies across cancer types, we found four biological pathways significantly correlated with patient survival following
immunotherapy. The expression of immunotherapy prognostic marker genes (IPMGs) in these pathways can predict the patient
survival with high accuracy not only in the TCGA cohort (89.36%) but also in two other independent cohorts (80.91%), highlighting
that the activity of the IPMGs can reflect the sensitivity of the tumor immune microenvironment (TIME) to immunotherapies. Using
mouse models, we show that knockout of one of the IPMGs, MALT1, which is critical for the T-cell receptor signaling, can eliminate
the antitumor effect of anti-PD-1 treatment completely by impairing the activation of CD8+ T cells. Notably, knockout of another
IPMG, CLEC4D, a C-type lectin receptor that expressed on myeloid cells, also reduced the effect of anti-PD-1 treatment potentially
through maintaining the immunosuppressive effects of myeloid cells. Our results suggest that priming TIME via activating the
IPMGs may increase the response rate and the effect of immune checkpoint blockers.
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INTRODUCTION
The immune system protects the host against tumorigenesis by
identifying and eliminating cancerous cells. Under the extreme
selective pressure from the host immune system, tumor cells
undergo rapid evolution and eventually escape immune surveil-
lance through different mechanisms1–3. To sensitize the host
immune response against tumor cells, several immunotherapies
have been developed over the last three decades, including
cytokine therapies, vaccines, and cellular therapies such as
chimeric antigen receptor (CAR)-modified T-cell therapy and
adoptive cell transfer therapy4. Recently, immune checkpoint
blockade (ICB) therapies, such as CTLA-4 and PD-1, have achieved
unprecedented success in treating advanced melanoma, non-
small cell lung cancer, and many other cancer types5,6. However,
effective responses were only observed in a small subset of
patients owing to a high rate of resistance to checkpoint inhibitors
among tumors7. The disparity in clinical outcomes highlights the
phenotypical and functional heterogeneity among different
tumors8 and among their immune microenvironments9. Therefore,
to improve the efficacy of immunotherapies, it is imperative to
understand the underlying mechanisms of immunotherapy
resistance and to develop more reliable prognostic strategies.
Several features are employed by models predicting patient

responses to immunotherapy. For example, tumor mutational load
and neoantigen load in tumor cells correlate with prognostic
outcome for ICB10,11. In addition, many signaling pathways are
identified as predictive biomarkers for tumor sensitivity to ICB, e.g.,
chronic type I and type II interferon (IFN) signaling12, phosphatase
and tensin homolog (PTEN)-related oncogenic pathways13, and
oxidative stress-related metabolic processes14. Features of the
tumor immune microenvironment (TIME), such as the interaction
of nature killer–dendritic cell (DC) axis15, the enrichment of CD8+

T cells, the presence of the galectin-9+ DC/DC-like macrophages,
and a high M1/M2 macrophage ratio16 were also reported to be

associated with the response to immunotherapy. Recently, a
computational method showed that the expression signatures of
T-cell dysfunction and exclusion predicted ICB response with high
accuracy17.
However, previous efforts to identify effective prognostic

biomarkers for immunotherapies usually focus on only one type
of immunotherapy or limited to one type of cancer and suffer
from low statistical power, owing to the limited number of
patients involved in each of the studies. Here we sought to
increase the statistical power of detecting genes related to patient
survival by combining information from different studies involving
various immunotherapies. Despite targeting distinct immune
modulators, the common goal of the different immunotherapies
is to eliminate tumor cells indirectly by promoting immune
responses. Recently, single-cell RNA sequencing (RNA-seq) analysis
showed that tumor cells had a high degree of inter-tumor
heterogeneity; however, tumor-infiltrating immune cells were
clustered by cell types independent of samples and showed
highly homogeneous across cancer patients18,19. Given the
invariant nature of immune cells among cancer patients and the
success of immunotherapies across cancer types with distinct
tissue origins5,6, it is possible that the outcomes of treatments
depend largely on the sensitivity of the TIME to the therapeutic
stimulus and not the cancer type. Under the assumption that
immune responses are independent of the tissue of origin of the
tumor, we can pool patients receiving immunotherapies from
various sources to increase our chance of discovering predictive
pan-cancer biomarkers.
Here we aimed to identify a panel of genes to predict patient

survival after immunotherapy by integrating multi-dimensional
data of 33 cancer types characterized by The Cancer Genome
Atlas (TCGA) (Fig. 1a). To represent the functionality and activity of
the genes more accurately, we developed two strategies to adjust
the expression table composed of 11,069 pre-treatment tumor
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biopsy samples. One strategy is defined as “mutation correction,”
which measures the functional activity of a gene involved in
cancer progression by incorporating gene mutation information
and gene expression at mRNA level (Fig. 1b). The other strategy is
defined as “leukocyte fraction correction,” which uses the fraction
of immune cells to scale gene expression levels for a more precise
evaluation of the activity of immune-related genes (Fig. 1c). We
then applied survival analysis and pathway analysis to these two
adjusted expression tables separately, to find key pathways
associated with the survival of patients receiving immunothera-
pies. Utilizing immunotherapy prognostic marker genes (IPMGs) in
the identified pathways, we can predict the outcome of patients
treated with distinct immunotherapies in both the TCGA cohort
and two independent datasets with high accuracy, highlighting
that the state of TIME is associated with its sensitivity to various
therapies. Finally, we validated that two of the IPMGs, an essential
gene for T-cell receptor signaling (MALT1) and a myeloid cell
surface receptor (CLEC4D), are required in the response to
immunotherapy using mouse models.

RESULTS
Pathways associated with the clinical outcome of
immunotherapy
The definition of therapeutic responses to treatment differs
significantly among cancer types and various treatments. To
combine information from all 2836 patients whose clinical data
and RNA-seq were available in the TCGA cohort treated with
different therapies, we used patient survival as an unbiased
measure of the effectiveness of the treatments. Less than 2% of
the patients included in the TCGA cohort received

immunotherapies such as cytokines, cancer vaccines, anti-CTLA-4
therapy, or other monoclonal antibodies. To overcome the limited
statistical power in identifying genes correlated with patient
survival after immunotherapy, we combined patient data across
cancer types and various immunotherapies under the assumption
that the immune system’s response to cancer immunotherapy is
largely determined by the sensitivity of TIME. We included 99
patients receiving immunotherapies across 12 cancer types,
considering the availability of transcriptomic data and clinical
information necessary to perform the downstream analysis
(Supplementary Data 1).
For every gene in the human genome, we first evaluated the

association between its expression in the tumors and the survival
of all the 2836 patients regardless of the treatment strategies.
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis showed that genes of which higher expression was
significantly associated with lower survival were enriched in a
variety of oncogenic signaling pathways, such as
phosphatidylinositol-3-kinase (PI3K)-Akt, mitogen-activated pro-
tein kinase, Ras signaling, and focal adhesion (Fig. 2a). The
expression of oncogenic signaling genes is indicative of tumor
characteristics such as cancer type, progression, stage, or
metastasis; therefore, it is usually associated with patient survival
regardless of the treatment strategies. Few pathways were
enriched for genes of which higher expression was associated
with improved survival of all patients (Fig. 2a). When applied the
same analysis on the 99 patients receiving immunotherapy, we
found that genes of which higher expression was significantly
associated with improved survival were mainly enriched in
immune-related pathways (Fig. 2b), suggesting that the survival
of these patients depends not only on the level of tumor
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Fig. 1 Mutation and leukocyte fraction correction. a The schematic workflow of our study. b Diagram of “mutation correction” that accounts
for the functional reduction of protein-coding genes caused by non-synonymous mutations. The gene in the example is more active in tumor
2 than in tumor 1, despite being more highly expressed in tumor 1 due to multiple non-synonymous mutations impairing the function of the
protein in tumor 1. c Diagram of “leukocyte fraction correction” that removes the confounding effect of immune cell proportions on the
measuring activity of immune-related genes with RNA-seq. Although the same number of total transcripts of a gene are detected in the two
tumors, the gene is more actively transcribed on average in tumor 2 than in tumor 1 due to a smaller number of tumor-infiltrating immune
cells in tumor 2.
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progression but also on the sensitivity of TIME to immunotherapy.
Immune-related pathways have a considerable impact on the
survival of patients receiving immunotherapy.
One caveat of using patient survival as an indicator for the

efficacy of immunotherapy is that it is confounded by tumor
characteristics that are generally correlated with patient survival
regardless of the treatment strategy. Immunotherapy-specific
pathways are more appropriate predictors for immunotherapy
efficacy and thus more desirable in the clinical setting. To
determine whether a pathway can serve as an immunotherapy-
specific predictor, we performed pre-ranked gene set enrichment
analysis (GSEA)20 on patients receiving immunotherapies con-
trolled against patients treated with non-immunotherapies. Pre-

ranked GSEA analysis showed that 55 and 32 pathways were
significantly enriched after mutation correction (Fig. 2c) and
leukocyte fraction correction (Fig. 2d), respectively, whereas only
22 pathways were enriched without any correction of the gene
expression table (Supplementary Data 2). Reassuringly, analysis
with the two expression–correction strategies recovered pathways
known to be related to immunotherapies, such as T-cell receptor
and B-cell receptor pathways, whereas analysis without correction
showed no enrichment in the known immune-related pathways,
suggesting that both corrections significantly reduced the effect
of the confounders in the data as intended.
A majority of the immunotherapy-associated pathways we

identified were immune system-related and only a fraction of
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them were oncogenic signaling pathways (Supplementary Data 2),
suggesting that they are indeed immunotherapy-specific, i.e., the
activities of the pathways have a stronger impact on immu-
notherapy beyond their general association with the character-
istics of the tumors. Interestingly, we observed enrichment in
pathways linked not only to the adaptive immune system but also
to the innate immune system, the function of which is not yet the
main focus of current immunotherapies.

The gene panel from the identified pathways can predict
patient survival after immunotherapy
Biomarkers currently used to screen patients for costly immu-
notherapies in the clinic are inadequate, leading to a low response
rate among patients receiving the treatments. We sought to test
whether the expression of immunotherapy-specific genes in pre-
treatment tumor biopsies can predict patient survival accurately
and whether these genes can serve as potential biomarkers for
clinical use. Requirements of a practical patient-screening
procedure include low cost and rapid assessment; therefore, we
first reduced the number of pathways needing to be tested, to
make an accurate prediction. To find the pathways with the
greatest bearing on predictive power, we performed feature
selection using the random survival forest (RSF)21 approach, which
gives priority to features in the survival analysis. After RSF ranking,
we chose 16 out of 55 pathways enriched after mutation
correction and 9 out of 32 pathways enriched after leukocyte
fraction correction based on feature importance (RSF variable
importance, p-value < 0.05) (Supplementary Data 3). Four path-
ways consistently shown to be enriched after both corrections
were the T-cell receptor signaling pathway, the B-cell receptor
signaling pathway, the C-type lectin receptor (CLR) signaling
pathway, and the phosphatidylinositol signaling system. We
observed the same trend of enrichment in the quantile–quantile
plot (QQ plot) (Fig. 3a–d and Supplementary Fig. 1a–d), which
compares the association between gene expression and patient
survival after immunotherapy vs. non-immunotherapy.
The T-cell and B-cell receptor signaling pathways are well-

known to play a crucial role in tumor immunity22,23 and their
regulation mechanisms in the tumor microenvironment have
been intensively investigated over the years24,25. However, the
functions of the CLR signaling pathway and the phosphatidylino-
sitol signaling system in tumor immunity are not well understood.
The CLR signaling pathway is mainly involved in complement
activation, phagocytosis, and innate immunity26. By specifically
recognizing glycans, CLRs may participate in the direct interaction
between tumor cells and immune cells, and facilitate tumor
rejection27. The phosphatidylinositol signaling system is an
intricate network of kinases and phospholipid messengers that
tightly controls many cellular processes such as cell signaling and
metabolic regulation. The enzymes PI3K and PTEN, which regulate
phosphatidylinositol-3,4,5-trisphosphate play important roles in
cancer development28.
Among genes in the four pathways, we identified 64 candidate

genes that were significantly related to patient survival (Supple-
mentary Data 4). We next examined whether expression levels of
the 64 IPMGs could predict the survival of patients after
immunotherapy. We used TCGA data as the discovery set to
build an elastic net logistic regression model and then tested the
accuracy of the model on the data of two independent cohorts of
patients who had received anti-PD-1 therapy7,29, to evaluate the
generalizability of the model. Cross-validation in the TCGA cohort
showed that the model taking the expression of the top 40 IPMGs
as input achieved the highest 88.91% accuracy and an area under
the receiver operating characteristic curve (AUC) of 89.36% in the
TCGA test data (sensitivity= 85.94%, specificity= 91.88%) (Sup-
plementary Fig. 1e). Surprisingly, even though no patient was
treated with anti-PD-1 in the TCGA discovery cohort, the model

achieved a mean accuracy of 70.54% (sensitivity= 85.52%,
specificity= 55.56%) and an AUC of 80.91% (Fig. 3e) in the two
independent anti-PD-1 cohorts. Consistently, patients classified to
alive and deceased groups by the model displayed a significant
difference in survival (Fig. 3f). Furthermore, The IPMGs also
showed comparable results as other published biomarkers using
the biomarker evaluation module tool30 (Supplementary Fig.
2a–c). These results suggest that the expression of the 40 IPMGs
can serve as a set of pan-cancer prognostic biomarkers for
immunotherapies.

The expression of IPMGs can reflect the sensitivity of TIME to
immunotherapies
To assess whether the gene panel comprising the 40 IPMGs
reflects the state of TIME rather than the characteristics of specific
tumors, we performed a clustering analysis on 2836 patients that
have clinical information using the single-sample GSEA (ssGSEA)
score31. A total of 2836 patients across 32 cancer types were
clustered into 3 groups comprising mixed cancer types (Fig. 4a).
Interestingly, among the three groups, patients receiving immu-
notherapy have distinct survival rates (Fig. 4b), whereas patients
receiving other treatments do not (Fig. 4c). Differential expression
analysis and GSEA revealed that many immune-related pathways,
such as antigen processing and presentation, and B-cell and T-cell
receptor signaling pathways are activated in the group of patients
with prolonged survival after immunotherapy (Supplementary
Data 5). These results suggest that these 40 IPMGs can classify
cancer patients into groups with distinct TIME (Fig. 4a–c and
Supplementary Figs. 3a–f and 4a–f), which may influence the
outcome of immunotherapy, but not other treatments.
Unlike the signature genes of tumor progression, in which

genetic alterations are usually positively selected during tumor
evolution, immune-related genes expressed in immune cells are
unlikely to accumulate somatic mutations due to the lack of
natural selection on the genetics level of immune cell during
tumorigenesis. Indeed, the selective pressure on mutations in the
vast majority of the IPMGs during tumor development, measured
by the ratio of substitution rate at non-synonymous site and
synonymous site (dN/dS), is similar to the average selective
pressure on all genes in the human genome (Fig. 4d). One
interesting exception is the well-known oncogene, KRAS, which
promotes the continuous proliferation of tumor cells after
acquiring a gain-of-function mutation. KRAS is also found to be
involved in tumor immunogenicity32, suggesting that our method
can detect genes that have confounding effects on patient
survival, i.e., genes that are both oncogenic and are related to
tumor immune responses. Further dissection of confounded
functions of such genes may require the use of single-cell
technology to accurately measure the expression of these genes
in different types of cells residing in the tumor microenvironment.
Single-nucleotide polymorphism (SNP) sites were found to be

associated with the activity of the immune system in previous
studies. An SNP can affect the activation and development of
CD4+ T cell33 and an analysis via genome-wide association studies
(GWASs) observed six SNPs in the human leukocyte antigen genes
linked with vaccine-specific antibody responses34. Indeed, our
analysis also showed that seven SNP sites in gene-body and up-/
downstream 100 kb regions of four IPMGs (PPP3CB, ITPR1, PI4K2B,
and MTMR1) were significantly linked to the survival of
immunotherapy-treated patients (Supplementary Fig. 5a and
Supplementary Data 6). These results suggest the genetic diversity
of the IPMGs in the population can partly explain the variation in
the sensitivity of TIME to immunotherapies.
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Knockout of MALT1 or CLEC4D eliminated the antitumor effect
of anti-PD-1 treatment in mouse models
The aforementioned computational analysis shows that the IPMGs
we identified can be used as biomarkers for predicting the patient
response to immunotherapy. To test whether these results reflect
a correlation or causation between the expression of the IPMGs
and patient survival (Fig. 4e, f), we used experimental models to
further explore the potential roles of the IPMGs in promoting

immune clearance of tumor cells during immunotherapy treat-
ment. Specifically, we focused on two IPMGs as follows: (a) MALT1
represents well-established genes that are critical to receptor
signaling in the adaptive immune system and (b) CLEC4D
represents less understood genes that are mainly expressed on
myeloid cells of the innate immune system.
MALT1, also known as paracaspase, can form a complex with

CARMA1-BCL10 to mediate T Cell Receptor(TCR)-induced nuclear
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factor-κB (NF-κB) activation. Upon TCR engagement, its protease
activity can also be activated to cleave negative regulators, such as
A20 and CYLD, to amplify the NF-κB signaling35. Here we sought
to explore the role of MALT1 in the antitumor immune response,
which has not yet been elucidated. First, we found Malt1 was
induced upon TCR stimulation in T cells (Fig. 5a), implying that the
Malt1 expression level is indicative of the status of T-cell
activation. Moreover, the in vivo tumor model showed that tumor
development was promoted in mice deficient inMALT1 (Malt1−/−)36

with increased tumor weight at the end stage compared with
wild-type (WT) mice (Fig. 5b). Analysis of tumor-infiltrating
lymphocytes showed decreased CD8+ T-cell infiltration and IFN-
γ or Granzyme B production in Malt1−/− mice (Fig. 5c, d). PD-1,
which could be induced upon T-cell activation, nearly disappeared
in Malt1-deficient CD8+ T cells (Fig. 5e), suggesting defective
activation of T cells in mice lacking Malt1.
To further determine the cell type(s) in which Malt1 functions

during the antitumor immune response, we crossed Malt1fl/fl

mice37 with Lys-Cre or CD4-Cre mice, to specifically delete Malt1 in
macrophages or T cells, respectively. We found that tumor
development was enhanced in mice with a specific deletion of
Malt1 in T cells, but not in macrophages (Fig. 5f, g), similar to the
phenotype observed in Malt1 germline knockout (KO) mice,
implying that Malt1 in T cells (Supplementary Fig. 5b) is critical in
antitumor immune response. As the survival analysis showed that
MALT1 expression level was positively associated with the
improved prognosis of patients after immunotherapy (Fig. 4e),
we treated tumor-bearing WT or Malt1−/− mice with anti-PD-1 to
compare with IgG control. We found Malt1−/− mice failed to
respond to PD-1 blockade, whereas the therapy can decrease
tumor growth in WT mice (Fig. 5h). This finding was consistent
with the observation that Malt1-deficient CD8+ T cells showed low
expression of PD-1 in the tumor microenvironment. Overall,
MALT1 is required for the activation and cytotoxic function of
T cells, and the effect of anti-PD-1 therapy is completely abolished
in the absence of MALT1.
Next, we chose to explore the function of CLEC4D (also called

Dectin-3, CLECSF8, or MCL), a CLR that is well-known to mediate
anti-fungal innate immune responses26, which showed the same
positive effect on the immunotherapy outcome as MALT1 (Fig. 4f).
Consistent with our computational analysis, Clec4d−/− mice38

receiving anti-PD-1 treatment showed no significant reduction in
tumor burden compared with Clec4d−/− mice receiving IgG
control, whereas the treatment can inhibit tumor development
in groups of WT mice (Fig. 6a–c). To further investigate the
mechanism underlying the lack of response to anti-PD-1 therapy
in Clec4d−/− mice, we analyzed the characteristics of the tumor-
infiltrating myeloid cells for the reason that CLEC4D is mainly
expressed on myeloid cells (Supplementary Fig. 5c). In responsive
WT mice, we observed that the percentage of myeloid-derived
suppressor cells (MDSCs) was markedly reduced (Fig. 6d). The MFIs
of CD206+ (the marker for pro-tumoral M2 macrophages)
expressed on both macrophages and MDSCs were also trending
down after anti-PD-1 treatment (Fig. 6e, f), consistent with the
view that anti-PD-1 therapy can relieve partial immunosuppres-
sion mediated by pro-tumoral M2 macrophages and MDSCs39,40.
In contrast, the percentage of MDSCs is not significantly reduced
in the Clec4d−/− mice after anti-PD-1 treatment and the MFIs of
CD206+ expressed on both macrophages and MDSCs were
increased (Fig. 6d–f). These results suggest that KO of Clec4d
limits the efficacy of anti-PD-1 treatment via maintaining the
myeloid-mediated immunosuppressive effect.
To further confirm the myeloid-mediated immunosuppression

in TIME, we performed RNA-seq experiments on mixed macro-
phages and MDSCs sorted from tumor tissues in WT and Clec4d−/−

mice with/without anti-PD-1 treatment. Our analysis showed that
signature of M2 macrophages was indeed significantly down-
regulated in WT mice upon anti-PD-1 treatment, but such

signature was trending up, although not statistically significant
up in Clec4d−/− mice upon treatment (Fig. 6g–i). Similarly, two
separate sets of markers for MDSCs were both significantly
downregulated in WT mice upon anti-PD-1 treatment; however,
no significant difference is observed in Clec4d−/− mice. Altogether,
these results suggest an essential role of CLEC4D for myeloid-
mediated immunosuppression in limiting the efficacy of anti-PD-1
therapy, highlighting the possibility of combinatory strategies by
stimulating CLEC4D together with anti-PD-1 treatment to improve
therapeutic efficiency.

DISCUSSION
Despite the rapid growth of multi-dimensional omic data derived
from tumor samples, the statistical power to identify prognostic
markers for cancer immunotherapies is often limited due to the
small sample sizes of the individual clinical studies. Under the
assumptions that diverse immunotherapies share the common
goal of reactivating the host immune system against tumor cells
and therefore their effect rely largely on the sensitivity of TIME and
not the tumor’s tissue of origin, we integrated multi-dimension
data from patients across all cancer types in TCGA, to identify
novel biological pathways associated with patient response to
immunotherapies. The degree of tumor malignancy and the
sensitivity of TIME are key factors impacting the survival outcomes
of immunotherapies. However, without controlling the general
characteristics of tumors, traditional analysis often detected
signatures involved in the transformative, proliferative, and
metastatic capabilities of tumors acquired during progression7.
By selecting pathways that have a stronger correlation with
patient survival after immunotherapy than after non-
immunotherapeutic treatment, we successfully discovered prog-
nostic genes and pathways that are immune-related and
specifically associated with the efficacy of immunotherapy. Using
the expression level of IPMGs as features, we clustered patients
across multiple cancer types into groups with distinct response
rates to immunotherapies and trained a logistic regression model
to predict patient survival. Notably, the prediction model achieved
high accuracy in patients treated with anti-PD-1 therapy in two
independent clinical studies, despite that the discovery data used
to train the model consists only patients receiving other types of
immunotherapy, suggesting that patients who respond to one
type of immunotherapy are likely to benefit from other types of
immunotherapies as well. The accurate cross-immunotherapy
prediction in pan-cancer analysis supports the assumption that
the sensitivity of TIME is likely to be one of the major determinants
of the efficacy of a variety of immunotherapies.
Expectedly, the majority of IPMGs positively correlated with

response to immunotherapy are pro-inflammatory cytokines (IL6
and IL1B), T-cell co-stimulators (ICOS, CD40LG, and CD28), and
positive regulators involved in promoting immune responses
against tumors (NFATC2, PRKCQ, and NCK1). It is likely to be that
TIME with higher levels of expression of such immune-stimulatory
genes is more readily activated after immunotherapy, resulting in
a better response. Interestingly, a small number of IPMGs have
been reported to suppress immune activation, such as IL1041 and
CYLD42, indicating that the therapeutic effect of immunotherapies
might be achieved by targeting pathways associated with these
immune-inhibitors, similar to the effect of the anti-PD-L1 inhibitors
to the PD-L1-positive tumors.
Tumor tissue is a mixture of many cell types, including not only

tumor cells but also cells residing in the tumor microenvironment,
such as various lymphocytes and stromal cells. Here we removed
the effect of leukocyte proportion on the expression of immune-
related genes and focused on the activity status of the genes. It
should be noted that the immune cell composition of the tumor
microenvironment can also serve as a prognostic marker for
immunotherapies43,44. With the rapid development of single-cell
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Fig. 5 MALT1 plays a profound role in the immune rejection of tumor cells and the response to the anti-PD-1 therapy. a WT Pan T cells
were stimulated by plate-bound anti-CD3/28 (5 μg/ml) for the indicated time points. The Malt1 protein level (left) and mRNA level (right) was
detected by WB or qPCR, respectively. b Tumor cells were inoculated subcutaneously in Malt1+/− and Malt1−/− mice. Tumor growth was
measured using calipers at indicated time points and tumor weights were calculated at the end stage. c The percentage of CD8+ T cells in the
tumor-infiltrated lymphocytes (TILs) gated on CD45.2+. d The percentage of IFN-γ- and Granzyme B-producing CD8+ T cells gated on CD8+

cells. e The FACS plot of PD-1-expressing CD8+ T cells gated on CD8+ cells, and statistical results of PD-1+CD8+ percentage and mean
fluorescence intensity (MFI) of PD-1 expression on CD8+ T cells. f Tumor growth in LysCre/Malt1fl/fl and control mice. g Tumor growth in
CD4Cre/Malt1fl/fl and control mice. h Tumor growth in mice treated with anti-PD-1 antibody or IgG control. Statistical analysis was performed
by unpaired Student t-test and the error bars represent ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. These results are from one
representative experiment of three independent biological replicates.
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RNA-seq technology, dissecting the cell composition of the tumor
microenvironment has been made possible45. Studying the
expression of IPMGs in a variety of functional subpopulations at
a single-cell scale would greatly expand our understanding of the
mechanisms underlying their function in the immune response to
cancerous cells.
The role of adaptive immunity in antitumor response has been

substantiated in many studies. Recently, increasing evidence
supports that innate immunity also plays a significant role in
suppressing growth and progression of malignant tumors. One of
the best-studied effectors of innate immunosurveillance is the
natural killer (NK) cell. The production of IFN-γ in NK cells induces
M1 macrophages, which can manifest the activity of cancer
immunoediting in the absence of adaptive immunity46. In our
study, we found the CLR signaling pathway was linked to response
to immunotherapy. Previous research has generally focused on its

function in innate recognition of pathogen-associated molecular
patterns. One recent study showed that agonists or antagonists of
CLRs signaling are potential therapeutic reagents for cancer
immunotherapy27. Here we validated CLEC4D, a member of the
CLR superfamily, was critical in mediating the immunosuppression
effect of myeloid cells and in tumor resistance to anti-PD-1
therapy. Our results suggest that these IPMGs are not merely
biomarkers and reactivating IPMGs in patients with suppressed
immune microenvironment may improve the response rate and
effect of immune checkpoint blockers.

METHODS
Molecular and clinical data
We downloaded the gene expression table of the tumor samples from
the TCGA cohort generated by the PanCancer Atlas Consortium
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(https://gdc.cancer.gov/about-data/publications/pancanatlas). A total of
11,069 samples comprising 33 diverse cancer types were included. We
replaced the missing values in the expression table with the average
expression of the gene in the other samples of the same cancer type. A
total of 20,256 genes remained after we excluded genes with expression
value <1 in all samples. Finally, the expression table was log2 transformed,
followed by quantile normalization.
We downloaded mutation annotation files (MAFs) for TCGA patients

processed using the VarScan2 pipeline. The MAFs contain detailed
information about the locations and the variant types of somatic point
mutations in 9850 tumor samples across 33 cancer types.
Clinical record data were downloaded through the TCGA portal. Among

the 4298 samples with complete clinical information, we identified 218
patients who had been treated with immunotherapies (Supplementary
Data 1).

Mutation correction
To more accurately represent the functionality of genes in each sample, we
adjusted the expression table according to “mutation correction” strategy,
which considers the functional disruptions in protein-coding genes due to
non-synonymous mutations. Cancer cells accumulate thousands of
mutations during the process of tumorigenesis. The functions of the
genes driving cancer initiation, progression, and immune evasion are
frequently disrupted by non-synonymous mutations, which alter the
amino acid sequences of the encoded proteins. Therefore, when
investigating the function of cancer-related genes on their expression
levels, it is important to consider the consequences of non-synonymous
mutations. For example, tumors carrying disruptive mutations in the TP53
gene appear to have elevated mutation rates regardless of how high the
expression level of the gene47. To characterize the protein function of
cancer-related genes more accurately, we developed “mutation correction”
strategy to account for the functional changes in protein-coding genes
caused by non-synonymous mutations (Fig. 1b). These detailed procedures
are illustrated in the following steps.
We downloaded TCGA MAFs processed by VarScan2 for all cancer types.

These files contain the mutation information for every mutation site in
each sample. We considered the six classes of base substitutions, C > A, C
> G, C > T, T > A, T > C, T > G, and the immediate 5′- and 3′-bases to each
mutated base48. Considering the strand symmetry, each mutation site can
be assigned to 1 of 192 substitution categories. For each cancer type, we
calculated the frequency of each category based on the record of MAFs.
We divided the number of observed mutations of each substitution
category in a specific cancer type by the total number of mutations in all
192 categories, resulting in the background frequency of each substitution
category in a specific cancer type.
For each codon of a gene, there are nine possible substitution types

when only considering single-nucleotide mutations and each mutation can
be identified as non-synonymous or synonymous mutation according to
whether this mutation changed the amino acid. Here we denote the pα,
α∈ [1, 2,…, 9] as the non-synonymous mutation category frequency, p’α,
α∈ [1, 2,…, 9] as the synonymous mutation category frequency. Then, we
summed all the non-synonymous conditions (ni) and synonymous
conditions (si) for the codon i of this gene (total k codons in the gene).
Finally, we summed up all the codons of the gene j and calculated the non-
synonymous mutation background (Nj) and synonymous mutation back-
ground (Sj).

ni ¼
X

α

pα α 2 1; 2; ¼ ; 9½ �ð Þ (1)

si ¼
X

α

p0α α 2 1; 2; ¼ ; 9½ �ð Þ (2)

Nj ¼
X

i

ni i 2 1; 2; ¼ ; k½ �ð Þ (3)

Sj ¼
X

i

si i 2 1; 2; ¼ ; k½ �ð Þ (4)

For each cancer type, we calculated the non-synonymous mutation
number Cj and the synonymous mutation number C’j, which belong to the
single-nucleotide variation type for each mutated gene j. Then, the dN/dS

metric was calculated as follows:

dN
dS

¼
Cj
Nj
þ 1

C0
j

Sj
þ 1

(5)

To identify significantly mutated genes, we used the binomial test in
each cancer type individually, to identify genes significantly enriched with
non-synonymous mutations compared to the expected background
mutation rate. The observed values are the synonymous mutation number
and non-synonymous mutation number counted from MAFs, whereas the
expected values are the background synonymous mutation frequencies
and non-synonymous mutation frequencies from step 2. The final
significantly mutated gene list is the union of those genes whose dN/dS
values are >1 and the binomial test has a significant p-value (p-value <
0.05) in each cancer type. Conceivably, KEGG analysis showed that these
hyper-mutated genes were enriched in pathways related to oncogenic
signaling and tumor progression (Supplementary Fig. 6a).
We defined a protein activity score to correct the raw expression

profiles, to represent the functional activity of a protein more accurately.
Notably, the protein activity score was aimed to correct those significantly
mutated genes illustrated in step 2. We calculated a pan-cancer mutation
category frequency considering the imbalance in sample sizes for different
cancer types. We multiplied the initial frequency for each mutation
category in a certain cancer type with the corresponding sample number
and then summed them up, which was denoted as rj,k. Then, we denoted
Tj,k as the number of non-synonymous mutations observed across all
cancer types for the codon k of gene j. For a significantly mutated gene, we
calculated an index Ij,k for each of the mutated codons as follows:

Ij;k ¼ rj;k
Tj;k

(6)

The index was then scaled to 0 ~ 1 for all mutated codons. Next, the
protein activity score for gene i of sample m was calculated by multiplying
the codon indexes as follows:

Sj;m ¼
Y

k

Ij;k (7)

Structural variations such as frameshifts or splicing-site mutations were
considered to have a loss-of-function effect and the score was assigned a
value of 0. Genes with no mutation observed were assigned a score of 1.
Finally, we multiplied the score with the expression value to get the
mutation-corrected expression table.

Leukocyte fraction correction
To more accurately represent the activity of genes in each sample, we
adjusted the expression table according to “leukocyte fraction correction”
strategy, which determines the activity of immune-related genes in tumor-
infiltrating leukocytes by removing the effect of leukocyte proportion on
gene expression. The tumor microenvironment consists of not only tumor
tissue but also normal tissue, stromal cells, and infiltrating lymphocytes,
the gene activities of which play a key role in the antitumor immune
response. Gene expression levels in TCGA cohort were measured by RNA-
seq of bulk tumor tissues from patients. To better characterize the activity
status of the immune-related genes in the tumor microenvironment, we
corrected the expression level of these genes by removing the
confounding effect of the infiltrating leukocyte fraction (Fig. 1c), as follows.
The leukocyte fraction was assessed previously by identifying genomic

regions with differential DNA methylation between pure leukocyte cells and
normal tissue49. The proportion of tumor cells in a tumor sample—tumor
purity—was inferred by ABSOLUTE50, which takes advantage of the
frequency of somatic DNA alterations in the whole-genome sequencing data.
We define immune-related genes to be corrected as those with an

expression level that shows a positive correlation with leukocyte fraction
but negative correlation with tumor proportion across all tumor samples
(Pearson’s correlation). We identified 676 immune-related genes with a
correlation coefficient cutoff of 0.3. Gene ontology enrichment analysis
shows that the 676 genes were significantly overrepresented in immune-
related biological processes (Supplementary Fig. 6b).
To account for the heterogeneity of the leukocyte proportion between

different tumor samples, we calculated the activity of the immune-related
genes by dividing the gene expression value by the leukocyte fraction
(Fig. 1c).
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Survival analysis
We define the survival time of a patient as the time interval between the
date of receiving the immunotherapy and the date of the final follow-up.
Using a larger range of survival time might introduce more confounding
factors in our analysis, e.g., cancer-free patients may die because of natural
aging given a long period of time. Given that the majority of the patients
receiving immunotherapy are at a later stage of cancer development, we
chose to use 3 years as the upper limit of the survival analysis to limit the
effect of the confounders and to ensure that there is a sufficient number of
patients who survive to downstream analysis. After processing the survival
time, 99 out of the 218 patients received immunotherapy, for whom both
transcriptomic and clinical information were available. These patients are
across 12 cancer types and received the following types of immunothera-
pies: vaccines (BCG, AE-37, E-75, oncophage, and HSPPC-96), IFN-α,
proleukin, IFN-γ, CTLA-4 inhibitor, and other monoclonal antibodies,
respectively. Furthermore, 2737 patients without immunotherapy treat-
ment were retained in our analysis using the same selection criteria
(Supplementary Data 1).
The association between gene expression and the survival of patients

was evaluated by the log-rank test. Our analysis involves patients of
diverse cancer types. If we simply pool patients together and divide them
into high-expression and low-expression groups, genes expressed
specifically in a certain cancer type may be significantly correlated with
patient survival, simply because the survival of patients with this cancer
type on average is higher or lower compared with other cancer types. To
reduce the confounding effect of cancer-specific genes and differences in
overall survival rates between cancer types, we selected the top (bottom)
30% of samples in each cancer type based on gene expression and then
merged the top (bottom) samples from all cancer types as the high-
expression (low-expression) group. Then, we compared the survival rates
of high-expression and low-expression groups by a one-tailed hypothesis
of the log-rank test, which means that we tested whether higher gene
expression associated significantly with better (Supplementary Fig. 6c) or
lower (Supplementary Fig. 6d) survival of patients.
The above survival analysis was performed to rank genes from the whole

genome based on the log-rank test p-value for 99 patients receiving
immunotherapies. Two ranked gene lists were generated based on the first
hypothesis that higher expression can lead to better prognosis and the
second hypothesis that lower expression can lead to better prognosis.
Next, we performed the same analysis on 2737 patients not receiving
immunotherapy as a control.

Identification of pathways correlating with
immunotherapeutic responses
To find pathways that can potentially impact immunotherapy, we removed
the pathways related to the general cancer status, e.g., cancer initiation,
cancer types, or cancer stages. A total of 291 pathways from the KEGG
database remained after the removal of 37 pathways related to “cancer” or
“disease”. The ranked genome lists based on the statistical significance (the
log-rank test p-value) of survival analysis were used as input in pre-ranked
GSEA20 to identify significant KEGG pathways involved in response to
immunotherapy.
To determine whether a pathway has a specific effect on patients’

response to immunotherapies or it may affect patient survival regardless of
the treatment, first we ranked all genes based on their significant level in
the survival analysis for patients receiving immunotherapies and then
calculated the p-value of pre-ranked GSEA for a specific pathway. If the p-
values of survival analysis of genes belonging to the pathway are
significantly skewed to small values according to the pre-ranked GSEA
analysis, the pathway is considered as a survival-related pathway. Next, we
randomly sampled the same number of patients treated with non-
immunotherapies and performed pre-ranked GSEA as we did for patients
receiving immunotherapies. For each pathway, we performed random
sampling 1000 times and generated the p-value distribution of 1000 pre-
ranked GSEA tests on patients receiving non-immunotherapies. If the p-
value for patients receiving immunotherapies is more significant than the
p-values for patients receiving non-immunotherapies, we considered the
pathway as having an immunotherapy-specific effect on patient survival.
Here we performed the analysis on each survival-related pathway. If a
pathway has a general effect on patients receiving non-immunotherapies,
it is unlikely to have less specific effect on patients receiving immunother-
apy. Thus, we only considered one tail, i.e., a pathway has a specific effect
on immunotherapy in addition to its general effect, and set the p-value
rank among 1000 p-values of permutations cutoff at the 95th percentile.

We consider the analysis on different pathways independent as each
pathway is comparing to a background p-value distribution that is specific
to the pathway. We note that immunotherapy-specific pathways may also
have an effect on survival of patients treated with non-immunotherapies,
although the significance is less that on survival of patients receiving
immunotherapies. Pre-ranked GSEA was performed using by “fgsea” R
package51.

Quantile–quantile plot
We validated the results of pre-ranked GSEA by the “QQ plot,” a method
used to determine whether a pathway is more significant in patients
receiving immunotherapy than patients not receiving immunotherapy.
From the comparison of the GSEA results of identified pathways between
patients receiving and not receiving immunotherapy, we could conclude
that these pathways are more significantly enriched in the patients
receiving immunotherapy. The QQ plot provides a stricter method to
visualize this relationship.
First, we performed survival analysis for patients receiving immunother-

apy, then we calculated a p-value (log-rank test) for each gene in the whole
genome as “P-value list A”. Second, we performed the same survival
analysis for patients not receiving immunotherapy for 1000 times; for each
time, we randomly picked the same patient number as patients receiving
immunotherapy and then we calculated 1000 p-values for each gene in
whole the genome, and nominated this P-value matrix as “P-value matrix
B”. In our analysis, we compared the trend of significance among the three
groups of p-value for each pathway found in our study. When we sought to
study a pathway that contained 50 genes, the first group of 50 p-values
was derived from “P-value list A”, which showed 50 p-values for these 50
genes; the second group of 50 p-values was derived from “P-value list A”,
which showed the 95th quantile of randomly selected 50 p-values from “P-
value list A” 1000 times; and the third group of p-values was derived from
“P-value matrix B”, which showed the 95th quantile of these 50 genes
based on randomly selected patients not receiving immunotherapy for
1000 times. The first group indicated the trend of significance of the genes
on specific pathways in patients receiving immunotherapy, the second
group indicated the trend of significance of whole-genome level in
patients receiving immunotherapy, and the third group indicated the
trend of significance of whole-genome level in patients not receiving
immunotherapy. We set two criteria to decide whether a pathway is
significantly enriched in patients receiving immunotherapy: the survival
significance level of genes of patients accepting immunotherapy on this
pathway (the first group) should be higher than the whole genome of
patients receiving immunotherapy (the second group); the other should be
higher than that of patients not accepting immunotherapy (the third
group).

Feature selection to prioritize pathways and IPMGs
Fifty-five (32) pathways specifically correlated with immunotherapeutic
responses were identified based on the mutation (leukocyte fraction)
correction profile. To prioritize these pathways, we performed the RFS
method21 using “ranger” R package52, a nonparametric and nonlinear
approach for the analysis of right-censored survival data that has been
used in several risk models and determined to be superior to the
traditional Cox proportional model. Each pathway can be scored in each
patient receiving immunotherapy by ssGSEA31. Then, we used the ssGSEA
score as the predictor and the survival time (scaled within 1 year) with the
final status of patients as response variables, to rank pathways by the
feature importance of the RSF output. After feature selection, significant
pathways were shown according to their variable importance p-values.
Then, we intersected significant pathways obtained from two correction
methods to find pathways significantly related to survival and then we
identified genes showing a strong connection to patient survival from
these pathways as IPMGs. These genes were also prioritized by RSF.

The predictive model of patient response to immunotherapy
To examine whether the expression level of candidate genes from the
immunotherapy-specific pathways can predict the survival of patients after
immunotherapy, we performed elastic net logistic regression to predict the
survival status (alive or deceased) of patients using “glmnet” packages in
R53. In addition to the TCGA cohort, we downloaded three additional
published cohorts with transcriptome and clinical records of immunother-
apy as independent datasets to build prediction model: cohort 1 from
Hugo et al.7 and cohort 2 from Riaz et al.29.
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The prediction model (logistic regression) is a binary classifier system to
predict the survival status (alive or deceased) of patients at one time point.
We found that few patients in other independent cohorts survived over 3
years and most of them were dead within 2 years. Thus, we decided that
the survival time in our prediction model is scaled to 1 year, to maintain a
balanced classification of the living status. Finally, we counted the number
of patients with transcriptome and clinical records within 1-year survival:
127 from TCGA (alive, n= 104; deceased, n= 23), 24 from cohort 1 (alive,
n= 16; deceased, n= 8), and 32 from cohort 2 (alive, n= 31; deceased,
n= 1). The mRNA expression level is given by fragments per kilobase of
transcript per million mapped reads in all samples.
We built different prediction models by selecting the expression of

different number IPMGs prioritized by RSF as features: all 64, top 50, top 40,
top 30, top 20, and top 10 genes (Supplementary Fig. 1e). For each model,
the TCGA data were divided into discovery and validation sets (2/3 and 1/3
of samples). However, there were imbalanced classification problems both
in the training and validation set. The Synthetic Minority Oversampling
Technique54, a very popular method to fight imbalanced classification
problems by oversampling new samples of the minority class or
undersampling samples of majority class using the nearest neighbors,
was used to solve the problem that there were more living patients than
deceased patients in the training set by “DMwR” R package. We solved the
same problem in the validation set by artificially creating a balanced set.
We randomly selected the same number of living patients as deceased
patients, then these selected living patients and fixed deceased patients
were merged into a validation set. We generated 1000 such validation sets
by randomly selecting living patients and got the average performance of
1000 tests as the final performance of a model.
The above cross-validation in the TCGA cohort showed the top 40 IPMGs

achieved the best performance. To test the generalizability of their
predictive value, we used the TCGA cohort as training data, and cohort 1
and cohort 2 as an independent validation set to build the model. The
imbalanced classification problems were solved, as above. The AUC was
used to assess the performance of the prediction model.

Clustering analysis of patients exhibiting different immune
state
We used the expression of IPMGs that were used in the predictive model
to cluster the 2836 patients: 99 immunotherapy-treated and 2737 non-
immunotherapy-treated. We ranked the patients based on ssGSEA scores31

calculated based on the expression of the 40 IPMGs. The boundary of
ssGSEA scores between groups were set to ensure immunotherapy-treated
patients were equally split up into groups. Here, all patients were classified
into three groups and each group contained 33 immunotherapy-treated
patients (Fig. 4a). We performed the same analysis for two and four groups
(Supplementary Figs. 3a–c and 3d–f). Then, we compared the 3-year
survival differences of patients receiving immunotherapy among the
groups. To test whether the patient groupings are based on patient
response to immunotherapy and not merely on the overall survival of the
patients, we randomly selected the same number of patients that were
treated with other non-immunotherapy in each group to perform survival
analysis as a control. We repeated this process 5000 times and compared
how many times the survival differences of patients under non-
immunotherapy are smaller than those under immunotherapy. We showed
the median p-value of survival differences of 5000 permutations in the
survival plot (Fig. 4c).
To demonstrate the robustness of the clustering result, we used another

method, hierarchical clustering, to separate the 2836 patients into two
groups (Supplementary Fig. 4a) or four groups (Supplementary Fig. 4d).
Reassuringly, in both cases, we observed more significant survival
differences among groups in immunotherapy-treated patients (Supple-
mentary Fig. 4b, e) than in non-immunotherapy-treated patients
(Supplementary Fig. 4c, f).
A total of 2836 patients across 32 cancer types were clustered into

groups with distinct survival rates after immunotherapy in the clustering
analysis. The next question we wanted to explore further was what factors
contribute to the different response status in different groups. Thus, we
performed the one-tailed differential expression analysis (Mann–Whitney
U-test) for all genes in genome and performed pre-ranked GSEA51. The
ranked genes, of which high expression associated with prolonged
survival, were significantly enriched in many immune-related pathways,
whereas those genes of which high expression associated with the worst
survival outcomes were enriched in few basic pathways (Supplementary
Data 5).

Genome-wide association studies
To discover SNPs that are associated with response to immunotherapy,
we obtained genotype data from TCGA Affymetrix SNP Array 6.0
containing 103 immunotherapy-treated tumor samples. For the top 40
candidate genes, a total of 3956 SNPs was identified in the gene-body
and 100 kb surrounding region. After removing SNPs with minor allele
frequency <5%, the remaining 3050 SNPs were used for genome-wide
association analysis (GWAS) using the R package “rrBLUP”55. This analysis
examines the relationship between the SNP genotype and the patient
phenotype (1-year survival status). To adjust the p-value of the analysis,
the genotype of each SNP was shuffled 1000 times and the 95th
percentile ranking among the shuffled test P-value was used as a cutoff.
Then, 122 SNPs that significantly correlated with patient survival were
identified (p-value < 0.05, cutoff < 0.05).
To estimate the association between SNPs and gene expression, we

calculated the Pearson’s correlation between the expression of candidate
gene and each SNP’s genotype near the gene. In this step, the cutoff of the
Pearson’s p-value was obtained based on 1000 permutations of the
genotype data. Finally, 7 of 122 SNPs were significantly associated with the
expression of four candidate genes (Pearson’s correlation coefficient > 0.2;
p < 0.05; cutoff < 0.05) (Supplementary Data 6).

RNA-seq analysis
Macrophages and MDSCs were sorted from relative mouse tumor (WT
mice received IgG: n= 6; WT mice received anti-PD-1: n= 6; KO mice
received IgG: n= 3; KO mice received anti-PD-1: n= 4) and then mixed for
sequencing. The reads were aligned using HISAT2 (version 2.1.0)56 and
quantified using htseq-count (version 0.11.2)57. Then, transcripts-per-
millions (TPMs) were transformed by quantile-normalized in WT or KO
group. Expression signature score was defined as the average normalized
TPM of the signature genes. MDSCs signature genes were from previous
studies (h)58,59 and CellMarker database (i)60.

Stimulation of Pan T cells
WT Pan T cells were isolated according to the manufacturer’s protocol for
the EasySeP Mouse CD90.2 Pos Slctn Kit II (Stemcell) and the isolated cells
were stimulated by plate-coated α-CD3/28 (5 μg/ml) at indicated time
points. The cells were collected for either western blotting or quantitative
PCR (qPCR) to detect Malt1 protein or mRNA level. Cells were lysed in lysis
buffer (150mM NaCl, 50 mM HEPES pH 7.4, 1 mM EDTA, 1% Nonidet P-40,
and protease inhibitors) and total lysates were subjected to SDS-PAGE
(sodium dodecyl sulphate-polyacrylamide gel electrophoresis) followed by
blotting with indicated antibodies Malt1 (Santa Cruz), Tubulin (Santa Cruz),
and secondary antibody (Easybio). Total RNA was extracted by Trizol
(Invitrogen) and cDNA was synthesized using the RevertAid First Strand
cDNA Synthesis Kit (Thermo Fisher). Quantitative reverse-transcription PCR
using 2× SYBR Green PCR Master Mix (Genestar) was performed on the ABI
7500 Real-Time PCR system (Applied Biosystems). Results were obtained
using the 2−△△CT method (Malt1 qPCR primer forward: 5′-CACAGAACTG
AGCGACTTCCT-3′; reverse: 5′-CAGCCAACACTGCCTTGGA-3′).

Tumor model
Cancer cell line E.G7-OVA was kindly provided by Dr. Chen Dong Lab
(Tsinghua University, Beijing, China). Aliquots of 2 × 105 E.G7-OVA tumor
cells were inoculated subcutaneously into the shaved flank of each mouse.
Tumor growth was monitored every other day or 3 days using calipers and
tumor sizes were calculated using the following formula: length/2 × width/
2 × π. For isolation of tumor-infiltrated lymphocytes, tumors were digested
with 1mg/ml Type 2 collagenase (Worthington) in the presence of 10 U/ml
DNase I for 1 h at 37 °C prior to centrifuge on a 40% and 70%
discontinuous Percoll gradient (GE Healthcare). The isolated cells were
incubated with antibodies as follows: Fixable Viability Dye eFluor 506
(cat#65-0866-18), APC-eFluor780 anti-CD45.2 (clone 104, cat#47-0454080),
FITC anti-CD45 (clone 30-F11, cat#11-0451-82), APC-eFluor780 α-CD8
(clone 53-6.7, cat#47-0081-82), eFluor 450 anti-CD279 (PD-1) (clone J43,
cat#48-9985-82), PE α-Granzyme B (clone NGZB, cat#48-8898-82), and
PerCP-Cyanine5.5 anti-CD11b (clone M1/70, Cat#45-0112-82) were pur-
chased from eBioscience. APC α-IFN-γ (clone XMG1.2, cat#505810) and
BV421 anti-CD206 (clone C068C2, cat#141717) were purchased from
Biolegend. FITC α-Ly6G (clone 1A8, cat#551460) and Alexa Flour700 α-Ly6C
(clone AL-21, cat#561237) were purchased from BD Biosciences. The stock
solutions of antibodies were diluted at 1 : 400. For cytokine staining, cells

N Yang et al.

12

npj Precision Oncology (2021)    37 Published in partnership with The Hormel Institute, University of Minnesota



were stimulated with 50 ng/ml PMA (Sigma) and 500 ng/ml Ionomycin
(Sigma) in the presence of GolgiStop (BD Biosciences) for 5 h at 37 °C and
stained for cell surface markers followed by fixation/permeabilization and
intracellular cytokine staining (BD Biosciences). Samples were analyzed by
LSR Fortessa cytometers (BD Biosciences) and the resulting data were
analyzed by FlowJo software. To test the effect of PD-1 blockade, 100 μg
anti-PD-1 (J43, Bioxcell, Cat#BE0033) antibody were injected intraperito-
neally every other day from Day 15 in Malt1 KO mice, whereas in Clec4d KO
mice, anti-PD-1 treatment was started from Day 9.

Ethics approval
The mouse experiments were conducted following the institutional
guidelines and were approved by the Institutional Animal Care and Use
Committees at Tsinghua University. The transcriptomic and clinical data of
patients in the study were publicly available from the TCGA project. This
study did not involve any human participants.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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