Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death among patients with epilepsy, causing a global public health burden. The underlying mechanisms of SUDEP remain elusive, and effective prevention or treatment strategies require further investigation. A major challenge in current SUDEP research is the lack of an ideal model that maximally mimics the human condition. Animal models are important for revealing the potential pathogenesis of SUDEP and preventing its occurrence; however, they have potential limitations due to species differences that prevent them from precisely replicating the intricate physiological and pathological processes of human disease. This Review provides a comprehensive overview of several available SUDEP animal models, highlighting their pros and cons. More importantly, we further propose the establishment of an ideal model based on brain–computer interfaces and artificial intelligence, hoping to offer new insights into potential advancements in SUDEP research. In doing so, we hope to provide valuable information for SUDEP researchers, offer new insights into the pathogenesis of SUDEP and open new avenues for the development of strategies to prevent SUDEP.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
We are sorry, but there is no personal subscription option available for your country.
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Thijs, R. D., Surges, R., O’Brien, T. J. & Sander, J. W. Epilepsy in adults. Lancet 393, 689–701 (2019).
Beghi, E. The epidemiology of epilepsy. Neuroepidemiology 54, 185–191 (2020).
Surges, R., Thijs, R. D., Tan, H. L. & Sander, J. W. Sudden unexpected death in epilepsy: risk factors and potential pathomechanisms. Nat. Rev. Neurol. 5, 492–504 (2009).
Nashef, L., So, E. L., Ryvlin, P. & Tomson, T. Unifying the definitions of sudden unexpected death in epilepsy. Epilepsia 53, 227–233 (2012).
Devinsky, O., Hesdorffer, D. C., Thurman, D. J., Lhatoo, S. & Richerson, G. Sudden unexpected death in epilepsy: epidemiology, mechanisms, and prevention. Lancet Neurol. 15, 1075–1088 (2016).
Thurman, D. J., Hesdorffer, D. C. & French, J. A. Sudden unexpected death in epilepsy: assessing the public health burden. Epilepsia 55, 1479–1485 (2014).
Harden, C. et al. Practice guideline summary: sudden unexpected death in epilepsy incidence rates and risk factors: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology 88, 1674–1680 (2017).
Hesdorffer, D. C. et al. Combined analysis of risk factors for SUDEP. Epilepsia 52, 1150–1159 (2011).
Sveinsson, O., Andersson, T., Mattsson, P., Carlsson, S. & Tomson, T. Clinical risk factors in SUDEP: a nationwide population-based case–control study. Neurology 94, e419–e429 (2020).
Shorvon, S. & Tomson, T. Sudden unexpected death in epilepsy. Lancet 378, 2028–2038 (2011).
Massey, C. A., Sowers, L. P., Dlouhy, B. J. & Richerson, G. B. Mechanisms of sudden unexpected death in epilepsy: the pathway to prevention. Nat. Rev. Neurol. 10, 271–282 (2014).
Ryvlin, P. et al. Incidence and mechanisms of cardiorespiratory arrests in epilepsy monitoring units (MORTEMUS): a retrospective study. Lancet Neurol. 12, 966–977 (2013).
Crotts, M. S., Kim, Y., Bravo, E., Richerson, G. B. & Teran, F. A. A ketogenic diet protects DBA/1 and Scn1aR1407X/+ mice against seizure-induced respiratory arrest independent of ketosis. Epilepsy Behav. 124, 108334 (2021).
Faingold, C., Tupal, S. & N’Gouemo, P. in Models of Seizures and Epilepsy (eds Pitkänen, A. et al.) 441–453 (Elsevier, 2017); https://doi.org/10.1016/B978-0-12-804066-9.00032-8
Faingold, C. L., Randall, M. & Tupal, S. DBA/1 mice exhibit chronic susceptibility to audiogenic seizures followed by sudden death associated with respiratory arrest. Epilepsy Behav. 17, 436–440 (2010).
Faingold, C. L. Role of GABA abnormalities in the inferior colliculus pathophysiology—audiogenic seizures. Hear. Res. 168, 223–237 (2002).
Kommajosyula, S. P., Randall, M. E., Brozoski, T. J., Odintsov, B. M. & Faingold, C. L. Specific subcortical structures are activated during seizure-induced death in a model of sudden unexpected death in epilepsy (SUDEP): a manganese-enhanced magnetic resonance imaging study. Epilepsy Res. 135, 87–94 (2017).
Uteshev, V. V., Tupal, S., Mhaskar, Y. & Faingold, C. L. Abnormal serotonin receptor expression in DBA/2 mice associated with susceptibility to sudden death due to respiratory arrest. Epilepsy Res. 88, 183–188 (2010).
Feng, H.-J. & Faingold, C. L. Abnormalities of serotonergic neurotransmission in animal models of SUDEP. Epilepsy Behav. 71, 174–180 (2017).
Schilling, W. P. et al. Simultaneous cardiac and respiratory inhibition during seizure precedes death in the DBA/1 audiogenic mouse model of SUDEP. PLoS ONE 14, e0223468 (2019).
Ma, H. et al. Dorsal raphe nucleus to pre-Bötzinger complex serotonergic neural circuit is involved in seizure-induced respiratory arrest. iScience 25, 105228 (2022).
Lian, X. et al. Noradrenergic pathway from the locus coeruleus to heart is implicated in modulating SUDEP. iScience 26, 106284 (2023).
Faingold, C. L., Kommajosyula, S. P., Long, X., Plath, K. & Randall, M. Serotonin and sudden death: differential effects of serotonergic drugs on seizure-induced respiratory arrest in DBA/1 mice. Epilepsy Behav. 37, 198–203 (2014).
Faingold, C. L. & Randall, M. Effects of age, sex, and sertraline administration on seizure-induced respiratory arrest in the DBA/1 mouse model of sudden unexpected death in epilepsy (SUDEP). Epilepsy Behav. 28, 78–82 (2013).
Tupal, S. & Faingold, C. L. Evidence supporting a role of serotonin in modulation of sudden death induced by seizures in DBA/2 mice. Epilepsia 47, 21–26 (2006).
Borowicz, K. K. & Banach, M. Antiarrhythmic drugs and epilepsy. Pharmacol. Rep. 66, 545–551 (2014).
Chen, Q. et al. Decreased serotonin synthesis is involved in seizure-induced respiratory arrest in DBA/1 mice. NeuroReport 30, 842–846 (2019).
Zhang, H. et al. 5-Hydroxytryptophan, a precursor for serotonin synthesis, reduces seizure-induced respiratory arrest. Epilepsia 57, 1228–1235 (2016).
Faingold, C. L. et al. Serotonergic agents act on 5-HT3 receptors in the brain to block seizure-induced respiratory arrest in the DBA/1 mouse model of SUDEP. Epilepsy Behav. 64, 166–170 (2016).
Zeng, C. et al. Fluoxetine prevents respiratory arrest without enhancing ventilation in DBA/1 mice. Epilepsy Behav. 45, 1–7 (2015).
Tupal, S. & Faingold, C. L. Serotonin 5-HT4 receptors play a critical role in the action of fenfluramine to block seizure-induced sudden death in a mouse model of SUDEP. Epilepsy Res. 177, 106777 (2021).
Sainju, R. K. et al. Use of fluoxetine to augment the inter-ictal hypercapnic ventilatory response in patients with epilepsy: a pilot study. Neurol. India 70, 2125–2129 (2022).
Faingold, C. L., Randall, M. & Kommajosyula, S. P. Susceptibility to seizure-induced sudden death in DBA/2 mice is altered by adenosine. Epilepsy Res. 124, 49–54 (2016).
Purnell, B. S., Petrucci, A. N., Li, R. & Buchanan, G. F. The effect of time‐of‐day and circadian phase on vulnerability to seizure‐induced death in two mouse models. J. Physiol. 599, 1885–1899 (2021).
Martin, B., Dieuset, G., Pawluski, J. L., Costet, N. & Biraben, A. Audiogenic seizure as a model of sudden death in epilepsy: a comparative study between four inbred mouse strains from early life to adulthood. Epilepsia 61, 342–349 (2020).
Faingold, C. L. et al. in Models of Seizures and Epilepsy (eds Pitkänen, A. et al.) 251–267 (Elsevier, 2017).
Kommajosyula, S. P., Randall, M. E. & Faingold, C. L. Inhibition of adenosine metabolism induces changes in post-ictal depression, respiration, and mortality in genetically epilepsy prone rats. Epilepsy Res. 119, 13–19 (2016).
Kommajosyula, S. P., Randall, M. E., Tupal, S. & Faingold, C. L. Alcohol withdrawal in epileptic rats—effects on postictal depression, respiration, and death. Epilepsy Behav. 64, 9–14 (2016).
Fuller, J. L. & Sjursen, F. H. Audiogenic seizures in eleven mouse strains. J. Hered. 58, 135–140 (1967).
Swartz, C. M. A mechanism of seizure induction by electricity and its clinical implications. J. ECT 30, 94–97 (2014).
Shimada, T. & Yamagata, K. Pentylenetetrazole-induced kindling mouse model. J. Vis. Exp. https://doi.org/10.3791/56573 (2018).
Borowicz-Reutt, K. K. Effects of antiarrhythmic drugs on antiepileptic drug action—a critical review of experimental findings. Int. J. Mol. Sci. 23, 2891 (2022).
Hajek, M. A. & Buchanan, G. F. Influence of vigilance state on physiological consequences of seizures and seizure-induced death in mice. J. Neurophysiol. 115, 2286–2293 (2016).
Naritoku, D. K., Casebeer, D. J. & Darbin, O. Effects of seizure repetition on postictal and interictal neurocardiac regulation in the rat. Epilepsia 44, 912–916 (2003).
Damasceno, D. D., Ferreira, A. J., Doretto, M. C. & Almeida, A. P. Cardiovascular dysautonomia after seizures induced by maximal electroshock in Wistar rats. Seizure 21, 711–716 (2012).
Darbin, O., Casebeer, D. J. & Naritoku, D. K. Cardiac dysrhythmia associated with the immediate postictal state after maximal electroshock in freely moving rat. Epilepsia 43, 336–341 (2002).
Darbin, O. & Naritoku, D. K. Pharmacologic evidence for a parasympathetic role in seizure-induced neurocardiac regulatory abnormalities. Epilepsy Behav. 5, 28–30 (2004).
Kruse, S. W., Dayton, K. G., Purnell, B. S., Rosner, J. I. & Buchanan, G. F. Effect of monoamine reuptake inhibition and α1 blockade on respiratory arrest and death following electroshock-induced seizures in mice. Epilepsia 60, 495–507 (2019).
Ng, M. & Pavlova, M. Why are seizures rare in rapid eye movement sleep? Review of the frequency of seizures in different sleep stages. Epilepsy Res. Treat. 2013, 932790 (2013).
Bazil, C. W. & Walczak, T. S. Effects of sleep and sleep stage on epileptic and nonepileptic seizures. Epilepsia 38, 56–62 (1997).
Purnell, B. S., Hajek, M. A. & Buchanan, G. F. Time-of-day influences on respiratory sequelae following maximal electroshock-induced seizures in mice. J. Neurophysiol. 118, 2592–2600 (2017).
Dlouhy, B. J. et al. Mechanism for sudden unexpected death in epilepsy: the amygdala as a pathway to seizure-induced apnea, respiratory agnosia and sudden death. Neurosurgery 61, 223 (2014).
Lacuey, N., Zonjy, B., Londono, L. & Lhatoo, S. D. Amygdala and hippocampus are symptomatogenic zones for central apneic seizures. Neurology 88, 701–705 (2017).
Mcnamara, J. O. Analyses of the molecular basis of kindling development. Psychiatry Clin. Neurosci. 49, S175–S178 (1995).
Joyal, K. G. et al. Selective serotonin reuptake inhibitors and 5-HT2 receptor agonists have distinct, sleep-state dependent effects on postictal breathing in amygdala kindled mice. Neuroscience 513, 76–95 (2023).
Möller, C. et al. Impact of repeated kindled seizures on heart rate rhythms, heart rate variability, and locomotor activity in rats. Epilepsy Behav. 92, 36–44 (2019).
Gören, M. Z., Aker, R., Yananlı, H. R. & Onat, F. Y. Extracellular concentrations of catecholamines and amino acids in the dorsomedial hypothalamus of kindled rats. Pharmacology 68, 190–197 (2003).
Hao, Y., Guan, X.-H., Liu, T.-T., He, Z.-G. & Xiang, H.-B. Hypothesis: the central medial amygdala may be implicated in sudden unexpected death in epilepsy by melanocortinergic-sympathetic signaling. Epilepsy Behav. 41, 30–32 (2014).
Xu, L.-J., Liu, T.-T., He, Z.-G., Hong, Q.-X. & Xiang, H.-B. Hypothesis: CeM-RVLM circuits may be implicated in sudden unexpected death in epilepsy by melanocortinergic-sympathetic signaling. Epilepsy Behav. 45, 124–127 (2015).
Totola, L. T. et al. Amygdala rapid kindling impairs breathing in response to chemoreflex activation. Brain Res. 1718, 159–168 (2019).
Ruit, K. G. & Neafsey, E. J. Cardiovascular and respiratory responses to electrical and chemical stimulation of the hippocampus in anesthetized and awake rats. Brain Res. 457, 310–321 (1988).
Bealer, S. L. & Little, J. G. Seizures following hippocampal kindling induce QT interval prolongation and increased susceptibility to arrhythmias in rats. Epilepsy Res 105, 216–219 (2013).
Ajayi, I. E. et al. Hippocampal modulation of cardiorespiratory function. Respir. Physiol. Neurobiol. 252–253, 18–27 (2018).
Aleksandrov, V. G. & Aleksandrova, N. P. [The role of insular cortex in autonomic control]. Fiziol Cheloveka 41, 114–124 (2015).
Sanchez-Larsen, A., Principe, A., Ley, M., Navarro-Cuartero, J. & Rocamora, R. Characterization of the insular role in cardiac function through intracranial electrical stimulation of the human insula. Ann. Neurol. 89, 1172–1180 (2021).
Li, J., Ming, Q. & Lin, W. The insula lobe and sudden unexpected death in epilepsy: a hypothesis. Epileptic Disord. 19, 10–14 (2017).
Sanchez-Larsen, A. et al. Insular role in blood pressure and systemic vascular resistance regulation. Neuromodulation https://doi.org/10.1016/j.neurom.2022.12.012 (2023).
Scorza, F. A., de Almeida, A.-C. G., Scorza, C. A. & Finsterer, J. Sudden unexpected death in epilepsy and abnormal glucose metabolism in the rat insular cortex: a brain within the heart. Clinics 77, 100059 (2022).
Lacuey, N. et al. Left-insular damage, autonomic instability, and sudden unexpected death in epilepsy. Epilepsy Behav. 55, 170–173 (2016).
Bagaev, V. & Aleksandrov, V. Visceral-related area in the rat insular cortex. Auton Neurosci 125, 16–21 (2006).
Ming, Q. et al. Changes in autonomic nervous function and influencing factors in a rat insular cortex electrical kindling model. Neurosci. Lett. 721, 134782 (2020).
Bertram, E. The relevance of kindling for human epilepsy. Epilepsia 48, 65–74 (2007).
Gorter, J. A., van Vliet, E. A. & Lopes da Silva, F. H. Which insights have we gained from the kindling and post-status epilepticus models? J. Neurosci. Methods 260, 96–108 (2016).
Collard, R. et al. Galanin analogs prevent mortality from seizure-induced respiratory arrest in mice. Front. Neural Circuits 16, 901334 (2022).
Akyuz, E. et al. Investigating cardiac morphological alterations in a pentylenetetrazol-kindling model of epilepsy. Diagnostics 10, E388 (2020).
Singh, T., Mishra, A. & Goel, R. K. PTZ kindling model for epileptogenesis, refractory epilepsy, and associated comorbidities: relevance and reliability. Metab. Brain Dis. 36, 1573–1590 (2021).
Qu, H., Eloqayli, H. & Sonnewald, U. Pentylenetetrazole affects metabolism of astrocytes in culture. J. Neurosci. Res. 79, 48–54 (2005).
Taha, A. Y., Ciobanu, F. A., Saxena, A. & McIntyre Burnham, W. Assessing the link between omega-3 fatty acids, cardiac arrest, and sudden unexpected death in epilepsy. Epilepsy Behav. 14, 27–31 (2009).
Taha, A. Y. et al. Seizure resistance in fat-1 transgenic mice endogenously synthesizing high levels of omega-3 polyunsaturated fatty acids. J. Neurochem. 105, 380–388 (2008).
Taha, A. Y., Filo, E., Ma, D. W. L. & McIntyre Burnham, W. Dose-dependent anticonvulsant effects of linoleic and alpha-linolenic polyunsaturated fatty acids on pentylenetetrazol induced seizures in rats. Epilepsia 50, 72–82 (2009).
Van Erum, J., Van Dam, D. & De Deyn, P. P. PTZ-induced seizures in mice require a revised Racine scale. Epilepsy Behav. 95, 51–55 (2019).
Dhir, A. Pentylenetetrazol (PTZ) kindling model of epilepsy. Curr. Protoc. Neurosci. 58, 9.37.1–9.37.12 (2012).
Wang, Y. et al. Protocol for modulation of the serotonergic DR-PBC neural circuit to prevent SUDEP in the acoustic and PTZ-induced DBA/1 mouse models of SUDEP. STAR Protoc. 4, 102129 (2023).
Akyuz, E. et al. Myocardial iron overload in an experimental model of sudden unexpected death in epilepsy. Front. Neurol. 12, 609236 (2021).
Dibué, M. et al. Cardiac phenomena during kainic-acid induced epilepsy and lamotrigine antiepileptic therapy. Epilepsy Res. 108, 666–674 (2014).
Jefferys, J. G. R., Arafat, M. A., Irazoqui, P. P. & Lovick, T. A. Brainstem activity, apnea, and death during seizures induced by intrahippocampal kainic acid in anaesthetized rats. Epilepsia 60, 2346–2358 (2019).
Zhang, K., Tolstykh, G. P., Sanchez, R. M. & Cavazos, J. E. Chronic cellular hyperexcitability in elderly epileptic rats with spontaneous seizures induced by kainic acid status epilepticus while young adults. Aging Dis. 2, 332–338 (2011).
Tolstykh, G. P. & Cavazos, J. E. Potential mechanisms of sudden unexpected death in epilepsy. Epilepsy Behav. 26, 410–414 (2013).
Shen, H.-Y. et al. Adenosine-A2A receptor signaling plays a crucial role in sudden unexpected death in epilepsy. Front. Pharmacol. 13, 910535 (2022).
Shen, H.-Y., Li, T. & Boison, D. A novel mouse model for sudden unexpected death in epilepsy (SUDEP): role of impaired adenosine clearance. Epilepsia 51, 465–468 (2010).
Biggs, E. N., Budde, R., Jefferys, J. G. R. & Irazoqui, P. P. Ictal activation of oxygen-conserving reflexes as a mechanism for sudden death in epilepsy. Epilepsia 62, 752–764 (2021).
Nakase, K. et al. Laryngospasm, central and obstructive apnea during seizures: defining pathophysiology for sudden death in a rat model. Epilepsy Res. 128, 126–139 (2016).
Budde, R. B. et al. Acid reflux induced laryngospasm as a potential mechanism of sudden death in epilepsy. Epilepsy Res. 148, 23–31 (2018).
Budde, R. B., Pederson, D. J., Biggs, E. N., Jefferys, J. G. R. & Irazoqui, P. P. Mechanisms and prevention of acid reflux induced laryngospasm in seizing rats. Epilepsy Behav. 111, 107188 (2020).
Mandal, R., Budde, R., Lawlor, G. L. & Irazoqui, P. Utilizing multimodal imaging to visualize potential mechanism for sudden death in epilepsy. Epilepsy Behav. 122, 108124 (2021).
Biggs, E. N., Budde, R. B., Jefferys, J. G. R. & Irazoqui, P. P. Carotid body stimulation as a potential intervention in sudden death in epilepsy. Epilepsy Behav. 136, 108918 (2022).
Hillert, M. H. et al. Dynamics of hippocampal acetylcholine release during lithium-pilocarpine-induced status epilepticus in rats. J. Neurochem. 131, 42–52 (2014).
Curia, G., Longo, D., Biagini, G., Jones, R. S. G. & Avoli, M. The pilocarpine model of temporal lobe epilepsy. J. Neurosci. Methods 172, 143–157 (2008).
Auzmendi, J. et al. Pilocarpine-induced status epilepticus is associated with p-glycoprotein induction in cardiomyocytes, electrocardiographic changes, and sudden death. Pharmaceuticals 11, 21 (2018).
Derera, I. D., Delisle, B. P. & Smith, B. N. Functional neuroplasticity in the nucleus tractus solitarius and increased risk of sudden death in mice with acquired temporal lobe epilepsy. eNeuro 4, ENEURO.0319-17.2017 (2017).
Santos, L. E. C. et al. The amygdala lesioning due to status epilepticus—changes in mechanisms controlling chloride homeostasis. Clinics 78, 100159 (2023).
Derera, I. D., Smith, K. C. & Smith, B. N. Altered A-type potassium channel function in the nucleus tractus solitarii in acquired temporal lobe epilepsy. J. Neurophysiol. 121, 177–187 (2019).
Sharma, S., Mazumder, A. G., Rana, A. K., Patial, V. & Singh, D. Spontaneous recurrent seizures mediated cardiac dysfunction via mTOR pathway upregulation: a putative target for SUDEP management. CNS Neurol. Disord. Drug Targets 18, 555–565 (2019).
Scorzai, C. A. et al. Alcohol consumption and sudden unexpected death in epilepsy: experimental approach. Arq. Neuropsiquiatr. 67, 1003–1006 (2009).
Mameli, O., Caria, M. A., Pintus, A., Padua, G. & Mameli, S. Sudden death in epilepsy: an experimental animal model. Seizure 15, 275–287 (2006).
Mameli, O. et al. Autonomic nervous system activity and life threatening arrhythmias in experimental epilepsy. Seizure 10, 269–278 (2001).
King, A. M., Menke, N. B., Katz, K. D. & Pizon, A. F. 4-aminopyridine toxicity: a case report and review of the literature. J. Med. Toxicol. 8, 314–321 (2012).
Ayala, G. X. & Tapia, R. Late N-methyl-d-aspartate receptor blockade rescues hippocampal neurons from excitotoxic stress and death after 4-aminopyridine-induced epilepsy. Eur. J. Neurosci. 22, 3067–3076 (2005).
Salam, M. T. et al. Mortality with brainstem seizures from focal 4-aminopyridine-induced recurrent hippocampal seizures. Epilepsia 58, 1637–1644 (2017).
Lertwittayanon, W., Devinsky, O. & Carlen, P. L. Cardiorespiratory depression from brainstem seizure activity in freely moving rats. Neurobiol. Dis. 134, 104628 (2020).
van der Linde, H., Kreir, M., Teisman, A. & Gallacher, D. J. Seizure-induced Torsades de pointes: in a canine drug-induced long-QT1 model. J. Pharmacol. Toxicol. Methods 111, 107086 (2021).
Tiron, C. et al. Further evidence of the association between LQT syndrome and epilepsy in a family with KCNQ1 pathogenic variant. Seizure 25, 65–67 (2015).
Nishio, H. et al. Identification of an ethnic-specific variant (V207M) of the KCNQ1 cardiac potassium channel gene in sudden unexplained death and implications from a knock-in mouse model. Int. J. Legal Med. 123, 253–257 (2009).
Mishra, V. et al. Scn2a deletion improves survival and brain–heart dynamics in the Kcna1-null mouse model of sudden unexpected death in epilepsy (SUDEP). Hum. Mol. Genet. 26, 2091–2103 (2017).
Thouta, S., Zhang, Y., Garcia, E. & Snutch, T. P. Kv1.1 channels mediate network excitability and feed-forward inhibition in local amygdala circuits. Sci Rep. 11, 15180 (2021).
Moore, B. M. et al. The Kv1.1 null mouse, a model of sudden unexpected death in epilepsy (SUDEP). Epilepsia 55, 1808–1816 (2014).
Dhaibar, H. A., Hamilton, K. A. & Glasscock, E. Kv1.1 subunits localize to cardiorespiratory brain networks in mice where their absence induces astrogliosis and microgliosis. Mol. Cell Neurosci. 113, 103615 (2021).
Iyer, S. H. et al. Progressive cardiorespiratory dysfunction in Kv1.1 knockout mice may provide temporal biomarkers of pending sudden unexpected death in epilepsy (SUDEP): the contribution of orexin. Epilepsia 61, 572–588 (2020).
Smart, S. L. et al. Deletion of the K(V)1.1 potassium channel causes epilepsy in mice. Neuron 20, 809–819 (1998).
Glasscock, E., Yoo, J. W., Chen, T. T., Klassen, T. L. & Noebels, J. L. Kv1.1 potassium channel deficiency reveals brain-driven cardiac dysfunction as a candidate mechanism for sudden unexplained death in epilepsy. J. Neurosci. 30, 5167–5175 (2010).
Simeone, K. A., Matthews, S. A., Rho, J. M. & Simeone, T. A. Ketogenic diet treatment increases longevity in Kcna1-null mice, a model of sudden unexpected death in epilepsy. Epilepsia 57, e178–e182 (2016).
Simeone, K. A. et al. Respiratory dysfunction progresses with age in Kcna1-null mice, a model of sudden unexpected death in epilepsy. Epilepsia 59, 345–357 (2018).
Dhaibar, H., Gautier, N. M., Chernyshev, O. Y., Dominic, P. & Glasscock, E. Cardiorespiratory profiling reveals primary breathing dysfunction in Kcna1-null mice: implications for sudden unexpected death in epilepsy. Neurobiol. Dis. 127, 502–511 (2019).
Hutson, T. N. et al. Directed connectivity analysis of the neuro-cardio- and respiratory systems reveals novel biomarkers of susceptibility to SUDEP. IEEE Open J. Eng. Med. Biol. 1, 301–311 (2020).
Mishra, V., Gautier, N. M. & Glasscock, E. Simultaneous video–EEG–ECG monitoring to identify neurocardiac dysfunction in mouse models of epilepsy. J. Vis. Exp. https://doi.org/10.3791/57300 (2018).
Trosclair, K., Dhaibar, H. A., Gautier, N. M., Mishra, V. & Glasscock, E. Neuron-specific Kv1.1 deficiency is sufficient to cause epilepsy, premature death, and cardiorespiratory dysregulation. Neurobiol. Dis. 137, 104759 (2020).
Wagnon, J. L. et al. Convulsive seizures and SUDEP in a mouse model of SCN8A epileptic encephalopathy. Hum. Mol. Genet. 24, 506–515 (2015).
Wenker, I. C. et al. Postictal death is associated with tonic phase apnea in a mouse model of sudden unexpected death in epilepsy. Ann. Neurol. 89, 1023–1035 (2021).
Wengert, E. R. et al. Adrenergic mechanisms of audiogenic seizure-induced death in a mouse model of SCN8A encephalopathy. Front. Neurosci. 15, 581048 (2021).
Teran, F. A. et al. Seizures cause prolonged impairment of ventilation, CO2 chemoreception and thermoregulation. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.0450-23.2023 (2023).
Frasier, C. R. et al. Cardiac arrhythmia in a mouse model of sodium channel SCN8A epileptic encephalopathy. Proc. Natl Acad. Sci. USA 113, 12838–12843 (2016).
Teran, F. A. et al. Time of day and a ketogenic diet influence susceptibility to SUDEP in Scn1aR1407X/+ mice. Front. Neurol. 10, 278 (2019).
Auerbach, D. S. et al. Altered cardiac electrophysiology and SUDEP in a model of Dravet syndrome. PLoS ONE 8, e77843 (2013).
Loonen, I. C. M. et al. Brainstem spreading depolarization and cortical dynamics during fatal seizures in Cacna1a S218L mice. Brain 142, 412–425 (2019).
Cain, S. M. et al. Hyperexcitable superior colliculus and fatal brainstem spreading depolarization in a model of sudden unexpected death in epilepsy. Brain Commun. 4, fcac006 (2022).
Jansen, N. A. et al. Apnea associated with brainstem seizures in Cacna1aS218L mice is caused by medullary spreading depolarization. J. Neurosci. 39, 9633–9644 (2019).
Applegate, C. D. & Tecott, L. H. Global increases in seizure susceptibility in mice lacking 5-HT2C receptors: a behavioral analysis. Exp. Neurol. 154, 522–530 (1998).
Séjourné, J., Llaneza, D., Kuti, O. J. & Page, D. T. Social behavioral deficits coincide with the onset of seizure susceptibility in mice lacking serotonin receptor 2c. PLoS ONE 10, e0136494 (2015).
Gaspar, P. [Genetic models to understand how serotonin acts during development]. J. Soc. Biol. 198, 18–21 (2004).
Cheng, L. et al. Lmx1b, Pet-1, and Nkx2.2 coordinately specify serotonergic neurotransmitter phenotype. J. Neurosci. 23, 9961–9967 (2003).
Ramappa, M. et al. Peters anomaly in Nail-Patella syndrome: a case report and clinico-genetic correlation. Cornea 40, 1487–1490 (2021).
Buchanan, G. F., Murray, N. M., Hajek, M. A. & Richerson, G. B. Serotonin neurones have anti-convulsant effects and reduce seizure-induced mortality. J. Physiol. 592, 4395–4410 (2014).
Gu, B. et al. Collaborative Cross mice reveal extreme epilepsy phenotypes and genetic loci for seizure susceptibility. Epilepsia 61, 2010–2021 (2020).
Gu, B. et al. Ictal neural oscillatory alterations precede sudden unexpected death in epilepsy. Brain Commun. 4, fcac073 (2022).
Yuskaitis, C. J. et al. A mouse model of DEPDC5-related epilepsy: neuronal loss of Depdc5 causes dysplastic and ectopic neurons, increased mTOR signaling, and seizure susceptibility. Neurobiol. Dis. 111, 91–101 (2018).
Sugimoto, J. et al. Region-specific deletions of the glutamate transporter GLT1 differentially affect seizure activity and neurodegeneration in mice. Glia 66, 777–788 (2018).
Velíšková, J. et al. Early onset epilepsy and sudden unexpected death in epilepsy with cardiac arrhythmia in mice carrying the early infantile epileptic encephalopathy 47 gain-of-function FHF1(FGF12) missense mutation. Epilepsia 62, 1546–1558 (2021).
Ma, M.-G. et al. RYR2 mutations are associated with benign epilepsy of childhood with centrotemporal spikes with or without arrhythmia. Front. Neurosci. 15, 629610 (2021).
Aiba, I., Wehrens, X. H. T. & Noebels, J. L. Leaky RyR2 channels unleash a brainstem spreading depolarization mechanism of sudden cardiac death. Proc. Natl Acad. Sci. USA 113, E4895–E4903 (2016).
Kannankeril, P. J. et al. Mice with the R176Q cardiac ryanodine receptor mutation exhibit catecholamine-induced ventricular tachycardia and cardiomyopathy. Proc. Natl Acad. Sci. USA 103, 12179–12184 (2006).
Terndrup, T. E., Paskanik, A. M., Fordyce, W. E. & Kanter, R. K. Development of a piglet model of status epilepticus: preliminary results. Ann. Emerg. Med. 22, 164–170 (1993).
Terndrup, T. E., Starr, F. & Fordyce, W. E. A piglet model of status epilepticus: comparison of cardiorespiratory and metabolic changes with two methods of pentylenetetrazol administration. Ann. Emerg. Med. 23, 470–479 (1994).
Terndrup, T. E. & Fordyce, W. E. Respiratory drive during status epilepticus and its treatment: comparison of diazepam and lorazepam. Epilepsy Res. 20, 21–30 (1995).
Bateman, L. M., Li, C.-S. & Seyal, M. Ictal hypoxemia in localization-related epilepsy: analysis of incidence, severity and risk factors. Brain 131, 3239–3245 (2008).
Moseley, B. D., Nickels, K., Britton, J. & Wirrell, E. How common is ictal hypoxemia and bradycardia in children with partial complex and generalized convulsive seizures? Epilepsia 51, 1219–1224 (2010).
Moseley, B. D., Britton, J. W., Nelson, C., Lee, R. W. & So, E. Periictal cerebral tissue hypoxemia: a potential marker of SUDEP risk. Epilepsia 53, e208–e211 (2012).
Murray, S. J. & Mitchell, N. L. The translational benefits of sheep as large animal models of human neurological disorders. Front. Vet. Sci. 9, 831838 (2022).
Perentos, N. et al. Techniques for chronic monitoring of brain activity in freely moving sheep using wireless EEG recording. J. Neurosci. Methods 279, 87–100 (2017).
Stypulkowski, P. H., Giftakis, J. E. & Billstrom, T. M. Development of a large animal model for investigation of deep brain stimulation for epilepsy. Stereotact. Funct. Neurosurg. 89, 111–122 (2011).
Johnston, S. C., Horn, J. K., Valente, J. & Simon, R. P. The role of hypoventilation in a sheep model of epileptic sudden death. Ann. Neurol. 37, 531–537 (1995).
Simon, R. P. Epileptic sudden death: animal models. Epilepsia 38, S35–S37 (1997).
Johnston, S. C., Siedenberg, R., Min, J. K., Jerome, E. H. & Laxer, K. D. Central apnea and acute cardiac ischemia in a sheep model of epileptic sudden death. Ann. Neurol. 42, 588–594 (1997).
Vilella, L. et al. Postconvulsive central apnea as a biomarker for sudden unexpected death in epilepsy (SUDEP). Neurology 92, e171–e182 (2019).
Barot, N. & Nei, M. Autonomic aspects of sudden unexpected death in epilepsy (SUDEP). Clin. Auton. Res. 29, 151–160 (2019).
Opdam, H. I. et al. A sheep model for the study of focal epilepsy with concurrent intracranial EEG and functional MRI. Epilepsia 43, 779–787 (2002).
Croll, L., Szabo, C. A., Abou-Madi, N. & Devinsky, O. Epilepsy in nonhuman primates. Epilepsia 60, 1526–1538 (2019).
Szabo, C. A. & Salinas, F. S. Neuroimaging in the epileptic baboon. Front. Vet. Sci. 9, 908801 (2022).
Striano, P. & Zara, F. Epilepsy: a ‘going ape’ model for SUDEP? Nat. Rev. Neurol. 5, 639–640 (2009).
Goldman, A. M. et al. Sudden unexpected death in epilepsy genetics: molecular diagnostics and prevention. Epilepsia 57, 17–25 (2016).
Coll, M., Oliva, A., Grassi, S., Brugada, R. & Campuzano, O. Update on the genetic basis of sudden unexpected death in epilepsy. Int. J. Mol. Sci. 20, 1979 (2019).
Szabó, C. A. et al. Mortality in captive baboons with seizures: a new model for SUDEP? Epilepsia 50, 1995–1998 (2009).
Devinsky, O. et al. Incidence of cardiac fibrosis in SUDEP and control cases. Neurology 91, e55–e61 (2018).
Zhang, H. et al. Optogenetic activation of 5-HT neurons in the dorsal raphe suppresses seizure-induced respiratory arrest and produces anticonvulsant effect in the DBA/1 mouse SUDEP model. Neurobiol. Dis. 110, 47–58 (2018).
Patodia, S. et al. Serotonin transporter in the temporal lobe, hippocampus and amygdala in SUDEP. Brain Pathol. 32, e13074 (2022).
Szabó, C. Á., Patel, M. & Uteshev, V. V. Cerebrospinal fluid levels of monoamine metabolites in the epileptic baboon. J Primatol 4, 129 (2015).
Szabó, C. Á., Akopian, M., González, D. A., de la Garza, M. A. & Carless, M. A. Cardiac biomarkers associated with epilepsy in a captive baboon pedigree. Epilepsia 60, e110–e114 (2019).
de la Garza, M. A. et al. Cardiac changes in epileptic baboons with high-frequency microburst VNS therapy: a pilot study. Epilepsy Res. 155, 106156 (2019).
Brotherstone, R., Blackhall, B. & McLellan, A. Lengthening of corrected QT during epileptic seizures. Epilepsia 51, 221–232 (2010).
Myers, K. A. et al. Heart rate variability in epilepsy: a potential biomarker of sudden unexpected death in epilepsy risk. Epilepsia 59, 1372–1380 (2018).
Biet, M. et al. Prolongation of action potential duration and QT interval during epilepsy linked to increased contribution of neuronal sodium channels to cardiac late Na+ current: potential mechanism for sudden death in epilepsy. Circ. Arrhythm. Electrophysiol. 8, 912–920 (2015).
Jeppesen, J. et al. Heart rate variability analysis indicates preictal parasympathetic overdrive preceding seizure-induced cardiac dysrhythmias leading to sudden unexpected death in a patient with epilepsy. Epilepsia 55, e67–e71 (2014).
Howe, K. et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498–503 (2013).
Lucini, C., D’Angelo, L., Cacialli, P., Palladino, A. & de Girolamo, P. BDNF, brain, and regeneration: insights from zebrafish. Int. J. Mol. Sci. 19, 3155 (2018).
Novak, A. E. et al. Embryonic and larval expression of zebrafish voltage-gated sodium channel alpha-subunit genes. Dev. Dyn. 235, 1962–1973 (2006).
Baraban, S. C., Dinday, M. T. & Hortopan, G. A. Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. Nat. Commun. 4, 2410 (2013).
Alfaro, J. M., Ripoll-Gómez, J. & Burgos, J. S. Kainate administered to adult zebrafish causes seizures similar to those in rodent models. Eur. J. Neurosci. 33, 1252–1255 (2011).
Mussulini, B. H. M. et al. Seizures induced by pentylenetetrazole in the adult zebrafish: a detailed behavioral characterization. PLoS ONE 8, e54515 (2013).
Simpson, K. E. et al. Utility of zebrafish models of acquired and inherited long QT syndrome. Front. Physiol. 11, 624129 (2020).
Sharma, S., Rana, A. K., Sharma, A. & Singh, D. Inhibition of mammalian target of rapamycin attenuates recurrent seizures associated cardiac damage in a zebrafish kindling model of chronic epilepsy. J. Neuroimmune Pharmacol. https://doi.org/10.1007/s11481-021-10021-8 (2021).
Tomson, T., Sköld, A. C., Holmgen, P., Nilsson, L. & Danielsson, B. Postmortem changes in blood concentrations of phenytoin and carbamazepine: an experimental study. Ther. Drug Monit. 20, 309–312 (1998).
Hesdorffer, D. C. & Tomson, T. Sudden unexpected death in epilepsy. Potential role of antiepileptic drugs. CNS Drugs 27, 113–119 (2013).
Kiencke, V., Andresen-Streichert, H., Müller, A. & Iwersen-Bergmann, S. Quantitative determination of valproic acid in postmortem blood samples—evidence of strong matrix dependency and instability. Int. J. Legal Med. 127, 1101–1107 (2013).
Bosinski, C., Wagner, K., Zhou, X., Liu, L. & Auerbach, D. S. Multi-system monitoring for identification of seizures, arrhythmias and apnea in conscious restrained rabbits. JoVE https://doi.org/10.3791/62256 (2021).
Brunner, M. et al. Mechanisms of cardiac arrhythmias and sudden death in transgenic rabbits with long QT syndrome. J. Clin. Invest. 118, 2246–2259 (2008).
Wang, L. et al. Neural progenitor cell transplantation and imaging in a large animal model. Neurosci. Res. 59, 327–340 (2007).
Kuwabara, T. et al. A familial spontaneous epileptic feline strain: a novel model of idiopathic/genetic epilepsy. Epilepsy Res. 92, 85–88 (2010).
Kitz, S. et al. Feline temporal lobe epilepsy: review of the experimental literature. J. Vet. Intern. Med. 31, 633–640 (2017).
Chambers, J. K. et al. The domestic cat as a natural animal model of Alzheimer’s disease. Acta Neuropathol. Commun. 3, 78 (2015).
Schraeder, P. L. & Lathers, C. M. Cardiac neural discharge and epileptogenic activity in the cat: an animal model for unexplained death. Life Sci. 32, 1371–1382 (1983).
Paydarfar, D., Eldridge, F. L., Scott, S. C., Dowell, R. T. & Wagner, P. G. Respiratory responses to focal and generalized seizures in cats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 260, R934–R940 (1991).
Paydarfar, D., Eldridge, F. L., Wagner, P. G. & Dowell, R. T. Neural respiratory responses to cortically induced seizures in cats. Resp. Physiol. 89, 225–237 (1992).
Shouse, M. N., Scordato, J. C., Farber, P. R. & de Lanerolle, N. The alpha2 adrenoreceptor agonist clonidine suppresses evoked and spontaneous seizures, whereas the alpha2 adrenoreceptor antagonist idazoxan promotes seizures in amygdala-kindled kittens. Brain Res. 1137, 58–68 (2007).
Liu, W. et al. Feline foamy virus-based vectors: advantages of an authentic animal model. Viruses 5, 1702–1718 (2013).
Patterson, E. E. Canine epilepsy: an underutilized model. ILAR J 55, 182–186 (2014).
Davis, K. A. et al. A novel implanted device to wirelessly record and analyze continuous intracranial canine EEG. Epilepsy Res. 96, 116–122 (2011).
Ekenstedt, K. J., Patterson, E. E. & Mickelson, J. R. Canine epilepsy genetics. Mamm Genome 23, 28–39 (2012).
Huenerfauth, E., Nessler, J., Erath, J. & Tipold, A. Probable sudden unexpected death in dogs with epilepsy (pSUDED). Front. Vet. Sci. 8, 600307 (2021).
Musteata, M., Mocanu, D., Stanciu, G. D., Armasu, M. & Solcan, G. Interictal cardiac autonomic nervous system disturbances in dogs with idiopathic epilepsy. Vet. J. 228, 41–45 (2017).
Ware, W. A., Reina-Doreste, Y., Stern, J. A. & Meurs, K. M. Sudden death associated with QT interval prolongation and KCNQ1 gene mutation in a family of English Springer Spaniels. J. Vet. Intern. Med. 29, 561–568 (2015).
Wolpaw, J. R. & McFarland, D. J. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc. Natl Acad. Sci. USA 101, 17849–17854 (2004).
Fr, W., Dt, A., Lr, H., Jm, H. & Kv, S. High-performance brain-to-text communication via handwriting. Nature 593, 249–254 (2021).
Yang, X. et al. A natural marmoset model of genetic generalized epilepsy. Mol Brain 15, 16 (2022).
Wu, S. et al. Depth versus surface: a critical review of subdural and depth electrodes in intracranial electroencephalographic studies. Epilepsia 65, 1868–1878 (2024).
Xu, K. et al. Bioresorbable electrode array for electrophysiological and pressure signal recording in the brain. Adv. Healthc. Mater. 8, e1801649 (2019).
Crépon, B. et al. Mapping interictal oscillations greater than 200 Hz recorded with intracranial macroelectrodes in human epilepsy. Brain 133, 33–45 (2010).
Blanco, J. A. et al. Unsupervised classification of high-frequency oscillations in human neocortical epilepsy and control patients. J. Neurophysiol. 104, 2900–2912 (2010).
Salanova, V. et al. Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology 84, 1017–1025 (2015).
Krook-Magnuson, E., Armstrong, C., Oijala, M. & Soltesz, I. On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat. Commun. 4, 1376 (2013).
Gernert, M. & Feja, M. Bypassing the blood–brain barrier: direct intracranial drug delivery in epilepsies. Pharmaceutics 12, 1134 (2020).
Xie, K. et al. Portable wireless electrocorticography system with a flexible microelectrodes array for epilepsy treatment. Sci. Rep. 7, 7808 (2017).
Romanelli, P. et al. A novel neural prosthesis providing long-term electrocorticography recording and cortical stimulation for epilepsy and brain-computer interface. J. Neurosurg. 130, 1166–1179 (2018).
Cook, M. J. et al. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol. 12, 563–571 (2013).
Chen, S. et al. Optogenetics based rat-robot control: optical stimulation encodes ‘stop’ and ‘escape’ commands. Ann. Biomed. Eng. 43, 1851–1864 (2015).
Ludvig, N. et al. Long-term behavioral, electrophysiological, and neurochemical monitoring of the safety of an experimental antiepileptic implant, the muscimol-delivering subdural pharmacotherapy device in monkeys. J. Neurosurg. 117, 162–175 (2012).
Nakano, T. et al. An on-demand drug delivery system for control of epileptiform seizures. Pharmaceutics 14, 468 (2022).
Skarpaas, T. L., Jarosiewicz, B. & Morrell, M. J. Brain-responsive neurostimulation for epilepsy (RNS® System). Epilepsy Res. 153, 68–70 (2019).
Kwon, C.-S. et al. Centromedian thalamic responsive neurostimulation for Lennox–Gastaut epilepsy and autism. Ann. Clin. Transl. Neurol. 7, 2035–2040 (2020).
Kusyk, D. M., Meinert, J., Stabingas, K. C., Yin, Y. & Whiting, A. C. Systematic review and meta-analysis of responsive neurostimulation in epilepsy. World Neurosurg. 167, e70–e78 (2022).
Giles, T. X. et al. Characterizing complications of intracranial responsive neurostimulation devices for epilepsy through a retrospective analysis of the Federal MAUDE Database. Neuromodulation 25, 263–270 (2022).
Razavi, B. et al. Real-world experience with direct brain-responsive neurostimulation for focal onset seizures. Epilepsia 61, 1749–1757 (2020).
Mural, R. J. et al. A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome. Science 296, 1661–1671 (2002).
Stewart, A. M. et al. Perspectives of zebrafish models of epilepsy: what, how and where next? Brain Res. Bull. 87, 135–143 (2012).
Xia, M. et al. Disruption of synaptic transmission in the bed nucleus of the stria terminalis reduces seizure-induced death in DBA/1 mice and alters brainstem E/I balance. ASN Neuro 14, 17590914221103188 (2022).
Zhang, R., Tan, Z., Niu, J. & Feng, H.-J. Adrenergic α2 receptors are implicated in seizure-induced respiratory arrest in DBA/1 mice. Life Sci. 284, 119912 (2021).
Kommajosyula, S. P., Tupal, S. & Faingold, C. L. Deficient post-ictal cardiorespiratory compensatory mechanisms mediated by the periaqueductal gray may lead to death in a mouse model of SUDEP. Epilepsy Res. 147, 1–8 (2018).
Faingold, C. L., Randall, M., Mhaskar, Y. & Uteshev, V. V. Differences in serotonin receptor expression in the brainstem may explain the differential ability of a serotonin agonist to block seizure-induced sudden death in DBA/2 vs. DBA/1 mice. Brain Res. 1418, 104–110 (2011).
Faingold, C. L., Raisinghani, M. & N’Gouemo, P. in Neuronal Networks in Brain Function, CNS Disorders, and Therapeutics (eds Faingold, C. L. & Blumenfeld, H.) 349–373 (Elsevier, 2014); https://doi.org/10.1016/B978-0-12-415804-7.00026-5
Petrucci, A. N. et al. Post-ictal generalized EEG suppression is reduced by enhancing dorsal raphe serotonergic neurotransmission. Neuroscience 453, 206–221 (2021).
Zhan, Q. et al. Impaired serotonergic brainstem function during and after seizures. J. Neurosci. 36, 2711–2722 (2016).
Vanhoof-Villalba, S. L., Gautier, N. M., Mishra, V. & Glasscock, E. Pharmacogenetics of KCNQ channel activation in 2 potassium channelopathy mouse models of epilepsy. Epilepsia 59, 358–368 (2018).
Brennan, T. J., Seeley, W. W., Kilgard, M., Schreiner, C. E. & Tecott, L. H. Sound-induced seizures in serotonin 5-HT2c receptor mutant mice. Nat. Genet. 16, 387–390 (1997).
Zhao, Z.-Q. et al. Lmx1b is required for maintenance of central serotonergic neurons and mice lacking central serotonergic system exhibit normal locomotor activity. J. Neurosci. 26, 12781–12788 (2006).
Acknowledgements
The work was supported by the National Natural Science Foundation of China (grant nos. 81771403 and 81974205), the Natural Science Foundation of Zhejiang Province (LZ20H090001) and the Program of New Century 131 outstanding young talent plan top-level of Hang Zhou to H.H.Z., by the National Natural Science Foundation of China (grant no. 82001379) and the Natural Science Foundation of Hunan Province (grant no. 2020JJ5952) to H.T.Z. and by the Natural Science Foundation of Hunan Province (grant no. 2021JJ31047) to C.Z.
Author information
Authors and Affiliations
Contributions
The review was designed and conceptualized by H.H.Z. J.X.G., W.H.S., L.L. and Y.L.W. wrote the draft of the manuscript and drafted the figure. Y.Y., Z.Y.Z., Y.X.W., Q.X., L.Y.G., Y.L.Z., Y.S., H.T.Z. and C.Z. reviewed the manuscript and participated in the revisions. All authors contributed to the final version of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Lab Animal thanks Prosper N’Gouemo and the other, anonymous reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Gu, J., Shao, W., Liu, L. et al. Challenges and future directions of SUDEP models. Lab Anim 53, 226–243 (2024). https://doi.org/10.1038/s41684-024-01426-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41684-024-01426-y