Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Challenges and future directions of SUDEP models

Subjects

Abstract

Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death among patients with epilepsy, causing a global public health burden. The underlying mechanisms of SUDEP remain elusive, and effective prevention or treatment strategies require further investigation. A major challenge in current SUDEP research is the lack of an ideal model that maximally mimics the human condition. Animal models are important for revealing the potential pathogenesis of SUDEP and preventing its occurrence; however, they have potential limitations due to species differences that prevent them from precisely replicating the intricate physiological and pathological processes of human disease. This Review provides a comprehensive overview of several available SUDEP animal models, highlighting their pros and cons. More importantly, we further propose the establishment of an ideal model based on brain–computer interfaces and artificial intelligence, hoping to offer new insights into potential advancements in SUDEP research. In doing so, we hope to provide valuable information for SUDEP researchers, offer new insights into the pathogenesis of SUDEP and open new avenues for the development of strategies to prevent SUDEP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Future SUDEP animal models with BCI and applied AI.

Similar content being viewed by others

References

  1. Thijs, R. D., Surges, R., O’Brien, T. J. & Sander, J. W. Epilepsy in adults. Lancet 393, 689–701 (2019).

    Article  PubMed  Google Scholar 

  2. Beghi, E. The epidemiology of epilepsy. Neuroepidemiology 54, 185–191 (2020).

    Article  PubMed  Google Scholar 

  3. Surges, R., Thijs, R. D., Tan, H. L. & Sander, J. W. Sudden unexpected death in epilepsy: risk factors and potential pathomechanisms. Nat. Rev. Neurol. 5, 492–504 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Nashef, L., So, E. L., Ryvlin, P. & Tomson, T. Unifying the definitions of sudden unexpected death in epilepsy. Epilepsia 53, 227–233 (2012).

    Article  PubMed  Google Scholar 

  5. Devinsky, O., Hesdorffer, D. C., Thurman, D. J., Lhatoo, S. & Richerson, G. Sudden unexpected death in epilepsy: epidemiology, mechanisms, and prevention. Lancet Neurol. 15, 1075–1088 (2016).

    Article  PubMed  Google Scholar 

  6. Thurman, D. J., Hesdorffer, D. C. & French, J. A. Sudden unexpected death in epilepsy: assessing the public health burden. Epilepsia 55, 1479–1485 (2014).

    Article  PubMed  Google Scholar 

  7. Harden, C. et al. Practice guideline summary: sudden unexpected death in epilepsy incidence rates and risk factors: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology 88, 1674–1680 (2017).

    Article  PubMed  Google Scholar 

  8. Hesdorffer, D. C. et al. Combined analysis of risk factors for SUDEP. Epilepsia 52, 1150–1159 (2011).

    Article  PubMed  Google Scholar 

  9. Sveinsson, O., Andersson, T., Mattsson, P., Carlsson, S. & Tomson, T. Clinical risk factors in SUDEP: a nationwide population-based case–control study. Neurology 94, e419–e429 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shorvon, S. & Tomson, T. Sudden unexpected death in epilepsy. Lancet 378, 2028–2038 (2011).

    Article  PubMed  Google Scholar 

  11. Massey, C. A., Sowers, L. P., Dlouhy, B. J. & Richerson, G. B. Mechanisms of sudden unexpected death in epilepsy: the pathway to prevention. Nat. Rev. Neurol. 10, 271–282 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ryvlin, P. et al. Incidence and mechanisms of cardiorespiratory arrests in epilepsy monitoring units (MORTEMUS): a retrospective study. Lancet Neurol. 12, 966–977 (2013).

    Article  PubMed  Google Scholar 

  13. Crotts, M. S., Kim, Y., Bravo, E., Richerson, G. B. & Teran, F. A. A ketogenic diet protects DBA/1 and Scn1aR1407X/+ mice against seizure-induced respiratory arrest independent of ketosis. Epilepsy Behav. 124, 108334 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Faingold, C., Tupal, S. & N’Gouemo, P. in Models of Seizures and Epilepsy (eds Pitkänen, A. et al.) 441–453 (Elsevier, 2017); https://doi.org/10.1016/B978-0-12-804066-9.00032-8

  15. Faingold, C. L., Randall, M. & Tupal, S. DBA/1 mice exhibit chronic susceptibility to audiogenic seizures followed by sudden death associated with respiratory arrest. Epilepsy Behav. 17, 436–440 (2010).

    Article  PubMed  Google Scholar 

  16. Faingold, C. L. Role of GABA abnormalities in the inferior colliculus pathophysiology—audiogenic seizures. Hear. Res. 168, 223–237 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Kommajosyula, S. P., Randall, M. E., Brozoski, T. J., Odintsov, B. M. & Faingold, C. L. Specific subcortical structures are activated during seizure-induced death in a model of sudden unexpected death in epilepsy (SUDEP): a manganese-enhanced magnetic resonance imaging study. Epilepsy Res. 135, 87–94 (2017).

    Article  PubMed  Google Scholar 

  18. Uteshev, V. V., Tupal, S., Mhaskar, Y. & Faingold, C. L. Abnormal serotonin receptor expression in DBA/2 mice associated with susceptibility to sudden death due to respiratory arrest. Epilepsy Res. 88, 183–188 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Feng, H.-J. & Faingold, C. L. Abnormalities of serotonergic neurotransmission in animal models of SUDEP. Epilepsy Behav. 71, 174–180 (2017).

    Article  PubMed  Google Scholar 

  20. Schilling, W. P. et al. Simultaneous cardiac and respiratory inhibition during seizure precedes death in the DBA/1 audiogenic mouse model of SUDEP. PLoS ONE 14, e0223468 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma, H. et al. Dorsal raphe nucleus to pre-Bötzinger complex serotonergic neural circuit is involved in seizure-induced respiratory arrest. iScience 25, 105228 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lian, X. et al. Noradrenergic pathway from the locus coeruleus to heart is implicated in modulating SUDEP. iScience 26, 106284 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Faingold, C. L., Kommajosyula, S. P., Long, X., Plath, K. & Randall, M. Serotonin and sudden death: differential effects of serotonergic drugs on seizure-induced respiratory arrest in DBA/1 mice. Epilepsy Behav. 37, 198–203 (2014).

    Article  PubMed  Google Scholar 

  24. Faingold, C. L. & Randall, M. Effects of age, sex, and sertraline administration on seizure-induced respiratory arrest in the DBA/1 mouse model of sudden unexpected death in epilepsy (SUDEP). Epilepsy Behav. 28, 78–82 (2013).

    Article  PubMed  Google Scholar 

  25. Tupal, S. & Faingold, C. L. Evidence supporting a role of serotonin in modulation of sudden death induced by seizures in DBA/2 mice. Epilepsia 47, 21–26 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Borowicz, K. K. & Banach, M. Antiarrhythmic drugs and epilepsy. Pharmacol. Rep. 66, 545–551 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Chen, Q. et al. Decreased serotonin synthesis is involved in seizure-induced respiratory arrest in DBA/1 mice. NeuroReport 30, 842–846 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, H. et al. 5-Hydroxytryptophan, a precursor for serotonin synthesis, reduces seizure-induced respiratory arrest. Epilepsia 57, 1228–1235 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Faingold, C. L. et al. Serotonergic agents act on 5-HT3 receptors in the brain to block seizure-induced respiratory arrest in the DBA/1 mouse model of SUDEP. Epilepsy Behav. 64, 166–170 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zeng, C. et al. Fluoxetine prevents respiratory arrest without enhancing ventilation in DBA/1 mice. Epilepsy Behav. 45, 1–7 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tupal, S. & Faingold, C. L. Serotonin 5-HT4 receptors play a critical role in the action of fenfluramine to block seizure-induced sudden death in a mouse model of SUDEP. Epilepsy Res. 177, 106777 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Sainju, R. K. et al. Use of fluoxetine to augment the inter-ictal hypercapnic ventilatory response in patients with epilepsy: a pilot study. Neurol. India 70, 2125–2129 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Faingold, C. L., Randall, M. & Kommajosyula, S. P. Susceptibility to seizure-induced sudden death in DBA/2 mice is altered by adenosine. Epilepsy Res. 124, 49–54 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Purnell, B. S., Petrucci, A. N., Li, R. & Buchanan, G. F. The effect of time‐of‐day and circadian phase on vulnerability to seizure‐induced death in two mouse models. J. Physiol. 599, 1885–1899 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Martin, B., Dieuset, G., Pawluski, J. L., Costet, N. & Biraben, A. Audiogenic seizure as a model of sudden death in epilepsy: a comparative study between four inbred mouse strains from early life to adulthood. Epilepsia 61, 342–349 (2020).

    Article  PubMed  Google Scholar 

  36. Faingold, C. L. et al. in Models of Seizures and Epilepsy (eds Pitkänen, A. et al.) 251–267 (Elsevier, 2017).

  37. Kommajosyula, S. P., Randall, M. E. & Faingold, C. L. Inhibition of adenosine metabolism induces changes in post-ictal depression, respiration, and mortality in genetically epilepsy prone rats. Epilepsy Res. 119, 13–19 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Kommajosyula, S. P., Randall, M. E., Tupal, S. & Faingold, C. L. Alcohol withdrawal in epileptic rats—effects on postictal depression, respiration, and death. Epilepsy Behav. 64, 9–14 (2016).

    Article  PubMed  Google Scholar 

  39. Fuller, J. L. & Sjursen, F. H. Audiogenic seizures in eleven mouse strains. J. Hered. 58, 135–140 (1967).

    Article  CAS  PubMed  Google Scholar 

  40. Swartz, C. M. A mechanism of seizure induction by electricity and its clinical implications. J. ECT 30, 94–97 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Shimada, T. & Yamagata, K. Pentylenetetrazole-induced kindling mouse model. J. Vis. Exp. https://doi.org/10.3791/56573 (2018).

  42. Borowicz-Reutt, K. K. Effects of antiarrhythmic drugs on antiepileptic drug action—a critical review of experimental findings. Int. J. Mol. Sci. 23, 2891 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hajek, M. A. & Buchanan, G. F. Influence of vigilance state on physiological consequences of seizures and seizure-induced death in mice. J. Neurophysiol. 115, 2286–2293 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Naritoku, D. K., Casebeer, D. J. & Darbin, O. Effects of seizure repetition on postictal and interictal neurocardiac regulation in the rat. Epilepsia 44, 912–916 (2003).

    Article  PubMed  Google Scholar 

  45. Damasceno, D. D., Ferreira, A. J., Doretto, M. C. & Almeida, A. P. Cardiovascular dysautonomia after seizures induced by maximal electroshock in Wistar rats. Seizure 21, 711–716 (2012).

    Article  PubMed  Google Scholar 

  46. Darbin, O., Casebeer, D. J. & Naritoku, D. K. Cardiac dysrhythmia associated with the immediate postictal state after maximal electroshock in freely moving rat. Epilepsia 43, 336–341 (2002).

    Article  PubMed  Google Scholar 

  47. Darbin, O. & Naritoku, D. K. Pharmacologic evidence for a parasympathetic role in seizure-induced neurocardiac regulatory abnormalities. Epilepsy Behav. 5, 28–30 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Kruse, S. W., Dayton, K. G., Purnell, B. S., Rosner, J. I. & Buchanan, G. F. Effect of monoamine reuptake inhibition and α1 blockade on respiratory arrest and death following electroshock-induced seizures in mice. Epilepsia 60, 495–507 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ng, M. & Pavlova, M. Why are seizures rare in rapid eye movement sleep? Review of the frequency of seizures in different sleep stages. Epilepsy Res. Treat. 2013, 932790 (2013).

    PubMed  PubMed Central  Google Scholar 

  50. Bazil, C. W. & Walczak, T. S. Effects of sleep and sleep stage on epileptic and nonepileptic seizures. Epilepsia 38, 56–62 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Purnell, B. S., Hajek, M. A. & Buchanan, G. F. Time-of-day influences on respiratory sequelae following maximal electroshock-induced seizures in mice. J. Neurophysiol. 118, 2592–2600 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dlouhy, B. J. et al. Mechanism for sudden unexpected death in epilepsy: the amygdala as a pathway to seizure-induced apnea, respiratory agnosia and sudden death. Neurosurgery 61, 223 (2014).

    Article  Google Scholar 

  53. Lacuey, N., Zonjy, B., Londono, L. & Lhatoo, S. D. Amygdala and hippocampus are symptomatogenic zones for central apneic seizures. Neurology 88, 701–705 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mcnamara, J. O. Analyses of the molecular basis of kindling development. Psychiatry Clin. Neurosci. 49, S175–S178 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Joyal, K. G. et al. Selective serotonin reuptake inhibitors and 5-HT2 receptor agonists have distinct, sleep-state dependent effects on postictal breathing in amygdala kindled mice. Neuroscience 513, 76–95 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Möller, C. et al. Impact of repeated kindled seizures on heart rate rhythms, heart rate variability, and locomotor activity in rats. Epilepsy Behav. 92, 36–44 (2019).

    Article  PubMed  Google Scholar 

  57. Gören, M. Z., Aker, R., Yananlı, H. R. & Onat, F. Y. Extracellular concentrations of catecholamines and amino acids in the dorsomedial hypothalamus of kindled rats. Pharmacology 68, 190–197 (2003).

    Article  PubMed  Google Scholar 

  58. Hao, Y., Guan, X.-H., Liu, T.-T., He, Z.-G. & Xiang, H.-B. Hypothesis: the central medial amygdala may be implicated in sudden unexpected death in epilepsy by melanocortinergic-sympathetic signaling. Epilepsy Behav. 41, 30–32 (2014).

    Article  PubMed  Google Scholar 

  59. Xu, L.-J., Liu, T.-T., He, Z.-G., Hong, Q.-X. & Xiang, H.-B. Hypothesis: CeM-RVLM circuits may be implicated in sudden unexpected death in epilepsy by melanocortinergic-sympathetic signaling. Epilepsy Behav. 45, 124–127 (2015).

    Article  PubMed  Google Scholar 

  60. Totola, L. T. et al. Amygdala rapid kindling impairs breathing in response to chemoreflex activation. Brain Res. 1718, 159–168 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Ruit, K. G. & Neafsey, E. J. Cardiovascular and respiratory responses to electrical and chemical stimulation of the hippocampus in anesthetized and awake rats. Brain Res. 457, 310–321 (1988).

    Article  CAS  PubMed  Google Scholar 

  62. Bealer, S. L. & Little, J. G. Seizures following hippocampal kindling induce QT interval prolongation and increased susceptibility to arrhythmias in rats. Epilepsy Res 105, 216–219 (2013).

    Article  PubMed  Google Scholar 

  63. Ajayi, I. E. et al. Hippocampal modulation of cardiorespiratory function. Respir. Physiol. Neurobiol. 252–253, 18–27 (2018).

    Article  PubMed  Google Scholar 

  64. Aleksandrov, V. G. & Aleksandrova, N. P. [The role of insular cortex in autonomic control]. Fiziol Cheloveka 41, 114–124 (2015).

    CAS  PubMed  Google Scholar 

  65. Sanchez-Larsen, A., Principe, A., Ley, M., Navarro-Cuartero, J. & Rocamora, R. Characterization of the insular role in cardiac function through intracranial electrical stimulation of the human insula. Ann. Neurol. 89, 1172–1180 (2021).

    Article  PubMed  Google Scholar 

  66. Li, J., Ming, Q. & Lin, W. The insula lobe and sudden unexpected death in epilepsy: a hypothesis. Epileptic Disord. 19, 10–14 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Sanchez-Larsen, A. et al. Insular role in blood pressure and systemic vascular resistance regulation. Neuromodulation https://doi.org/10.1016/j.neurom.2022.12.012 (2023).

  68. Scorza, F. A., de Almeida, A.-C. G., Scorza, C. A. & Finsterer, J. Sudden unexpected death in epilepsy and abnormal glucose metabolism in the rat insular cortex: a brain within the heart. Clinics 77, 100059 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lacuey, N. et al. Left-insular damage, autonomic instability, and sudden unexpected death in epilepsy. Epilepsy Behav. 55, 170–173 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bagaev, V. & Aleksandrov, V. Visceral-related area in the rat insular cortex. Auton Neurosci 125, 16–21 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Ming, Q. et al. Changes in autonomic nervous function and influencing factors in a rat insular cortex electrical kindling model. Neurosci. Lett. 721, 134782 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Bertram, E. The relevance of kindling for human epilepsy. Epilepsia 48, 65–74 (2007).

    Article  PubMed  Google Scholar 

  73. Gorter, J. A., van Vliet, E. A. & Lopes da Silva, F. H. Which insights have we gained from the kindling and post-status epilepticus models? J. Neurosci. Methods 260, 96–108 (2016).

    Article  PubMed  Google Scholar 

  74. Collard, R. et al. Galanin analogs prevent mortality from seizure-induced respiratory arrest in mice. Front. Neural Circuits 16, 901334 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Akyuz, E. et al. Investigating cardiac morphological alterations in a pentylenetetrazol-kindling model of epilepsy. Diagnostics 10, E388 (2020).

    Article  Google Scholar 

  76. Singh, T., Mishra, A. & Goel, R. K. PTZ kindling model for epileptogenesis, refractory epilepsy, and associated comorbidities: relevance and reliability. Metab. Brain Dis. 36, 1573–1590 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Qu, H., Eloqayli, H. & Sonnewald, U. Pentylenetetrazole affects metabolism of astrocytes in culture. J. Neurosci. Res. 79, 48–54 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Taha, A. Y., Ciobanu, F. A., Saxena, A. & McIntyre Burnham, W. Assessing the link between omega-3 fatty acids, cardiac arrest, and sudden unexpected death in epilepsy. Epilepsy Behav. 14, 27–31 (2009).

    Article  PubMed  Google Scholar 

  79. Taha, A. Y. et al. Seizure resistance in fat-1 transgenic mice endogenously synthesizing high levels of omega-3 polyunsaturated fatty acids. J. Neurochem. 105, 380–388 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Taha, A. Y., Filo, E., Ma, D. W. L. & McIntyre Burnham, W. Dose-dependent anticonvulsant effects of linoleic and alpha-linolenic polyunsaturated fatty acids on pentylenetetrazol induced seizures in rats. Epilepsia 50, 72–82 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Van Erum, J., Van Dam, D. & De Deyn, P. P. PTZ-induced seizures in mice require a revised Racine scale. Epilepsy Behav. 95, 51–55 (2019).

    Article  PubMed  Google Scholar 

  82. Dhir, A. Pentylenetetrazol (PTZ) kindling model of epilepsy. Curr. Protoc. Neurosci. 58, 9.37.1–9.37.12 (2012).

  83. Wang, Y. et al. Protocol for modulation of the serotonergic DR-PBC neural circuit to prevent SUDEP in the acoustic and PTZ-induced DBA/1 mouse models of SUDEP. STAR Protoc. 4, 102129 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Akyuz, E. et al. Myocardial iron overload in an experimental model of sudden unexpected death in epilepsy. Front. Neurol. 12, 609236 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Dibué, M. et al. Cardiac phenomena during kainic-acid induced epilepsy and lamotrigine antiepileptic therapy. Epilepsy Res. 108, 666–674 (2014).

    Article  PubMed  Google Scholar 

  86. Jefferys, J. G. R., Arafat, M. A., Irazoqui, P. P. & Lovick, T. A. Brainstem activity, apnea, and death during seizures induced by intrahippocampal kainic acid in anaesthetized rats. Epilepsia 60, 2346–2358 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Zhang, K., Tolstykh, G. P., Sanchez, R. M. & Cavazos, J. E. Chronic cellular hyperexcitability in elderly epileptic rats with spontaneous seizures induced by kainic acid status epilepticus while young adults. Aging Dis. 2, 332–338 (2011).

    PubMed  PubMed Central  Google Scholar 

  88. Tolstykh, G. P. & Cavazos, J. E. Potential mechanisms of sudden unexpected death in epilepsy. Epilepsy Behav. 26, 410–414 (2013).

    Article  PubMed  Google Scholar 

  89. Shen, H.-Y. et al. Adenosine-A2A receptor signaling plays a crucial role in sudden unexpected death in epilepsy. Front. Pharmacol. 13, 910535 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shen, H.-Y., Li, T. & Boison, D. A novel mouse model for sudden unexpected death in epilepsy (SUDEP): role of impaired adenosine clearance. Epilepsia 51, 465–468 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Biggs, E. N., Budde, R., Jefferys, J. G. R. & Irazoqui, P. P. Ictal activation of oxygen-conserving reflexes as a mechanism for sudden death in epilepsy. Epilepsia 62, 752–764 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nakase, K. et al. Laryngospasm, central and obstructive apnea during seizures: defining pathophysiology for sudden death in a rat model. Epilepsy Res. 128, 126–139 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Budde, R. B. et al. Acid reflux induced laryngospasm as a potential mechanism of sudden death in epilepsy. Epilepsy Res. 148, 23–31 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Budde, R. B., Pederson, D. J., Biggs, E. N., Jefferys, J. G. R. & Irazoqui, P. P. Mechanisms and prevention of acid reflux induced laryngospasm in seizing rats. Epilepsy Behav. 111, 107188 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Mandal, R., Budde, R., Lawlor, G. L. & Irazoqui, P. Utilizing multimodal imaging to visualize potential mechanism for sudden death in epilepsy. Epilepsy Behav. 122, 108124 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Biggs, E. N., Budde, R. B., Jefferys, J. G. R. & Irazoqui, P. P. Carotid body stimulation as a potential intervention in sudden death in epilepsy. Epilepsy Behav. 136, 108918 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Hillert, M. H. et al. Dynamics of hippocampal acetylcholine release during lithium-pilocarpine-induced status epilepticus in rats. J. Neurochem. 131, 42–52 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Curia, G., Longo, D., Biagini, G., Jones, R. S. G. & Avoli, M. The pilocarpine model of temporal lobe epilepsy. J. Neurosci. Methods 172, 143–157 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Auzmendi, J. et al. Pilocarpine-induced status epilepticus is associated with p-glycoprotein induction in cardiomyocytes, electrocardiographic changes, and sudden death. Pharmaceuticals 11, 21 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Derera, I. D., Delisle, B. P. & Smith, B. N. Functional neuroplasticity in the nucleus tractus solitarius and increased risk of sudden death in mice with acquired temporal lobe epilepsy. eNeuro 4, ENEURO.0319-17.2017 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Santos, L. E. C. et al. The amygdala lesioning due to status epilepticus—changes in mechanisms controlling chloride homeostasis. Clinics 78, 100159 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Derera, I. D., Smith, K. C. & Smith, B. N. Altered A-type potassium channel function in the nucleus tractus solitarii in acquired temporal lobe epilepsy. J. Neurophysiol. 121, 177–187 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Sharma, S., Mazumder, A. G., Rana, A. K., Patial, V. & Singh, D. Spontaneous recurrent seizures mediated cardiac dysfunction via mTOR pathway upregulation: a putative target for SUDEP management. CNS Neurol. Disord. Drug Targets 18, 555–565 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. Scorzai, C. A. et al. Alcohol consumption and sudden unexpected death in epilepsy: experimental approach. Arq. Neuropsiquiatr. 67, 1003–1006 (2009).

    Article  PubMed  Google Scholar 

  105. Mameli, O., Caria, M. A., Pintus, A., Padua, G. & Mameli, S. Sudden death in epilepsy: an experimental animal model. Seizure 15, 275–287 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Mameli, O. et al. Autonomic nervous system activity and life threatening arrhythmias in experimental epilepsy. Seizure 10, 269–278 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. King, A. M., Menke, N. B., Katz, K. D. & Pizon, A. F. 4-aminopyridine toxicity: a case report and review of the literature. J. Med. Toxicol. 8, 314–321 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ayala, G. X. & Tapia, R. Late N-methyl-d-aspartate receptor blockade rescues hippocampal neurons from excitotoxic stress and death after 4-aminopyridine-induced epilepsy. Eur. J. Neurosci. 22, 3067–3076 (2005).

    Article  PubMed  Google Scholar 

  109. Salam, M. T. et al. Mortality with brainstem seizures from focal 4-aminopyridine-induced recurrent hippocampal seizures. Epilepsia 58, 1637–1644 (2017).

    Article  CAS  PubMed  Google Scholar 

  110. Lertwittayanon, W., Devinsky, O. & Carlen, P. L. Cardiorespiratory depression from brainstem seizure activity in freely moving rats. Neurobiol. Dis. 134, 104628 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. van der Linde, H., Kreir, M., Teisman, A. & Gallacher, D. J. Seizure-induced Torsades de pointes: in a canine drug-induced long-QT1 model. J. Pharmacol. Toxicol. Methods 111, 107086 (2021).

    Article  PubMed  Google Scholar 

  112. Tiron, C. et al. Further evidence of the association between LQT syndrome and epilepsy in a family with KCNQ1 pathogenic variant. Seizure 25, 65–67 (2015).

    Article  PubMed  Google Scholar 

  113. Nishio, H. et al. Identification of an ethnic-specific variant (V207M) of the KCNQ1 cardiac potassium channel gene in sudden unexplained death and implications from a knock-in mouse model. Int. J. Legal Med. 123, 253–257 (2009).

    Article  PubMed  Google Scholar 

  114. Mishra, V. et al. Scn2a deletion improves survival and brain–heart dynamics in the Kcna1-null mouse model of sudden unexpected death in epilepsy (SUDEP). Hum. Mol. Genet. 26, 2091–2103 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Thouta, S., Zhang, Y., Garcia, E. & Snutch, T. P. Kv1.1 channels mediate network excitability and feed-forward inhibition in local amygdala circuits. Sci Rep. 11, 15180 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Moore, B. M. et al. The Kv1.1 null mouse, a model of sudden unexpected death in epilepsy (SUDEP). Epilepsia 55, 1808–1816 (2014).

    Article  PubMed  Google Scholar 

  117. Dhaibar, H. A., Hamilton, K. A. & Glasscock, E. Kv1.1 subunits localize to cardiorespiratory brain networks in mice where their absence induces astrogliosis and microgliosis. Mol. Cell Neurosci. 113, 103615 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Iyer, S. H. et al. Progressive cardiorespiratory dysfunction in Kv1.1 knockout mice may provide temporal biomarkers of pending sudden unexpected death in epilepsy (SUDEP): the contribution of orexin. Epilepsia 61, 572–588 (2020).

    Article  CAS  PubMed  Google Scholar 

  119. Smart, S. L. et al. Deletion of the K(V)1.1 potassium channel causes epilepsy in mice. Neuron 20, 809–819 (1998).

    Article  CAS  PubMed  Google Scholar 

  120. Glasscock, E., Yoo, J. W., Chen, T. T., Klassen, T. L. & Noebels, J. L. Kv1.1 potassium channel deficiency reveals brain-driven cardiac dysfunction as a candidate mechanism for sudden unexplained death in epilepsy. J. Neurosci. 30, 5167–5175 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Simeone, K. A., Matthews, S. A., Rho, J. M. & Simeone, T. A. Ketogenic diet treatment increases longevity in Kcna1-null mice, a model of sudden unexpected death in epilepsy. Epilepsia 57, e178–e182 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Simeone, K. A. et al. Respiratory dysfunction progresses with age in Kcna1-null mice, a model of sudden unexpected death in epilepsy. Epilepsia 59, 345–357 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dhaibar, H., Gautier, N. M., Chernyshev, O. Y., Dominic, P. & Glasscock, E. Cardiorespiratory profiling reveals primary breathing dysfunction in Kcna1-null mice: implications for sudden unexpected death in epilepsy. Neurobiol. Dis. 127, 502–511 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hutson, T. N. et al. Directed connectivity analysis of the neuro-cardio- and respiratory systems reveals novel biomarkers of susceptibility to SUDEP. IEEE Open J. Eng. Med. Biol. 1, 301–311 (2020).

    Article  PubMed  Google Scholar 

  125. Mishra, V., Gautier, N. M. & Glasscock, E. Simultaneous video–EEG–ECG monitoring to identify neurocardiac dysfunction in mouse models of epilepsy. J. Vis. Exp. https://doi.org/10.3791/57300 (2018).

  126. Trosclair, K., Dhaibar, H. A., Gautier, N. M., Mishra, V. & Glasscock, E. Neuron-specific Kv1.1 deficiency is sufficient to cause epilepsy, premature death, and cardiorespiratory dysregulation. Neurobiol. Dis. 137, 104759 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wagnon, J. L. et al. Convulsive seizures and SUDEP in a mouse model of SCN8A epileptic encephalopathy. Hum. Mol. Genet. 24, 506–515 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Wenker, I. C. et al. Postictal death is associated with tonic phase apnea in a mouse model of sudden unexpected death in epilepsy. Ann. Neurol. 89, 1023–1035 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wengert, E. R. et al. Adrenergic mechanisms of audiogenic seizure-induced death in a mouse model of SCN8A encephalopathy. Front. Neurosci. 15, 581048 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Teran, F. A. et al. Seizures cause prolonged impairment of ventilation, CO2 chemoreception and thermoregulation. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.0450-23.2023 (2023).

  131. Frasier, C. R. et al. Cardiac arrhythmia in a mouse model of sodium channel SCN8A epileptic encephalopathy. Proc. Natl Acad. Sci. USA 113, 12838–12843 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Teran, F. A. et al. Time of day and a ketogenic diet influence susceptibility to SUDEP in Scn1aR1407X/+ mice. Front. Neurol. 10, 278 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Auerbach, D. S. et al. Altered cardiac electrophysiology and SUDEP in a model of Dravet syndrome. PLoS ONE 8, e77843 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Loonen, I. C. M. et al. Brainstem spreading depolarization and cortical dynamics during fatal seizures in Cacna1a S218L mice. Brain 142, 412–425 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Cain, S. M. et al. Hyperexcitable superior colliculus and fatal brainstem spreading depolarization in a model of sudden unexpected death in epilepsy. Brain Commun. 4, fcac006 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Jansen, N. A. et al. Apnea associated with brainstem seizures in Cacna1aS218L mice is caused by medullary spreading depolarization. J. Neurosci. 39, 9633–9644 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Applegate, C. D. & Tecott, L. H. Global increases in seizure susceptibility in mice lacking 5-HT2C receptors: a behavioral analysis. Exp. Neurol. 154, 522–530 (1998).

    Article  CAS  PubMed  Google Scholar 

  138. Séjourné, J., Llaneza, D., Kuti, O. J. & Page, D. T. Social behavioral deficits coincide with the onset of seizure susceptibility in mice lacking serotonin receptor 2c. PLoS ONE 10, e0136494 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Gaspar, P. [Genetic models to understand how serotonin acts during development]. J. Soc. Biol. 198, 18–21 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Cheng, L. et al. Lmx1b, Pet-1, and Nkx2.2 coordinately specify serotonergic neurotransmitter phenotype. J. Neurosci. 23, 9961–9967 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ramappa, M. et al. Peters anomaly in Nail-Patella syndrome: a case report and clinico-genetic correlation. Cornea 40, 1487–1490 (2021).

    Article  PubMed  Google Scholar 

  142. Buchanan, G. F., Murray, N. M., Hajek, M. A. & Richerson, G. B. Serotonin neurones have anti-convulsant effects and reduce seizure-induced mortality. J. Physiol. 592, 4395–4410 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Gu, B. et al. Collaborative Cross mice reveal extreme epilepsy phenotypes and genetic loci for seizure susceptibility. Epilepsia 61, 2010–2021 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gu, B. et al. Ictal neural oscillatory alterations precede sudden unexpected death in epilepsy. Brain Commun. 4, fcac073 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Yuskaitis, C. J. et al. A mouse model of DEPDC5-related epilepsy: neuronal loss of Depdc5 causes dysplastic and ectopic neurons, increased mTOR signaling, and seizure susceptibility. Neurobiol. Dis. 111, 91–101 (2018).

    Article  CAS  PubMed  Google Scholar 

  146. Sugimoto, J. et al. Region-specific deletions of the glutamate transporter GLT1 differentially affect seizure activity and neurodegeneration in mice. Glia 66, 777–788 (2018).

    Article  PubMed  Google Scholar 

  147. Velíšková, J. et al. Early onset epilepsy and sudden unexpected death in epilepsy with cardiac arrhythmia in mice carrying the early infantile epileptic encephalopathy 47 gain-of-function FHF1(FGF12) missense mutation. Epilepsia 62, 1546–1558 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Ma, M.-G. et al. RYR2 mutations are associated with benign epilepsy of childhood with centrotemporal spikes with or without arrhythmia. Front. Neurosci. 15, 629610 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Aiba, I., Wehrens, X. H. T. & Noebels, J. L. Leaky RyR2 channels unleash a brainstem spreading depolarization mechanism of sudden cardiac death. Proc. Natl Acad. Sci. USA 113, E4895–E4903 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kannankeril, P. J. et al. Mice with the R176Q cardiac ryanodine receptor mutation exhibit catecholamine-induced ventricular tachycardia and cardiomyopathy. Proc. Natl Acad. Sci. USA 103, 12179–12184 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Terndrup, T. E., Paskanik, A. M., Fordyce, W. E. & Kanter, R. K. Development of a piglet model of status epilepticus: preliminary results. Ann. Emerg. Med. 22, 164–170 (1993).

    Article  CAS  PubMed  Google Scholar 

  152. Terndrup, T. E., Starr, F. & Fordyce, W. E. A piglet model of status epilepticus: comparison of cardiorespiratory and metabolic changes with two methods of pentylenetetrazol administration. Ann. Emerg. Med. 23, 470–479 (1994).

    Article  CAS  PubMed  Google Scholar 

  153. Terndrup, T. E. & Fordyce, W. E. Respiratory drive during status epilepticus and its treatment: comparison of diazepam and lorazepam. Epilepsy Res. 20, 21–30 (1995).

    Article  CAS  PubMed  Google Scholar 

  154. Bateman, L. M., Li, C.-S. & Seyal, M. Ictal hypoxemia in localization-related epilepsy: analysis of incidence, severity and risk factors. Brain 131, 3239–3245 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Moseley, B. D., Nickels, K., Britton, J. & Wirrell, E. How common is ictal hypoxemia and bradycardia in children with partial complex and generalized convulsive seizures? Epilepsia 51, 1219–1224 (2010).

    Article  PubMed  Google Scholar 

  156. Moseley, B. D., Britton, J. W., Nelson, C., Lee, R. W. & So, E. Periictal cerebral tissue hypoxemia: a potential marker of SUDEP risk. Epilepsia 53, e208–e211 (2012).

    Article  PubMed  Google Scholar 

  157. Murray, S. J. & Mitchell, N. L. The translational benefits of sheep as large animal models of human neurological disorders. Front. Vet. Sci. 9, 831838 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Perentos, N. et al. Techniques for chronic monitoring of brain activity in freely moving sheep using wireless EEG recording. J. Neurosci. Methods 279, 87–100 (2017).

    Article  CAS  PubMed  Google Scholar 

  159. Stypulkowski, P. H., Giftakis, J. E. & Billstrom, T. M. Development of a large animal model for investigation of deep brain stimulation for epilepsy. Stereotact. Funct. Neurosurg. 89, 111–122 (2011).

    Article  PubMed  Google Scholar 

  160. Johnston, S. C., Horn, J. K., Valente, J. & Simon, R. P. The role of hypoventilation in a sheep model of epileptic sudden death. Ann. Neurol. 37, 531–537 (1995).

    Article  CAS  PubMed  Google Scholar 

  161. Simon, R. P. Epileptic sudden death: animal models. Epilepsia 38, S35–S37 (1997).

    Article  CAS  PubMed  Google Scholar 

  162. Johnston, S. C., Siedenberg, R., Min, J. K., Jerome, E. H. & Laxer, K. D. Central apnea and acute cardiac ischemia in a sheep model of epileptic sudden death. Ann. Neurol. 42, 588–594 (1997).

    Article  CAS  PubMed  Google Scholar 

  163. Vilella, L. et al. Postconvulsive central apnea as a biomarker for sudden unexpected death in epilepsy (SUDEP). Neurology 92, e171–e182 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Barot, N. & Nei, M. Autonomic aspects of sudden unexpected death in epilepsy (SUDEP). Clin. Auton. Res. 29, 151–160 (2019).

    Article  PubMed  Google Scholar 

  165. Opdam, H. I. et al. A sheep model for the study of focal epilepsy with concurrent intracranial EEG and functional MRI. Epilepsia 43, 779–787 (2002).

    Article  PubMed  Google Scholar 

  166. Croll, L., Szabo, C. A., Abou-Madi, N. & Devinsky, O. Epilepsy in nonhuman primates. Epilepsia 60, 1526–1538 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Szabo, C. A. & Salinas, F. S. Neuroimaging in the epileptic baboon. Front. Vet. Sci. 9, 908801 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Striano, P. & Zara, F. Epilepsy: a ‘going ape’ model for SUDEP? Nat. Rev. Neurol. 5, 639–640 (2009).

    Article  PubMed  Google Scholar 

  169. Goldman, A. M. et al. Sudden unexpected death in epilepsy genetics: molecular diagnostics and prevention. Epilepsia 57, 17–25 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Coll, M., Oliva, A., Grassi, S., Brugada, R. & Campuzano, O. Update on the genetic basis of sudden unexpected death in epilepsy. Int. J. Mol. Sci. 20, 1979 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Szabó, C. A. et al. Mortality in captive baboons with seizures: a new model for SUDEP? Epilepsia 50, 1995–1998 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Devinsky, O. et al. Incidence of cardiac fibrosis in SUDEP and control cases. Neurology 91, e55–e61 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Zhang, H. et al. Optogenetic activation of 5-HT neurons in the dorsal raphe suppresses seizure-induced respiratory arrest and produces anticonvulsant effect in the DBA/1 mouse SUDEP model. Neurobiol. Dis. 110, 47–58 (2018).

    Article  CAS  PubMed  Google Scholar 

  174. Patodia, S. et al. Serotonin transporter in the temporal lobe, hippocampus and amygdala in SUDEP. Brain Pathol. 32, e13074 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Szabó, C. Á., Patel, M. & Uteshev, V. V. Cerebrospinal fluid levels of monoamine metabolites in the epileptic baboon. J Primatol 4, 129 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Szabó, C. Á., Akopian, M., González, D. A., de la Garza, M. A. & Carless, M. A. Cardiac biomarkers associated with epilepsy in a captive baboon pedigree. Epilepsia 60, e110–e114 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  177. de la Garza, M. A. et al. Cardiac changes in epileptic baboons with high-frequency microburst VNS therapy: a pilot study. Epilepsy Res. 155, 106156 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Brotherstone, R., Blackhall, B. & McLellan, A. Lengthening of corrected QT during epileptic seizures. Epilepsia 51, 221–232 (2010).

    Article  PubMed  Google Scholar 

  179. Myers, K. A. et al. Heart rate variability in epilepsy: a potential biomarker of sudden unexpected death in epilepsy risk. Epilepsia 59, 1372–1380 (2018).

    Article  PubMed  Google Scholar 

  180. Biet, M. et al. Prolongation of action potential duration and QT interval during epilepsy linked to increased contribution of neuronal sodium channels to cardiac late Na+ current: potential mechanism for sudden death in epilepsy. Circ. Arrhythm. Electrophysiol. 8, 912–920 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Jeppesen, J. et al. Heart rate variability analysis indicates preictal parasympathetic overdrive preceding seizure-induced cardiac dysrhythmias leading to sudden unexpected death in a patient with epilepsy. Epilepsia 55, e67–e71 (2014).

    Article  PubMed  Google Scholar 

  182. Howe, K. et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498–503 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Lucini, C., D’Angelo, L., Cacialli, P., Palladino, A. & de Girolamo, P. BDNF, brain, and regeneration: insights from zebrafish. Int. J. Mol. Sci. 19, 3155 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Novak, A. E. et al. Embryonic and larval expression of zebrafish voltage-gated sodium channel alpha-subunit genes. Dev. Dyn. 235, 1962–1973 (2006).

    Article  CAS  PubMed  Google Scholar 

  185. Baraban, S. C., Dinday, M. T. & Hortopan, G. A. Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. Nat. Commun. 4, 2410 (2013).

    Article  PubMed  Google Scholar 

  186. Alfaro, J. M., Ripoll-Gómez, J. & Burgos, J. S. Kainate administered to adult zebrafish causes seizures similar to those in rodent models. Eur. J. Neurosci. 33, 1252–1255 (2011).

    Article  PubMed  Google Scholar 

  187. Mussulini, B. H. M. et al. Seizures induced by pentylenetetrazole in the adult zebrafish: a detailed behavioral characterization. PLoS ONE 8, e54515 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Simpson, K. E. et al. Utility of zebrafish models of acquired and inherited long QT syndrome. Front. Physiol. 11, 624129 (2020).

    Article  PubMed  Google Scholar 

  189. Sharma, S., Rana, A. K., Sharma, A. & Singh, D. Inhibition of mammalian target of rapamycin attenuates recurrent seizures associated cardiac damage in a zebrafish kindling model of chronic epilepsy. J. Neuroimmune Pharmacol. https://doi.org/10.1007/s11481-021-10021-8 (2021).

  190. Tomson, T., Sköld, A. C., Holmgen, P., Nilsson, L. & Danielsson, B. Postmortem changes in blood concentrations of phenytoin and carbamazepine: an experimental study. Ther. Drug Monit. 20, 309–312 (1998).

    Article  CAS  PubMed  Google Scholar 

  191. Hesdorffer, D. C. & Tomson, T. Sudden unexpected death in epilepsy. Potential role of antiepileptic drugs. CNS Drugs 27, 113–119 (2013).

    Article  PubMed  Google Scholar 

  192. Kiencke, V., Andresen-Streichert, H., Müller, A. & Iwersen-Bergmann, S. Quantitative determination of valproic acid in postmortem blood samples—evidence of strong matrix dependency and instability. Int. J. Legal Med. 127, 1101–1107 (2013).

    Article  PubMed  Google Scholar 

  193. Bosinski, C., Wagner, K., Zhou, X., Liu, L. & Auerbach, D. S. Multi-system monitoring for identification of seizures, arrhythmias and apnea in conscious restrained rabbits. JoVE https://doi.org/10.3791/62256 (2021).

  194. Brunner, M. et al. Mechanisms of cardiac arrhythmias and sudden death in transgenic rabbits with long QT syndrome. J. Clin. Invest. 118, 2246–2259 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Wang, L. et al. Neural progenitor cell transplantation and imaging in a large animal model. Neurosci. Res. 59, 327–340 (2007).

    Article  CAS  PubMed  Google Scholar 

  196. Kuwabara, T. et al. A familial spontaneous epileptic feline strain: a novel model of idiopathic/genetic epilepsy. Epilepsy Res. 92, 85–88 (2010).

    Article  PubMed  Google Scholar 

  197. Kitz, S. et al. Feline temporal lobe epilepsy: review of the experimental literature. J. Vet. Intern. Med. 31, 633–640 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Chambers, J. K. et al. The domestic cat as a natural animal model of Alzheimer’s disease. Acta Neuropathol. Commun. 3, 78 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Schraeder, P. L. & Lathers, C. M. Cardiac neural discharge and epileptogenic activity in the cat: an animal model for unexplained death. Life Sci. 32, 1371–1382 (1983).

    Article  CAS  PubMed  Google Scholar 

  200. Paydarfar, D., Eldridge, F. L., Scott, S. C., Dowell, R. T. & Wagner, P. G. Respiratory responses to focal and generalized seizures in cats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 260, R934–R940 (1991).

    Article  CAS  Google Scholar 

  201. Paydarfar, D., Eldridge, F. L., Wagner, P. G. & Dowell, R. T. Neural respiratory responses to cortically induced seizures in cats. Resp. Physiol. 89, 225–237 (1992).

    Article  CAS  Google Scholar 

  202. Shouse, M. N., Scordato, J. C., Farber, P. R. & de Lanerolle, N. The alpha2 adrenoreceptor agonist clonidine suppresses evoked and spontaneous seizures, whereas the alpha2 adrenoreceptor antagonist idazoxan promotes seizures in amygdala-kindled kittens. Brain Res. 1137, 58–68 (2007).

    Article  CAS  PubMed  Google Scholar 

  203. Liu, W. et al. Feline foamy virus-based vectors: advantages of an authentic animal model. Viruses 5, 1702–1718 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Patterson, E. E. Canine epilepsy: an underutilized model. ILAR J 55, 182–186 (2014).

    Article  CAS  PubMed  Google Scholar 

  205. Davis, K. A. et al. A novel implanted device to wirelessly record and analyze continuous intracranial canine EEG. Epilepsy Res. 96, 116–122 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Ekenstedt, K. J., Patterson, E. E. & Mickelson, J. R. Canine epilepsy genetics. Mamm Genome 23, 28–39 (2012).

    Article  CAS  PubMed  Google Scholar 

  207. Huenerfauth, E., Nessler, J., Erath, J. & Tipold, A. Probable sudden unexpected death in dogs with epilepsy (pSUDED). Front. Vet. Sci. 8, 600307 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Musteata, M., Mocanu, D., Stanciu, G. D., Armasu, M. & Solcan, G. Interictal cardiac autonomic nervous system disturbances in dogs with idiopathic epilepsy. Vet. J. 228, 41–45 (2017).

    Article  CAS  PubMed  Google Scholar 

  209. Ware, W. A., Reina-Doreste, Y., Stern, J. A. & Meurs, K. M. Sudden death associated with QT interval prolongation and KCNQ1 gene mutation in a family of English Springer Spaniels. J. Vet. Intern. Med. 29, 561–568 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Wolpaw, J. R. & McFarland, D. J. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc. Natl Acad. Sci. USA 101, 17849–17854 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Fr, W., Dt, A., Lr, H., Jm, H. & Kv, S. High-performance brain-to-text communication via handwriting. Nature 593, 249–254 (2021).

    Article  Google Scholar 

  212. Yang, X. et al. A natural marmoset model of genetic generalized epilepsy. Mol Brain 15, 16 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Wu, S. et al. Depth versus surface: a critical review of subdural and depth electrodes in intracranial electroencephalographic studies. Epilepsia 65, 1868–1878 (2024).

    Article  PubMed  Google Scholar 

  214. Xu, K. et al. Bioresorbable electrode array for electrophysiological and pressure signal recording in the brain. Adv. Healthc. Mater. 8, e1801649 (2019).

    Article  PubMed  Google Scholar 

  215. Crépon, B. et al. Mapping interictal oscillations greater than 200 Hz recorded with intracranial macroelectrodes in human epilepsy. Brain 133, 33–45 (2010).

    Article  PubMed  Google Scholar 

  216. Blanco, J. A. et al. Unsupervised classification of high-frequency oscillations in human neocortical epilepsy and control patients. J. Neurophysiol. 104, 2900–2912 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Salanova, V. et al. Long-term efficacy and safety of thalamic stimulation for drug-resistant partial epilepsy. Neurology 84, 1017–1025 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Krook-Magnuson, E., Armstrong, C., Oijala, M. & Soltesz, I. On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat. Commun. 4, 1376 (2013).

    Article  PubMed  Google Scholar 

  219. Gernert, M. & Feja, M. Bypassing the blood–brain barrier: direct intracranial drug delivery in epilepsies. Pharmaceutics 12, 1134 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Xie, K. et al. Portable wireless electrocorticography system with a flexible microelectrodes array for epilepsy treatment. Sci. Rep. 7, 7808 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Romanelli, P. et al. A novel neural prosthesis providing long-term electrocorticography recording and cortical stimulation for epilepsy and brain-computer interface. J. Neurosurg. 130, 1166–1179 (2018).

    Article  PubMed  Google Scholar 

  222. Cook, M. J. et al. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol. 12, 563–571 (2013).

    Article  PubMed  Google Scholar 

  223. Chen, S. et al. Optogenetics based rat-robot control: optical stimulation encodes ‘stop’ and ‘escape’ commands. Ann. Biomed. Eng. 43, 1851–1864 (2015).

    Article  PubMed  Google Scholar 

  224. Ludvig, N. et al. Long-term behavioral, electrophysiological, and neurochemical monitoring of the safety of an experimental antiepileptic implant, the muscimol-delivering subdural pharmacotherapy device in monkeys. J. Neurosurg. 117, 162–175 (2012).

    Article  CAS  PubMed  Google Scholar 

  225. Nakano, T. et al. An on-demand drug delivery system for control of epileptiform seizures. Pharmaceutics 14, 468 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Skarpaas, T. L., Jarosiewicz, B. & Morrell, M. J. Brain-responsive neurostimulation for epilepsy (RNS® System). Epilepsy Res. 153, 68–70 (2019).

    Article  PubMed  Google Scholar 

  227. Kwon, C.-S. et al. Centromedian thalamic responsive neurostimulation for Lennox–Gastaut epilepsy and autism. Ann. Clin. Transl. Neurol. 7, 2035–2040 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Kusyk, D. M., Meinert, J., Stabingas, K. C., Yin, Y. & Whiting, A. C. Systematic review and meta-analysis of responsive neurostimulation in epilepsy. World Neurosurg. 167, e70–e78 (2022).

    Article  PubMed  Google Scholar 

  229. Giles, T. X. et al. Characterizing complications of intracranial responsive neurostimulation devices for epilepsy through a retrospective analysis of the Federal MAUDE Database. Neuromodulation 25, 263–270 (2022).

    Article  PubMed  Google Scholar 

  230. Razavi, B. et al. Real-world experience with direct brain-responsive neurostimulation for focal onset seizures. Epilepsia 61, 1749–1757 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Mural, R. J. et al. A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome. Science 296, 1661–1671 (2002).

    Article  CAS  PubMed  Google Scholar 

  232. Stewart, A. M. et al. Perspectives of zebrafish models of epilepsy: what, how and where next? Brain Res. Bull. 87, 135–143 (2012).

    Article  PubMed  Google Scholar 

  233. Xia, M. et al. Disruption of synaptic transmission in the bed nucleus of the stria terminalis reduces seizure-induced death in DBA/1 mice and alters brainstem E/I balance. ASN Neuro 14, 17590914221103188 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Zhang, R., Tan, Z., Niu, J. & Feng, H.-J. Adrenergic α2 receptors are implicated in seizure-induced respiratory arrest in DBA/1 mice. Life Sci. 284, 119912 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Kommajosyula, S. P., Tupal, S. & Faingold, C. L. Deficient post-ictal cardiorespiratory compensatory mechanisms mediated by the periaqueductal gray may lead to death in a mouse model of SUDEP. Epilepsy Res. 147, 1–8 (2018).

    Article  PubMed  Google Scholar 

  236. Faingold, C. L., Randall, M., Mhaskar, Y. & Uteshev, V. V. Differences in serotonin receptor expression in the brainstem may explain the differential ability of a serotonin agonist to block seizure-induced sudden death in DBA/2 vs. DBA/1 mice. Brain Res. 1418, 104–110 (2011).

    Article  CAS  PubMed  Google Scholar 

  237. Faingold, C. L., Raisinghani, M. & N’Gouemo, P. in Neuronal Networks in Brain Function, CNS Disorders, and Therapeutics (eds Faingold, C. L. & Blumenfeld, H.) 349–373 (Elsevier, 2014); https://doi.org/10.1016/B978-0-12-415804-7.00026-5

  238. Petrucci, A. N. et al. Post-ictal generalized EEG suppression is reduced by enhancing dorsal raphe serotonergic neurotransmission. Neuroscience 453, 206–221 (2021).

    Article  CAS  PubMed  Google Scholar 

  239. Zhan, Q. et al. Impaired serotonergic brainstem function during and after seizures. J. Neurosci. 36, 2711–2722 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Vanhoof-Villalba, S. L., Gautier, N. M., Mishra, V. & Glasscock, E. Pharmacogenetics of KCNQ channel activation in 2 potassium channelopathy mouse models of epilepsy. Epilepsia 59, 358–368 (2018).

    Article  CAS  PubMed  Google Scholar 

  241. Brennan, T. J., Seeley, W. W., Kilgard, M., Schreiner, C. E. & Tecott, L. H. Sound-induced seizures in serotonin 5-HT2c receptor mutant mice. Nat. Genet. 16, 387–390 (1997).

    Article  CAS  PubMed  Google Scholar 

  242. Zhao, Z.-Q. et al. Lmx1b is required for maintenance of central serotonergic neurons and mice lacking central serotonergic system exhibit normal locomotor activity. J. Neurosci. 26, 12781–12788 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (grant nos. 81771403 and 81974205), the Natural Science Foundation of Zhejiang Province (LZ20H090001) and the Program of New Century 131 outstanding young talent plan top-level of Hang Zhou to H.H.Z., by the National Natural Science Foundation of China (grant no. 82001379) and the Natural Science Foundation of Hunan Province (grant no. 2020JJ5952) to H.T.Z. and by the Natural Science Foundation of Hunan Province (grant no. 2021JJ31047) to C.Z.

Author information

Authors and Affiliations

Authors

Contributions

The review was designed and conceptualized by H.H.Z. J.X.G., W.H.S., L.L. and Y.L.W. wrote the draft of the manuscript and drafted the figure. Y.Y., Z.Y.Z., Y.X.W., Q.X., L.Y.G., Y.L.Z., Y.S., H.T.Z. and C.Z. reviewed the manuscript and participated in the revisions. All authors contributed to the final version of the manuscript.

Corresponding author

Correspondence to HongHai Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Lab Animal thanks Prosper N’Gouemo and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, J., Shao, W., Liu, L. et al. Challenges and future directions of SUDEP models. Lab Anim 53, 226–243 (2024). https://doi.org/10.1038/s41684-024-01426-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41684-024-01426-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing