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Diabetes is an urgent global health challenge with an acceler-
ating incidence rate in recent decades. Currently, 537 mil-
lion adults are living with diabetes and 541 million adults 

have impaired glucose tolerance with a high risk of developing type 
2 diabetes1. To better understand metabolic changes associated with 
impaired glucose tolerance, we need suitable animal models and 
experimental methods that can capture these changes.

The Nile rat (Arvicanthis niloticus) is a model of type 2 diabetes 
with key benefits over other rodent models. First, diabetes is rap-
idly induced in both sexes by conventional laboratory rodent chow 
that is hypercaloric for the Nile rat compared to its native fiber-rich 
diet2,3. On conventional rodent chow, the onset of diabetes can range 
from a month to a year of age, and by 6 months of age, most of the 
Nile rats would have developed diabetes4. By contrast, common lab-
oratory mice and rats are relatively resistant to diet-alone induced 
diabetes, and additional chemical or genetic manipulations are 
used to promote diabetes5. Second, diabetic Nile rats can develop  
long-term diabetic complications mimicking clinical features of 
patients with diabetes6–8, including diabetic retinopathy9,10. Third, the  

Nile rat model is outbred and displays a wide range of diabetic phe-
notypes11, reflecting its underlying genetic diversity. Fourth, the 
Nile rats, like humans, are active during the day12, unlike common 
nocturnal rodent models. Additionally, the Nile rat has a reference 
genome for mechanistic studies13. Overall, the Nile rat is highly 
suited to study the underlying mechanisms of glucose intolerance 
in diet-induced diabetes.

When considering experimental methods for studying diabetes, a 
majority of studies looking for metabolic changes will use blood that 
has been sampled under fasted state to avoid excess variability from 
unrestricted eating behavior. However, for the early progression 
of diabetes, it is known that postprandial hyperglycemia precedes 
fasted hyperglycemia, and thus is a more sensitive measurement for 
early diabetes, as demonstrated in human studies14–16 and in the Nile 
rat model11,17–19. In addition, there is some evidence that the post-
prandial state might be associated with reduced variability in blood 
metabolites20. For rodent models, non-fasted state probably repre-
sents a postprandial state given the high frequency of food intake. 
Yet, so far, no study has validated the use of non-fasted sampling 
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for metabolomics studies in rodent models. Specifically, reproduc-
ibility and replicate variability between fasted and non-fasted states 
have not been sufficiently analyzed. Therefore, this study compares 
metabolite variance between non-fasted and fasted blood sampling 
for studying progressive glucose intolerance in Nile rats.

To investigate the metabolic differences between the fasted 
state and non-fasted state, we performed metabolomics using liq-
uid chromatography coupled to mass spectrometry (LC–MS) to 
measure a broad range of plasma biomolecules21. LC–MS has been 
used previously to analyze variance of plasma sampling across 
metabolites20,22–25 and to detect plasma biomarkers relevant to dia-
betes in mice and humans26,27. To assess replicate variance in fasted 
versus non-fasted samples and to capture markers of diabetes, we 
measured metabolites in non-fasted and fasted plasma samples in 
triplicate. The cohort consisted of male Nile rats aged 8–10 weeks 
displaying varied levels of glucose tolerance—from non-diabetic 
to overtly diabetic—at 12 weeks old. We found that metabolites 
in non-fasted plasma sampling had better predictive power of 
impaired glucose tolerance. Counter to the accepted wisdom that 
ad libitum feeding leads to increased variability, we found that 
metabolites in non-fasted samples had lower median replicate vari-
ance than metabolites in fasted samples. To validate these results, 
we used a different age group of Nile rats of both sexes and assessed 
metabolite variance in triplicate non-fasted plasma samples. In this 
validation cohort, replicate variance of metabolites was similar or 
lower than that found in the primary cohort. Our data supports the 
use of a non-fasted state for plasma sampling in metabolic studies 
of Nile rats due to better association to glucose tolerance levels and 
lower replicate variance independent of age or sex.

In this Article, we performed plasma metabolomics to compare the 
non-fasted versus fasted state in Nile rats. We employed a study design 
in which plasma was sampled in both states for each Nile rat, and we 
investigated how metabolite abundances and variance were affected 
by glucose tolerance and plasma sampling method. We concluded that 
plasma metabolomics using non-fasted sampling is valuable for study-
ing diabetes across a spectrum of glucose tolerance in Nile rats.

Results
Metabolomic profiling of non-fasted and fasted plasma associ-
ated with glucose tolerance. Nile rats have been well described to 
develop glucose intolerance when consuming conventional rodent 
chow 5008, in part due to the glycemic load of 5008 (refs. 11,17–19,28). 
Additionally, males progress toward glucose intolerance more rap-
idly than females on the same dietary challenge28. Because the Nile 
rat model is genetically diverse, they display a spectrum of glucose 
intolerance. To identify plasma metabolites that show trends over a 
spectrum of glucose tolerance, we analyzed the plasma of juvenile 
males fed rodent chow.

Specifically, to evaluate replicate variance between non-fasted 
and fasted plasma samples, we collected fasted and non-fasted sam-
ples in ten male Nile rats, which were taken at 8, 9 and 10 weeks 
of age (60 samples in total; Supplementary Data Tables 1 and 2); 
and later, an oral glucose tolerance test (OGTT) was performed at 
12 weeks (Fig. 1a). Time of day of sampling for the non-fasted state 
was found to have no significant effect on the observed blood glu-
cose value (Supplementary Fig. 1a,b). Sampling the plasma at least 
2 weeks before OGTT enabled the animals to recover from weekly 
blood collections before OGTT. Figure 1b shows the glucose excur-
sion across 2 h during the OGTT. Nile rats labeled A to J are ordered 
on the basis of area under the curve of glucose levels during OGTT 
(OGTT glucAUC) (Fig. 1c) and show a range of glucose tolerance 
evenly distributed across these ten Nile rats. Within the range of 
glucose tolerances captured in our study cohort, random blood 
glucose (RBG) exhibited a positive trend with subsequent OGTT 
glucAUC whereas there was no association to fasted blood glucose 
(FBG) (Fig. 1d).

Additionally, we measured blood insulin concentration during the 
OGTT. In humans, patterns of insulin concentration during OGTT 
can predict incident type 2 diabetes29. Here we observed similar pat-
terns where the healthier Nile rats A to D had higher insulin levels at 
60 min than 120 min, compared to Nile rats E to G (Fig. 1e). Notably, 
the area under the curve from plasma insulin during OGTT (OGTT 
insAUC) was exceptionally high in Nile rat C (Fig. 1f). This hyper-
insulinemic response suggests that Nile rat C was at a pre-diabetic 
or at an early stage of diabetes. Conversely, Nile rats H, I and J were 
hypoinsulinemic, indicating that these rats were more advanced in 
the diabetes spectrum. Weekly body weight (Fig. 1g) and blood glu-
cose (Supplementary Fig. 1c) were measured from weeks 8 to 12. 
Though the growth rates were similar, the initial weights taken at 
8 weeks segregated the animals into two groups, with A, B and C at 
lower weights and D through J at higher weights. Based on 8-week 
RBG and FBG, seven Nile rats had non-fasted hyperglycemia (RBG 
>200 mg/dL in Nile rats D to J) and two Nile rats had fasted hyper-
glycemia (FBG >126 mg/dL in Nile rats D and J).

Unsupervised clustering reveals better association of metabolite 
abundance to glucose tolerance in non-fasted plasma. To charac-
terize the plasma biomolecules in these Nile rats under fasted and 
non-fasted conditions, we performed discovery metabolomics and 
lipidomics by LC–MS/MS, and calculated relative quantification by 
integrating chromatographic peak area. We annotated 358 lipids 
across 5 lipid categories26,30, including glycerolipids, phospholipids, 
sphingolipids, fatty acyls and sterol lipids; 556 lipid chromatographic 
features remained unannotated but were included in some of the 
downstream analyses (Fig. 2a and Supplementary Data Tables 3  
and 7). Of the annotated lipids, 200 were identified at species level 
and 158 were identified at molecular species level31. Among polar 
metabolites, we annotated 76 compounds from 6 compound classes, 
including organic alcohols, amino acids (AAs), AA derivatives, 
nitrogen heterocycles, carbohydrates and organic acids (Fig. 2b).  
A total of 419 polar metabolite features remained unannotated.

Next we performed principal component analysis (PCA) using 
all metabolite features in our 60 plasma samples. PCA revealed 
two clusters separated on the first principal component by fasted 
or non-fasted sampling conditions (Fig. 2c). Within the non-fasted 
cluster, the samples seem to be ordered by OGTT glucAUC along 
the second principal component, whereas a similar ordering is 
absent in the fasted cluster. This suggests that non-fasted metabolo-
mic changes are associated with glucose tolerance.

To further explore high-level trends in plasma metabolites, we 
constructed a heat map ordered by Nile rat OGTT glucAUC on the 
columns, with hierarchical clustering of annotated metabolites on 
the rows (Fig. 2d). From here on, we refer to plasma samples col-
lected in the non-fasted or fasted state as ‘non-fasted samples’ or 
‘fasted samples’, respectively. Overall, non-fasted samples display 
greater log2 fold changes relative to mean metabolite abundance in 
fasted samples. In general, the lipids seem to have a larger dynamic 
range than the polar metabolites. Glycerolipids show the most 
apparent trends in association to OGTT glucAUC ranking.

Non-fasted Nile rat plasma yields lower replicate variance across 
metabolites. A major concern of using non-fasted plasma samples 
is the excess variability driven by ad libitum feeding and varying 
degrees of postprandial state. To assess plasma metabolite vari-
ability within replicate samples between fasted and non-fasted 
sampling states, we calculated the percent relative standard devia-
tion32 (%RSD) across an individual’s triplicate of 8–10-week plasma 
samples (Supplementary Data Table 5). The distribution %RSDs 
for all metabolites is shown for each Nile rat in Fig. 3a, grouped by 
sampling method. We excluded Nile rat A, which had only two out 
of three replicate fasted samples. Of the remaining nine animals, 
five had lower median metabolite %RSD in non-fasted replicates. 
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The median %RSD across all triplicate metabolite measurements 
was smaller in non-fasted samples (22.2%) compared to fasted sam-
ples (24.9%). At an individual metabolite level, we calculated the 
percentage point difference between non-fasted and fasted %RSD 
for each metabolite per Nile rat and show the distribution of these 
paired differences in Fig. 3b. A larger number of %RSD differ-
ences were lower in non-fasted replicates for all metabolites (54%), 
identified polar metabolites (54%) and identified lipids (56%). All 
three groups show significant difference from 0 percentage point 
difference (q < 0.001; Methods). Similar analysis for other groups 
based on metabolite class, lipid class and lipid category are given in 
Supplementary Fig. 2. A total of 8 out of 15 lipid classes (LysoPC, 
phosphatidylcholine (PC), sphingomyelin (SM), plasmenyl-PC, 
plasmanyl-PC, plasmenyl-phosphatidylethanolamine (PE), 
plasmanyl-PE and triacylglycerol (TG)) had significantly lower 
(q < 0.05) %RSDs in non-fasted replicates. Among polar metabo-
lite groups, carbohydrates, organic acids and AAs yielded signifi-
cantly lower %RSDs in non-fasted replicates. Additionally, across 
all groupings metabolites tested, none showed a significantly lower 
%RSD in fasted replicates, indicating that non-fasted samples have 

lower replicate variance. These results are supported by a similar 
analysis using proton nuclear magnetic resonance metabolomics on 
postprandial versus fasted human plasma samples20.

Non-fasted samples are superior to fasted plasma samples for 
predicting OGTT glucAUC in young males. Earlier, we sug-
gested that non-fasted plasma samples show stronger associations 
to OGTT glucAUC compared to fasted samples based on unsu-
pervised modeling with PCA (Fig. 2c). To test this hypothesis, we 
trained regression models to learn potential metabolite associa-
tions to glucose tolerance (Fig. 4a and Supplementary Data Table 
9). Linear regression, least absolute shrinkage and selection opera-
tor (LASSO), ridge, elastic net, partial least squares regression 
(PLSr) and random forest machine learning models were trained 
to predict 12-week OGTT glucAUC using all annotated lipids and 
polar plasma metabolites sampled at age 8–10 weeks. We trained 
competing models using non-fasted versus fasted plasma samples. 
Model performance was assessed using the median coefficient of 
determination (R2). Overall, the models trained on non-fasted data 
yielded a higher median R2 over the same model trained on fasted 
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Fig. 1 | Metabolomic study design and characterization of glucose tolerance. a, Overview of study design with analysis of plasma metabolites and lipids in 
ten male Nile rats at 8–10 weeks in fasted and non-fasted conditions, and measurement of glucose tolerance by OGTT at 12 weeks. b, OGTT curve with blood 
glucose levels taken at 0, 10, 20, 30, 60 and 120 min after ingesting glucose delivered by gavage. c, Area under the curve calculated from glucose OGTT 
(OGTT glucAUC). Nile rats are ordered by increasing OGTT glucAUC. d, The correlation between OGTT glucAUC at 12 weeks and mean blood glucose 
levels at 8–10 weeks, measured in fasted versus non-fasted state of the Nile rats. Shaded region depicts the 95% bootstrapped confidence interval. e, OGTT 
curve with plasma insulin levels taken at 0, 10, 20, 30, 60 and 120 min after ingesting glucose. f, Area under the curve calculated from insulin OGTT (OGTT 
insAUC). Nile rats are ordered by increasing OGTT glucAUC. g, Growth chart from 8 to 12 weeks based on whole body weight for Nile rats A to J.
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data. While linear regression was the most performant (R2 = 0.71 
non-fasted, R2 = 0.56 fasted), biological interpretation of its learned 
parameters is complicated by the large number of metabolite fea-
tures retained in the model. The number of features can be mini-
mized by methods such as regularization in linear modeling using 
LASSO, ridge or elastic net33, bootstrapping in random forests34, or 
transformation into lower-dimensional latent spaces in PLSr35. Of 
these five model types, elastic net achieved both high performance 
(R2 = 0.67 non-fasted, R2 = 0.52 fasted) and substantial coefficient 
shrinkage (107 and 102 features with normalized absolute impor-
tance >0.02 in non-fasted and fasted, respectively). Compared to 
other methods, LASSO (R2 = 0.46 non-fasted, R2 = 0.37 fasted) and 
random forest (R2 = 0.58 non-fasted, R2 = 0.49 fasted) had lower 
performance. Ridge and PLSr achieved slightly higher R2 than elas-
tic net, but failed to shrink the number of important metabolite fea-
tures compared to elastic net. Therefore, elastic net was selected as 
the optimal model.

The top 15 most important metabolites for predicting OGTT 
glucAUC in non-fasted and fasted elastic net models are shown in 
Fig. 4b,c. There is sparse overlap between the top 15 metabolites 
in the non-fasted and fasted samples, except for cholesteryl ester 
(CE) 18:1 and plasmanyl-PC O-20:0_20:4. Critically, a high impor-
tance in a multivariate model such as elastic net does not ensure 
that the metabolite predicts OGTT glucAUC well in a univariate 

model. To demonstrate the performance of univariate prediction, 
we show the linear regression results of predicting OGTT glucAUC 
from the top five elastic net non-fasted features (Fig. 4d). CE 18:1 
and plasmanyl-PC O-20:0_20:4 are both in the top 15 fasted and 
non-fasted elastic net metabolites and achieve approximately simi-
lar R2 in both fasted and fed models. By contrast, despite being the 
second ranked metabolite in non-fasted samples, FA 18:0 achieves 
an R2 of 0.0 in predicting OGTT glucAUC. SM d37:1 achieves R2 of 
0.8 and 0.22 in non-fasted and fasted samples respectively. Superior 
predictive performance by the SM d37:1 model compared to the 
full elastic net model is due to no cross-validation. Finally, PC 38:7 
returns better R2 in non-fasted samples (0.6) and displays a positive 
correlation, whereas in fasted samples, it shows negative to no cor-
relation. In summary, some metabolites are useful in a multivariate 
model by combining their information with other metabolites to 
boost OGTT glucAUC prediction performance.

Non-fasted plasma samples have more metabolites with strong 
associations to glucose tolerance. We have therefore discovered 
metabolites that best predicted glucose tolerance in a multivariate 
model setting (Fig. 4). Next, we determined which metabolites had 
individual associations to OGTT glucAUC. Using linear models at 
the individual metabolite level (Methods), we calculated the effect 
size of OGTT glucAUC and the interaction between sampling condi-
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tions and OGTT glucAUC. An example of the analysis is highlighted 
in Fig. 5a, where the abundance of TG 20:5_22:6_22:6 significantly 
increases with OGTT glucAUC in non-fasted samples (q < 0.0001), 
but is not significant in fasted samples (q = 0.058). The OGTT glu-
cAUC effect size is greater in non-fasted than in fasted samples 
(q = 1.8 × 10−22). The mean abundance of TG 20:5_22:6_22:6 is sig-
nificantly greater in fasted samples compared to non-fasted samples 
(q < 0.0001) (Supplementary Fig. 3a,b). Results for all metabolites 
are given in Supplementary Data Table 5.

To explore the OGTT glucAUC effect size of non-fasted and 
fasted sampling for all metabolites, we plotted regression slopes for 
all annotated lipids (Fig. 5b) and polar metabolites (Supplementary 
Fig. 3c). The abundance of all TGs was positively associated with 
OGTT glucAUC in non-fasted sampling, while TGs in fasted 
sampling had both positive and negative associations to OGTT 
glucAUC. For all TGs, non-fasted sampling had a steeper regres-
sion slope than fasted sampling, indicating stronger associations 
to glucose tolerance. The TGs most positively associated with 
OGTT glucAUC were TG 22:6_22:6_22:6 (66:18), TG 62:13, TG 
18:0_20:5_22:6 (60:11), TG 60:10 and TG 20:5_22:6_22:6 (64:17), 
all of which contain polyunsaturated fatty acyls (PUFAs) such as 
docosahexaenoic acid (22:6n-3). Among lipids that were positively 
associated with OGTT glucAUC in both sampling methods were 

PC O-34:4, PE 18:0_22:6, PE 18:0_20:4, SM d40:7 and PE P-40:7. By 
contrast, CE 18:1 was negatively associated with OGTT glucAUC 
in both fasted and non-fasted sampling conditions. Overall, there 
were more significant metabolite associations to OGTT glucAUC in 
non-fasted sampling compared to fasted sampling (Fig. 5c). Across 
metabolite classes, only acylcarnitines (ACs) and AAs had a greater 
number of metabolites that were significantly associated to OGTT 
glucAUC in fasted sampling.

Given the strong associations between numerous TGs and 
OGTT glucAUC, we explored TGs further by plotting TGs sepa-
rated by fatty acyl carbon count and number of unsaturations, with 
dots colored by log2 fold change between non-fasted and fasted 
sampling (Fig. 5d). TGs with higher carbon counts and number 
of unsaturations tended to be more abundant in fasted samples, 
whereas saturated, monounsaturated and TGs with three to four 
unsaturations tended to be more abundant in non-fasted samples. 
A similar plot of TGs is presented with dots colored by difference 
in OGTT glucAUC regression slope between non-fasted and fasted 
samples (Supplementary Fig. 3d). A greater difference in fasted and 
fed slopes indicates a larger interaction effect between sampling and 
glucose tolerance.

To filter our data and identify the metabolites that are most 
associated with glucose tolerance, we integrated both our multi-
variate model and individual metabolite analyses (Fig. 5e). After 
filtering, we found 66 metabolites associated to OGTT glucAUC 
in non-fasted sampling, versus 32 metabolites in fasted sampling. 
Next, we compared these 66 non-fasted sampled metabolites in 
Nile rats to a list of metabolites from a meta-analysis of incident 
type 2 diabetes in humans36. We found two polar metabolites and 
five lipids that are predictive of diabetes in both our Nile rat cohort 
and in humans: isoleucine, betaine, PC 18:0_20:3 (38:3), SM d39:1, 
TG 16:0_16:0_16:0 (48:0), TG 16:0_16:0_18:0 (50:0) and TG 56:6 
(Supplementary Data Tables 7 and 9). Of the unmatched 59 Nile 
rat metabolites, 20 were present in the human meta-analysis, but 
not found to have a significant relative risk for type 2 diabetes, 
such as glucose (q = 0.09), and the remaining 39 metabolites were 
not listed in the human meta-analysis, including many of the poly-
unsaturated TGs that featured prominently in Fig. 5b, such as TG 
22:6_22:6_22:6. Future studies are needed to determine the rel-
evance of these unmatched metabolites in human diabetes.

Low replicate variance in non-fasted sampling is reproducible 
regardless of age and sex. Similar to humans, Nile rats can develop 
diet-induced diabetes throughout a large range of ages. To explore if 
the low replicate variance in non-fasted sampling is affected by age 
and sex, we performed a similar analysis to study non-fasted replicate 
plasma sampling in a mature cohort of male and female Nile rats. 
To select animals developing diabetes, we collected weekly plasma 
samples and made weekly RBG measurements from 20 euglycemic 
Nile rats starting at 24 weeks old and took samples from the first 11 
Nile rats (5 males and 6 females) that developed non-fasted hyper-
glycemia (Supplementary Fig. 4a and Supplementary Data Table 2). 
Subsequent OGTT of these 11 mature Nile rats revealed OGTT glu-
cAUC values (Supplementary Fig. 4b) similar to the values measured 
from the previous 10 young male Nile rats. Similar to previously 
described %RSD measurements (Fig. 3), we assessed %RSD on tripli-
cate non-fasted plasma samples across all lipids and polar metabolites 
for this mature cohort, and plotted their metabolite %RSD distribu-
tions (Fig. 6a and Supplementary Data Tables 4 and 6). In this mature 
cohort, every Nile rat displayed a lower median metabolite %RSD 
compared to the 22.2% median %RSD of non-fasted plasma samples 
in the previous young male cohort. Aggregating %RSDs within the 
three age and sex groups reveals a statistically significant differ-
ence in median %RSD between mature females and mature males 
(mature males median %RSD 18.4%, mature females median %RSD 
16.9%, P < 10−7). There was also a statistically significant difference in 
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median %RSD in mature males versus young males (P < 10−49) and 
mature females versus young males (P < 10−109). These data support 
that the low replicate variance in non-fasted plasma sampling is also 
found in mature Nile rats of both sexes.

Sex differences in type 2 diabetes are well recognized but poorly 
studied37,38. Here we compare plasma metabolite abundances 
between sexes in our mature cohort. We plot log2 fold change of 
mean abundance between males and females across all annotated 
metabolites (Fig. 6b). With the exception of SM d42:6, many sphin-
golipids including SM d44:1 and SM d38:1 were more abundant 
in females compared to males. This is consistent with human data 

that shows a similar trend where most SMs are more abundant in 
females39,40. Notably, lipids with the greatest fold change contain 
polyunsaturated 22:6 fatty acyl, for example, TG 22:6_22:6_22:6 
(TG 66:18), TG 18:0_22:6_22:6 (TG 62:12) and PC 18:0_22:6 (PC 
40:6) (Supplementary Data Table 8). In summary, the metabolic 
profiles of the male and female Nile rats during progression of dia-
betes are highly disparate.

Discussion
In this study, we used LC–MS to generate the metabolic profile of 
Nile rats with a spectrum of glucose tolerance spanning euglyce-
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mic to overt diabetes and assessed the differences between fasted 
and non-fasted sampling. In our primary cohort of juvenile male 
Nile rats, we showed that metabolite measurements in non-fasted 
samples were more reproducible with lower replicate variance 
per animal compared to fasted samples. In these rats, non-fasted 
metabolite measurements were also better than fasted measure-
ments for predicting 12-week glucose tolerance in young male Nile 

rats. Next we assessed metabolites in the context of glucose toler-
ance, where we found 66 metabolites highly associated with OGTT 
glucAUC using a combined approach with multivariable elastic net 
and individual metabolite linear models. These include isoleucine, 
betaine, PC 18:0_20:3 (38:3), SM d39:1, TG 16:0_16:0_16:0 (48:0), 
TG 16:0_16:0_18:0 (50:0) and TG 56:6 that were also found to be 
significant type 2 diabetes biomarkers in humans. Our findings 
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support non-fasted blood sampling for metabolomics with stronger 
associations to escalating impaired glucose tolerance and disproved 
a long-held assumption of higher replicate variance from ad libi-
tum feeding; we anticipate these data will critically inform on future 
studies in this valuable Nile rat model for diabetes research.

In the past, metabolomics studies in humans have utilized 
plasma or serum sampled under fasted state41. However, a growing 
number of studies are promoting the use of non-fasted or postpran-
dial sampling for metabolic studies42,43. Compared to these studies, 
our data provides similar conclusions, both in terms of biomark-
ers36 and higher reproducibility of non-fasted versus fasted sam-
pling20,44. Metabolite biomarkers found to agree between our work 
and a human meta-analysis of incident type 2 diabetes biomarkers 
are metabolites such as isoleucine45,46, betaine47, TGs in general48 
and SMs49. In addition, we found biomarkers that were not included 
in the larger human meta-analysis, but have been found in other 
human diabetes studies, including polyunsaturated lipids SM d40:7, 
PC 38:7 and PC 40:6 (ref. 50). We recognize that fasted sampling 
is also useful, and contains orthogonal information (vide infra). 
However, the benefits of non-fasted sampling in animal model 
studies outweighs fasted sampling, namely the lighter workload in 
managing animals, lower rates of complications due to fasting and 
improved reproducibility.

This work is the first plasma metabolomics and lipidomics study 
in the Nile rat species with several key benefits. First, we performed 

separate lipidomics and polar metabolomics to provide broader 
coverage of the diverse molecules present in plasma, from hydro-
phobic TGs to hydrophilic carbohydrates. Second, we used small 
amounts of plasma at just 5 µl for each sample. With such small 
quantities, this opens up avenues for further analysis of plasma in 
smaller Nile rats, such as in weanlings, enabling the monitoring of 
plasma metabolites at even younger ages in populations that show 
early progression of diabetes. In addition, we used two separate 
machine-learning approaches. The first method uses multivariate 
regression with regularization to determine a subset of metabolites 
that work together to predict OGTT glucAUC, while the second 
approach evaluates each metabolite’s association with OGTT glu-
cAUC. In both approaches we used regression instead of categorical 
classification; while this approach is uncommon, the methods used 
here could benefit other diabetes studies that measure continuous 
variables such as blood glucose, insulin AUC, Homeostatic Model 
Assessment for Insulin Resistance (HOMA-IR) or hemoglobin A1C 
(HbA1c). Finally, we performed this study using a study design 
where each Nile rat underwent replicate sampling under both fasted 
and non-fasted sampling conditions. This enabled greater statisti-
cal power in assessing metabolite replicate variance by using paired 
statistics between metabolites.

Since our focus was to develop an optimal method for repro-
ducible plasma metabolite measurements in the Nile rat model, this 
study is limited in its ability to discover diabetes biomarkers due to 
the small study size and short sampling timeline. In addition, rodent 
chow is diabetogenic in Nile rats4,28 and this choice of diet skews 
the population toward higher glucose intolerance. Future studies to 
investigate the underlying mechanisms of glucose tolerance could 
be enhanced by incorporating food intake and additional metrics of 
diabetes; however these data were not captured here due to our pri-
ority on the metabolomics data. In summary, the method presented 
in this manuscript enables larger studies that could use metabolo-
mics to explore diabetes progression, analyze the effects of different 
diets and define the genetic and epigenetic contributions to diabetes 
in Nile rats.

The Nile rat model is highly valuable for mechanistic studies of 
type 2 diabetes, with a wide range of phenotypes and propensity 
to develop diet-induced diabetes on conventional rodent chow. 
Despite a modest cohort size, the metabolic biomarkers detected 
here in Nile rats show good agreement with human studies of type 2 
diabetes. Importantly, we have strong evidence of low replicate vari-
ance in non-fasted sampling supporting the use of non-fasted sam-
pling for future work. Lastly, the LC–MS metabolomics described 
here enables a broad coverage of metabolites and lipids in a very 
small volume of plasma. In conclusion, our method is highly suited 
to reveal complex metabolic changes occurring with progression 
toward overt diabetes.
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Methods
Animal studies. All animal experiments were approved by the University of 
California (protocol number 893), Santa Barbara, Institutional Animal Care and 
Use Committee, and conducted in accord with the NIH Guide for the Care and 
Use of Laboratory Animals. The Nile rats were fed ad libitum on a regular rodent 
diet (Diet 5008; Newco Speciality)28, and housed in a 12-h, 10:00 to 22:00, light 
cycle room. A total of three cohorts of Nile rats were used: ten male Nile rats had 
blood sampled at 8–10 weeks old (primary dataset), six male and seven female 
Nile rats had age range between 38 and 42 weeks old (12-h RBG data set) and 
five males and six females had blood sampled at ages 26–34 weeks old (validation 
dataset). To perform OGTT, Nile rats were fasted for 16 h from 18:00 to 10:00, and 
2 g of dextrose per kilogram body weight was introduced via oral gavage. Fasted 
plasma samples were collected around 10:00 to 11:00, and non-fasted samples 
were collected around 15:00 to 16:00, in the middle of the light-on duration. 
Blood collections were done under fasted and non-fasted conditions in triplicates 
spaced apart weekly. To minimize the effect of fasting on subsequent non-fasted 
samples, the Nile rat was allowed to recover for 3 days between the fasted sampling 
and the next non-fasting sampling. After the last collection, the rats were allowed 
to recover for 2 weeks before OGTT. All plasma samples were stored at −80 °C. 
For the OGTT, the OGTT glucAUC and OGTT insAUC for each animal were 
calculated by trapezoidal integration of the corresponding blood glucose (mg/
dL) or blood insulin (ng/dL) at measurement time points of 0, 10, 20, 30, 60 and 
120 min. Animals used in this study were not subjected to any previous procedures 
and have not been genetically modified. Two animals from the validation dataset 
were excluded because one had an unexpected weight drop and the other 
developed eye swelling; they were euthanized for humane reasons.

Glucose and insulin measurements. Blood glucose was measured by a Contour 
Next glucometer using blood from a tail prick. Plasma insulin was measured using 
the Ultrasensitive Mouse Insulin ELISA Kit (90080) by Crystal Chem according to 
standard protocol.

Lipidomics and metabolomics sample preparation. Plasma samples were thawed 
once before the second thawing on ice for subsequent lipidomic and metabolomic 
sample preparation. Each sample of 5 µL of plasma was extracted with 500 µL 6:2:2 
n-butanol:acetonitrile:water51,52. Samples were sonicated in a chilled water bath 
(QSonica) at an amplitude of 30 for 5 min at 10 °C using time increments of 20 s 
on/10 s off. Samples were then vortexed for 10 s and then centrifuged at 14,000g 
for 2 min at 4 °C to precipitate the protein. Then 100 µL of extract was dried 
down in an amber autosampler vial with glass insert by a SpeedVac evaporator 
(Thermo Scientific). For lipidomics, each extract was resuspended in 50 µL 9:1 
methanol:toluene. For metabolomics, each extract was resuspended in 25 µL 1:1 
acetonitrile:water then analyzed on the mass spectrometer. For both LC–MS 
methods, run order of plasma samples was randomized to minimize confounding 
effects of instrument variance over time.

HILIC–LC–MS metabolomics. Sample analysis was performed on a ZIC-pHILIC 
HPLC column held at 50 °C (100 mm × 2.1 mm × 1.7 μm particle size; Millipore) 
using a Vanquish Binary Pump (150 μL/min flow rate; Thermo Scientific). Mobile 
phase A consisted of 10 mM ammonium acetate in acetonitrile:H2O (10:90, v/v) 
containing 0.1% ammonium hydroxide. Mobile phase B consisted of 10 mM 
ammonium acetate in acetonitrile:H2O (95:5, v/v) containing 0.1% ammonium 
hydroxide. Mobile phase B was initially held at 95% for 2 min and then decreased 
to 30% over 18 min. Mobile phase B was held for 6 min at 35%, then raised to 95% 
over 1 min. The column was re-equilibrated at 95% mobile phase B for 8 min. Two 
microliters of extract was injected by a Vanquish Split Sampler HT autosampler 
(Thermo Scientific).

The LC system was coupled to a Q Exactive-HF Orbitrap mass spectrometer 
through a heated electrospray ionization (HESI II) source (Thermo Scientific). 
Source conditions were as follows: HESI II and capillary temperature at 350 °C, 
sheath gas flow rate at 40 units, aux gas flow rate at 15 units, sweep gas flow rate at 
1 unit, spray voltage at |3.0 kV| for both positive and negative modes, and S-lens 
RF at 50.0 units. The MS was operated in a polarity switching mode acquiring 
positive and negative full MS and MS2 spectra (Top10) within the same injection. 
Acquisition parameters for full MS scans in both modes were 60,000 resolution, 
1 × 106 automatic gain control (AGC) target, 100 ms ion accumulation time (max 
IT), and 70–900 m/z scan range. MS2 scans in both modes were then performed 
at 45,000 resolution, 1 × 105 AGC target, 100 ms max IT, 1.0 m/z isolation window, 
stepped normalized collision energy at 20, 30, 40 and a 30.0 s dynamic exclusion.

Reversed phase LC–MS lipidomics. Ten microliters of sample extract was 
injected via Vanquish Split Sampler HT autosampler (Thermo Scientific) onto an 
ACQUITY CSH C18 column held at 50 °C (100 mm × 2.1 mm × 1.7 μm particle 
size; Waters) using a Vanquish Binary Pump (400 μL/min flow rate; Thermo 
Scientific). A reversed phase gradient length of 30 min was used to separate 
the lipids, using mobile phase A, consisting of 10 mM ammonium acetate in 
acetonitrile:water (70:30, v/v) containing 250 μL/L acetic acid, and mobile phase 
B, consisting of 10 mM ammonium acetate in isopropanol:acetonitrile (90:10, v/v) 
with the same additives. Mobile phase B was initially held at 2% for 2 min and then 

increased to 30% over 3 min. Mobile phase B was further increased to 50% over 
1 min, then raised to 85% over 14 min, and finally raised to 99% over 1 min and 
held at 99% for 7 min. Mobile phase B was then decreased to 2% over 0.25 min, and 
the column was re-equilibrated with mobile phase B at 2% for 1.75 min before the 
next injection.

The LC system was coupled online to a Q Exactive-HF Orbitrap mass 
spectrometer through a heated electrospray ionization (HESI II) source (Thermo 
Scientific). In both ionization modes, the HESI II and capillary temperature, spray 
voltage, S-lens RF level, sheath gas, aux gas and sweep gas were held at 300 °C, 
|3.5 kV | , 90.0 units, 25 units, 15 units and 5 units, respectively. The MS was 
operated in a polarity switching mode acquiring positive and negative full MS and 
MS2 spectra (Top2) within the same injection. Acquisition parameters for full 
MS scans in both modes were 17,500 resolution, 1 × 106 AGC target, 100 ms ion 
accumulation time (max IT), and 200–1,600 m/z scan range. Data-dependent MS2 
scans in both modes were then performed at 17,500 resolution, 1 × 105 AGC target, 
50 ms max IT, 1.0 m/z isolation window, stepped normalized collision energy at 20, 
30, 40 and a 10.0 s dynamic exclusion.

LC–MS data processing. Reversed phase LC–MS raw lipidomics data were 
processed in Compound Discoverer 3.1 (Thermo Scientific) in conjunction 
with LipiDex53. In brief, MS1 scans from 100 Da to 5,000 Da precursor mass as 
well as retention time of 0.4 min to 21 min were extracted and aligned, using 
alignment parameters as follows: 0.2 min retention time tolerance, 10-ppm mass, 
a minimum peak intensity of 5 × 105, a maximum peak width of 0.25 min, and a 
minimum signal-to-noise ratio of 1.5, to form distinct chromatographic profiles, or 
compound groups. From the chromatographic features that were at least three-fold 
greater in intensity than blanks, the consequent MS2 features were searched against 
an in silico generated lipid spectral library. Compounds were annotated only if 
the corresponding MS2 fulfilled the following requirements: a minimum lipid 
spectral purity of 75% from co-eluting isobaric lipids that elute within a 3.5 median 
absolute retention time deviation from each other, a minimum MS2 spectral match 
dot product of 500, a minimum MS2 spectral match reverse dot product of 700, 
and found within at least two processed files. For individual fatty acid substituents 
that could not be resolved, the identifications were generated with the sum of the 
fatty acid substituents. Features were removed from further consideration if the 
%RSD values from quality control replicates were greater than 30%.

Hydrophilic interaction liquid chromatography (HILIC)–LC–MS raw 
metabolomics data were processed using the default workflow Untargeted 
Metabolomics using Online Databases, mzLogic and Molecular Networks in 
Compound Discoverer 3.3 (Thermo Scientific). Annotations for polar metabolites 
were derived from MS2 libraries using authentic standards, or from mzCloud 
library matching followed by manual validation of identifications using combined 
evidence from MS2 library matching score greater than 80, in addition to 
retention time and the presence of metabolite in databases of plasma metabolites54. 
Polar metabolite features were removed if %RSD of replicate quality control  
was >30%.

Statistical analysis. Data processing was performed in Python 3.7 with the 
following packages and versions: statsmodels 0.13.2; shap 0.41.0; scikit-learn 
1.0.2; scipy 1.7.3; pandas 1.3.5; numpy 1.21.6; networkx 2.6.3; matplotlib 3.5.2; 
matplotlib-venn 0.11.5; seaborn 0.11.2.

PCA was calculated on all 60 plasma samples (10-week-old males), combining 
both annotated and unannotated LC–MS chromatographic features from reversed 
phase lipidomics method and HILIC polar metabolomics method. Points represent 
samples and were plotted based on principal components 1 and 2. Samples were 
labeled according to the Nile rat label and whether the sample was fasted or 
non-fasted. In the process of PCA, the fasted 9-week sample from Nile rat A was 
found to lie within the non-fasted cluster. Further analysis of the metabolite profile 
revealed elevated AAs with an outlier effect of >2 standard deviations compared 
to other fasted samples, leading us to remove this sample from PCA visualization 
and discard this sample from further downstream analyses. The heat map in Fig. 
2d was generated using Python seaborn. Each column is one Nile rat’s annotated 
metabolite profile in either fasted or non-fasted conditions, averaged across 
triplicate sampling weeks. Rows are one annotated metabolite, and log2 fold change 
is given as the difference between the triplicate averaged log2 abundance and 
the mean log2 abundance of all fasted plasma samples. Rows were hierarchically 
clustered using method complete linkage with Euclidean (L2 norm) distance 
metric.

%RSD was calculated for each metabolite feature, within each sampling method 
(non-fasted and fasted), within each Nile rat, in both Nile rat cohorts (young males 
and mature males/females). The calculation uses metabolite log2 abundances to 
find the standard deviation of triplicate sampling across 3 weeks divided by the 
mean of these three values. Young male Nile rat A was excluded from %RSD 
calculations due to discarding outlier week of fasted sampling. Significance testing 
between young male non-fasted and fasted metabolite %RSDs was performed 
using Wilcoxon signed rank test on paired %RSD values among the metabolite 
groups using scipy wilcoxon function. Calculated P values from Wilcoxon 
signed rank were corrected for false discovery rate by Bonferroni method using 
statsmodels multipletests function.
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Multivariate machine learning models were trained using the associated 
sklearn method (LinearRegression, Lasso, Ridge, ElasticNet, PLSRegression 
and RandomForestRegressor). Cross-validation was performed using sklearn 
cross_validate with n_repeats of 200 and n_splits of 6, with random seed set 
identically for all six models ensuring the same training data. Competing models 
for non-fasted and fasted sampling were trained on all young male non-fasted 
and fasted plasma samples, and the median R2 value from all 1,200 folds were 
presented. At each fold, the β coefficient of each metabolite feature was recorded. 
Metabolite importance is calculated as the average β coefficient across all 1,200 
folds divided by the maximum average β coefficient of all metabolites. Normalized 
importances were then calculated by taking the absolute value of the importance 
to set each metabolite’s normalized importance value between 0 and 1. Individual 
metabolite linear regressions and R2 values of OGTT glucAUC versus log2 
abundance (used in Fig. 4d) were calculated using all non-fasted and fasted plasma 
samples, with the dots on the plots representing the mean log2 abundance from 
each Nile rat.

Throughout the text, the term individual metabolite linear models is used, 
which is defined as the regression model given by equation (1).

Metabolite log2 abundance ∼ OGTTglucAUC

+ sampling + sampling ∶ OGTTglucAUC
(1)

Significance testing was performed, each of the three terms in equation (1) 
using likelihood ratio test in statsmodels ols function. P values for each of the 
three terms were corrected across all metabolites using Benjamini–Hochberg 
false discovery rate correction using statsmodels fdrcorrection. Resulting q values 
were significant at a value of less than 0.05. Each metabolite also underwent 
linear regression of OGTT glucAUC versus log2 abundance within each sampling 
method, and resulting P values for the effect size (regression slope value; used in 
Fig. 5b) were also corrected for multiple testing using the Benjamini–Hochberg 
method, with q values significant at less than 0.05.

Reporting summary. Further information on research design is available in the 
Nature Portfolio Reporting Summary linked to this article.

Data availability
All MS files are available in the public repository MassIVE under accession number 
MSV000091033.

Code availability
Code for analysis and figures is contained in GitHub repository at https://github.
com/benton-anderson/nile_rat_multiomics
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