Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

3R measures in facilities for the production of genetically modified rodents

Abstract

Sociocultural changes in the human–animal relationship have led to increasing demands for animal welfare in biomedical research. The 3R concept is the basis for bringing this demand into practice: Replace animal experiments with alternatives where possible, Reduce the number of animals used to a scientifically justified minimum and Refine the procedure to minimize animal harm. The generation of gene-modified sentient animals such as mice and rats involves many steps that include various forms of manipulation. So far, no coherent analysis of the application of the 3Rs to gene manipulation has been performed. Here we provide guidelines from the Committee on Genetics and Breeding of Laboratory Animals of the German Society for Laboratory Animal Science to implement the 3Rs in every step during the generation of genetically modified animals. We provide recommendations for applying the 3Rs as well as success/intervention parameters for each step of the process, from experiment planning to choice of technology, harm–benefit analysis, husbandry conditions, management of genetically modified lines and actual procedures. We also discuss future challenges for animal welfare in the context of developing technologies. Taken together, we expect that our comprehensive analysis and our recommendations for the appropriate implementation of the 3Rs to technologies for genetic modifications of rodents will benefit scientists from a wide range of disciplines and will help to improve the welfare of a large number of laboratory animals worldwide.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Russel, W. M. S. & Burch, R. L. The principles of humane experimental technique. (Methuen, 1959).

  2. Kaneko, T., Sakuma, T., Yamamoto, T. & Mashimo, T. Simple knockout by electroporation of engineered endonucleases into intact rat embryos. Sci. Rep. 4, 6382 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Hashimoto, M. & Takemoto, T. Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing. Sci. Rep. 5, 11315 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Chen, S., Lee, B., Lee, A. Y., Modzelewski, A. J. & He, L. Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. J. Biol. Chem. 291, 14457–14467 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Wang, W. et al. Delivery of Cas9 protein into mouse zygotes through a series of electroporation dramatically increases the efficiency of model creation. J. Genet. Genomics 43, 319–327 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  6. Tröder, S. E. et al. An optimized electroporation approach for efficient CRISPR/Cas9 genome editing in murine zygotes. PLoS ONE 13, e0196891 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  7. Takahashi, G. et al. GONAD: Genome-editing via Oviductal Nucleic Acids Delivery system: a novel microinjection independent genome engineering method in mice. Sci. Rep. 5, 11406 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  8. Kobayashi, Y. et al. Modification of i-GONAD suitable for production of genome-edited C57BL/6 inbred mouse strain. Cells 9, 957 (2020).

    CAS  PubMed Central  Article  Google Scholar 

  9. Sato, M. et al. Sequential i-GONAD: an improved in vivo technique for CRISPR/Cas9-based genetic manipulations in mice. Cells 9, 546 (2020).

    CAS  PubMed Central  Article  Google Scholar 

  10. Advanced Protocols for Animal Transgenesis: An ISTT Manual. (Springer-Verlag, 2011); https://doi.org/10.1007/978-3-642-20792-1

  11. Behringer R., Gertsenstein, M. Manipulating the mouse embryo: a laboratory manual. (Cold Spring Harbor Laboratory Press, 2014).

  12. Moltó, V.-G., Montoliu, L., Pease, S. & Saunders, T. in Advanced Protocols for Animal Transgenesis: An ISTT Manual (eds Pease, S. & Saunders, T. L.) 81–97 (Springer-Verlag, 2011).

  13. Gordon, J. W., Scangos, G. A., Plotkin, D. J., Barbosa, J. A. & Ruddle, F. H. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Natl Acad. Sci. USA 77, 7380–7384 (1980).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Brinster, R. L. et al. Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell 27, 223–231 (1981).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Costantini, F. & Lacy, E. Introduction of a rabbit β-globin gene into the mouse germ line. Nature 294, 92–94 (1981).

    CAS  PubMed  Article  Google Scholar 

  16. Fielder, T. J. in Advanced Protocols for Animal Transgenesis: An ISTT Manual (ed. Pease, S.) 81–97 (Springer-Verlag, 2011).

  17. Lindner, L. et al. Droplet digital PCR or quantitative PCR for in-depth genomic and functional validation of genetically altered rodents. Methods 191, 107–119 (2021).

    CAS  PubMed  Article  Google Scholar 

  18. Henikoff, S. Conspiracy of silence among repeated transgenes. BioEssays 20, 532–535 (1998).

    CAS  PubMed  Article  Google Scholar 

  19. Goodwin, L. O. et al. Large-scale discovery of mouse transgenic integration sites reveals frequent structural variation and insertional mutagenesis. Genome Res. 29, 494–505 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Chiang, C. et al. Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat. Genet. 44, 390–397 (2012). S1.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Cain-Hom, C. et al. Efficient mapping of transgene integration sites and local structural changes in Cre transgenic mice using targeted locus amplification. Nucleic Acids Res. 45, e62 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mukai, H. Y. et al. Transgene insertion in proximity to the c-myb gene disrupts erythroid–megakaryocytic lineage bifurcation. Mol. Cell. Biol. 26, 7953–7965 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Durkin, M. E., Keck-Waggoner, C. L., Popescu, N. C. & Thorgeirsson, S. S. Integration of a c-myc transgene results in disruption of the mouse Gtf2ird1 gene, the homologue of the human GTF2IRD1 gene hemizygously deleted in Williams–Beuren syndrome. Genomics 73, 20–27 (2001).

    CAS  PubMed  Article  Google Scholar 

  24. de Vree, P. J. P. et al. Targeted sequencing by proximity ligation for comprehensive variant detection and local haplotyping. Nat. Biotechnol. 32, 1019–1025 (2014).

    PubMed  Article  CAS  Google Scholar 

  25. Blondal, T. et al. Verification of CRISPR editing and finding transgenic inserts by Xdrop indirect sequence capture followed by short- and long-read sequencing. Methods 191, 68–77 (2021).

    CAS  PubMed  Article  Google Scholar 

  26. Hart-Johnson, S. & Mankelow, K. Archiving genetically altered animals: a review of cryopreservation and recovery methods for genome edited animals. Lab. Anim. https://doi.org/10.1177/00236772211007306 (2021).

  27. Remy, S. et al. The use of lentiviral vectors to obtain transgenic rats. Methods Mol. Biol. 597, 109–125 (2010).

    CAS  PubMed  Article  Google Scholar 

  28. Giraldo, P. & Montoliu, L. Size matters: use of YACs, BACs and PACs in transgenic animals. Transgenic Res. 10, 83–103 (2001).

    CAS  PubMed  Article  Google Scholar 

  29. Van Keuren, M. L., Gavrilina, G. B., Filipiak, W. E., Zeidler, M. G. & Saunders, T. L. Generating transgenic mice from bacterial artificial chromosomes: transgenesis efficiency, integration and expression outcomes. Transgenic Res. 18, 769–785 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Chandler, K. J. et al. Relevance of BAC transgene copy number in mice: transgene copy number variation across multiple transgenic lines and correlations with transgene integrity and expression. Mamm. Genome 18, 693–708 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Dubose, A. J. et al. Use of microarray hybrid capture and next-generation sequencing to identify the anatomy of a transgene. Nucleic Acids Res. 41, e70 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Rostovskaya, M. et al. Transposon mediated BAC transgenesis via pronuclear injection of mouse zygotes. Genes 51, 135–141 (2013).

    CAS  Article  Google Scholar 

  33. Zhao, L., Ng, E. T. & Koopman, P. A piggyBac transposon- and gateway-enhanced system for efficient BAC transgenesis. Dev. Dyn. 243, 1086–1094 (2014).

    CAS  PubMed  Article  Google Scholar 

  34. Suster, M. L., Sumiyama, K. & Kawakami, K. Transposon-mediated BAC transgenesis in zebrafish and mice. BMC Genomics 10, 477 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. Shmerling, D. et al. Strong and ubiquitous expression of transgenes targeted into the β-actin locus by Cre/lox cassette replacement. Genes 42, 229–235 (2005).

    CAS  Article  Google Scholar 

  36. Tasic, B. et al. Site-specific integrase-mediated transgenesis in mice via pronuclear injection. Proc. Natl Acad. Sci. USA 108, 7902–7907 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Ohtsuka, M. et al. One-step generation of multiple transgenic mouse lines using an improved Pronuclear Injection-based Targeted Transgenesis (i-PITT). BMC Genomics 16, 274 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. Doetschman, T. et al. Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330, 576–578 (1987).

    CAS  PubMed  Article  Google Scholar 

  39. Thomas, K. R. & Capecchi, M. R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512 (1987).

    CAS  PubMed  Article  Google Scholar 

  40. DeChiara, T. M. et al. Producing fully ES cell-derived mice from eight-cell stage embryo injections. Methods Enzym. 476, 285–294 (2010).

    Article  Google Scholar 

  41. Artus, J. & Hadjantonakis, A. K. Generation of chimeras by aggregation of embryonic stem cells with diploid or tetraploid mouse embryos. Methods Mol. Biol. 693, 37–56 (2011).

    CAS  PubMed  Article  Google Scholar 

  42. Gertsenstein, M. et al. Efficient generation of germ line transmitting chimeras from C57BL/6N ES cells by aggregation with outbred host embryos. PLoS ONE 5, e11260 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  43. Hu, M. et al. Efficient production of chimeric mice from embryonic stem cells injected into 4- to 8-cell and blastocyst embryos. J. Anim. Sci. Biotechnol. 4, 12 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Bradley, A., Evans, M., Kaufman, M. H. & Robertson, E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255–256 (1984).

    CAS  PubMed  Article  Google Scholar 

  45. Abuin, A., Hansen, G. M. & Zambrowicz, B. Gene trap mutagenesis. Handb. Exp. Pharmacol. 129–147 (2007); https://doi.org/10.1007/978-3-540-35109-2_6

  46. Cervantes, R. B., Stringer, J. R., Shao, C., Tischfield, J. A. & Stambrook, P. J. Embryonic stem cells and somatic cells differ in mutation frequency and type. Proc. Natl Acad. Sci. USA 99, 3586–3590 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Liu, X. et al. Trisomy eight in ES cells is a common potential problem in gene targeting and interferes with germ line transmission. Dev. Dyn. 209, 85–91 (1997).

    CAS  PubMed  Article  Google Scholar 

  48. Longo, L., Bygrave, A., Grosveld, F. G. & Pandolfi, P. P. The chromosome make-up of mouse embryonic stem cells is predictive of somatic and germ cell chimaerism. Transgenic Res. 6, 321–328 (1997).

    CAS  PubMed  Article  Google Scholar 

  49. Birling, M.-C. et al. A resource of targeted mutant mouse lines for 5,061 genes. Nat. Genet. 53, 416–419 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Ying, Q.-L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Ying, Q. L., Nichols, J., Chambers, I. & Smith, A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281–292 (2003).

    CAS  PubMed  Article  Google Scholar 

  52. Skarnes, W. C. et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474, 337–342 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Kern, H. & Zevnik, B. ES cell line establishment. Methods Mol. Biol. 530, 187–204 (2009).

    CAS  PubMed  Article  Google Scholar 

  54. Voss, A. K., Thomas, T. & Gruss, P. Germ line chimeras from female ES cells. Exp. Cell. Res. 230, 45–49 (1997).

    CAS  PubMed  Article  Google Scholar 

  55. Bronson, S. K., Smithies, O. & Mascarello, J. T. High incidence of XXY and XYY males among the offspring of female chimeras from embryonic stem cells. Proc. Natl Acad. Sci. USA 92, 3120–3123 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Ying, Q. L. & Smith, A. G. Defined conditions for neural commitment and differentiation. Methods Enzym. 365, 327–341 (2003).

    CAS  Article  Google Scholar 

  57. Codner, G. F. et al. Universal Southern blot protocol with cold or radioactive probes for the validation of alleles obtained by homologous recombination. Methods 191, 59–67 (2021).

    CAS  PubMed  Article  Google Scholar 

  58. Hu, T., Chitnis, N., Monos, D. & Dinh, A. Next-generation sequencing technologies: an overview. Hum. Immunol. 82, 801–811 (2021).

    CAS  PubMed  Article  Google Scholar 

  59. Codner, G. F. et al. Aneuploidy screening of embryonic stem cell clones by metaphase karyotyping and droplet digital polymerase chain reaction. BMC Cell Biol. 17, 30 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  60. Auerbach, A. B. et al. Strain-dependent differences in the efficiency of transgenic mouse production. Transgenic Res. 12, 59–69 (2003).

    CAS  PubMed  Article  Google Scholar 

  61. Alcantar, T. M., Wiler, R. & Rairdan, X. Y. Comparison of BALB/c and B6-albino mouse strain blastocysts as hosts for the injection of C57BL6/N-derived C2 embryonic stem cells. Transgenic Res. 25, 527–531 (2016).

    CAS  PubMed  Article  Google Scholar 

  62. Fielder, T. J. et al. Comparison of male chimeric mice generated from microinjection of JM8.N4 embryonic stem cells into C57BL/6J and C57BL/6NTac blastocysts. Transgenic Res. 21, 1149–1158 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. Pacholczyk, G., Suhag, R., Mazurek, M., Dederscheck, S. M. & Koni, P. A. Generation of C57BL/6 knockout mice using C3H × BALB/c blastocysts. BioTechniques 44, 413–416 (2008).

    CAS  PubMed  Article  Google Scholar 

  64. Zevnik, B. et al. C57BL/6N albino/agouti mutant mice as embryo donors for efficient germline transmission of C57BL/6 ES cells. PLoS ONE 9, e90570 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  65. Schuster-Gossler, K. et al. Use of coisogenic host blastocysts for efficient establishment of germline chimeras with C57BL/6J ES cell lines. BioTechniques 31, 1022–1026 (2001).

    CAS  PubMed  Article  Google Scholar 

  66. Lemckert, F. A., Sedgwick, J. D. & Körner, H. Gene targeting in C57BL/6 ES cells. Successful germ line transmission using recipient BALB/c blastocysts developmentally matured in vitro. Nucleic Acids Res. 25, 917–918 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. Ma, Y. et al. Efficiency comparison of B6(Cg)-Tyrc-2j /J and C57BL/6NTac embryos as hosts for the generation of knockout mice. Transgenic Res. (2021); https://doi.org/10.1007/s11248-021-00248-9

  68. Koentgen, F. et al. Exclusive transmission of embryonic stem cell-derived genome through the mouse germline. Genesis 54, 326–333 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Tröder, S. E. & Zevnik, B. History of genome editing: from meganucleases to CRISPR. Lab. Anim. https://doi.org/10.1177/0023677221994613 (2021).

  70. Ménoret, S. et al. Generation of Rag1-knockout immunodeficient rats and mice using engineered meganucleases. FASEB J. 27, 703–711 (2013).

    PubMed  Article  CAS  Google Scholar 

  71. Geurts, A. M. et al. Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325, 433–433 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Carbery, I. D. et al. Targeted genome modification in mice using zinc-finger nucleases. Genetics 186, 451–459 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Meyer, M., de Angelis, M. H., Wurst, W. & Kühn, R. Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc. Natl Acad. Sci. USA 107, 15022–15026 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Wefers, B. et al. Generation of targeted mouse mutants by embryo microinjection of TALEN mRNA. Nat. Protoc. 8, 2355–2379 (2013).

    CAS  PubMed  Article  Google Scholar 

  75. Tesson, L. et al. Knockout rats generated by embryo microinjection of TALENs. Nat. Biotechnol. 29, 695–696 (2011).

    CAS  PubMed  Article  Google Scholar 

  76. Sung, Y. H. et al. Knockout mice created by TALEN-mediated gene targeting. Nat. Biotechnol. 31, 23–24 (2013).

    CAS  PubMed  Article  Google Scholar 

  77. Panda, S. K. et al. Highly efficient targeted mutagenesis in mice using TALENs. Genetics 195, 703–713 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. Yang, H. et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154, 1370–1379 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Horvath, P. & Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167–170 (2010).

    CAS  PubMed  Article  Google Scholar 

  84. Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl Acad. Sci. USA 109, E2579–E2586 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. Mehravar, M., Shirazi, A., Nazari, M. & Banan, M. Mosaicism in CRISPR/Cas9-mediated genome editing. Dev. Biol. 445, 156–162 (2019).

    CAS  PubMed  Article  Google Scholar 

  86. Anderson, K. R. et al. CRISPR off-target analysis in genetically engineered rats and mice. Nat. Methods 15, 512–514 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. Akcakaya, P. et al. In vivo CRISPR editing with no detectable genome-wide off-target mutations. Nature 561, 416–419 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. Cui, Y., Xu, J., Cheng, M., Liao, X. & Peng, S. Review of CRISPR/Cas9 sgRNA design tools. Interdiscip. Sci. 10, 455–465 (2018).

    CAS  PubMed  Article  Google Scholar 

  89. Kim, N. et al. Prediction of the sequence-specific cleavage activity of Cas9 variants. Nat. Biotechnol. 38, 1328–1336 (2020).

    CAS  PubMed  Article  Google Scholar 

  90. Lee, K. et al. Synthetically modified guide RNA and donor DNA are a versatile platform for CRISPR–Cas9 engineering. Elife 6, e25312 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  91. Bunton-Stasyshyn, R. K., Codner, G. F. & Teboul, L. Screening and validation of genome-edited animals. Lab. Anim. https://doi.org/10.1177/00236772211016922 (2021).

  92. McBeath, E. et al. Rapid evaluation of CRISPR guides and donors for engineering mice. Genes 11, 628 (2020).

    CAS  PubMed Central  Article  Google Scholar 

  93. Renaud, J.-B. et al. Improved genome editing efficiency and flexibility using modified oligonucleotides with TALEN and CRISPR-Cas9 nucleases. Cell Rep. 14, 2263–2272 (2016).

    CAS  PubMed  Article  Google Scholar 

  94. Paquet, D. et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533, 125–129 (2016).

    CAS  PubMed  Article  Google Scholar 

  95. Miura, H., Quadros, R. M., Gurumurthy, C. B. & Ohtsuka, M. Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors. Nat. Protoc. 13, 195–215 (2018).

    CAS  PubMed  Article  Google Scholar 

  96. Chu, V. T. et al. Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes. BMC Biotechnol. 16, 4 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  97. Gu, B., Posfai, E., Gertsenstein, M. & Rossant, J. Efficient generation of large-fragment knock-in mouse models using 2-cell (2C)-homologous recombination (HR)-CRISPR. Curr. Protoc. Mouse Biol. 10, e67 (2020).

    CAS  PubMed  Article  Google Scholar 

  98. Hashimoto, M., Yamashita, Y. & Takemoto, T. Electroporation of Cas9 protein/sgRNA into early pronuclear zygotes generates non-mosaic mutants in the mouse. Dev. Biol. https://doi.org/10.1016/j.ydbio.2016.07.017 (2016).

    Article  PubMed  Google Scholar 

  99. Qin, W. et al. Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease. Genetics 200, 423–430 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. Ohtsuka, M. et al. i-GONAD: a robust method for in situ germline genome engineering using CRISPR nucleases. Genome Biol. 19, 25 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  101. Mader, S. L., Libal, N. L., Pritchett-Corning, K., Yang, R. & Murphy, S. J. Refining timed pregnancies in two strains of genetically engineered mice. Lab. Anim. 38, 305–310 (2009).

    Article  Google Scholar 

  102. Zintzsch, A. et al. Guidelines on severity assessment and classification of genetically altered mouse and rat lines. Lab. Anim. 51, 573–582 (2017).

    CAS  PubMed  Article  Google Scholar 

  103. Bundesinstitut für Risikobewertung. Severity assessment of genetically altered mice and rats — V2. Recommendation no. 002/2016 by the National Committee (TierSchG). (2016).

  104. Palmiter, R. D. et al. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. 1982. Biotechnology 24, 429–433 (1992).

    CAS  PubMed  Google Scholar 

  105. Lipinski, M. M. et al. Cell-autonomous and non-cell-autonomous functions of the Rb tumor suppressor in developing central nervous system. EMBO J. 20, 3402–3413 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. Naiche, L. A. & Papaioannou, V. E. Cre activity causes widespread apoptosis and lethal anemia during embryonic development. Genesis 45, 768–775 (2007).

    CAS  PubMed  Article  Google Scholar 

  107. Lexow, J., Poggioli, T., Sarathchandra, P., Santini, M. P. & Rosenthal, N. Cardiac fibrosis in mice expressing an inducible myocardial-specific Cre driver. Dis. Model Mech. 6, 1470–1476 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Liptak, N., Bosze, Z. & Hiripi, L. GFP transgenic animals in biomedical research: a review of potential disadvantages. Physiol. Res. 68, 525–530 (2019).

    CAS  PubMed  Article  Google Scholar 

  109. Wefers, B., Wurst, W. & Kühn, R. Design and generation of gene-targeting vectors. Curr. Protoc. Mouse Biol. 1, 199–211 (2011).

    PubMed  Google Scholar 

  110. FELASA Working Group on Revision of Guidelines for Health Monitoring of Rodents and Rabbits et al. FELASA recommendations for the health monitoring of mouse, rat, hamster, guinea pig and rabbit colonies in breeding and experimental units. Lab. Anim. 48, 178–192 (2014).

    Article  CAS  Google Scholar 

  111. Busch, M. et al. Tiergerechte Haltung von Labormäusen. (GV-SOLAS Society for Laboratory Animal Science, Committee for Humane Laboratory Animal Housing, 2014); https://www.gv-solas.de/wp-content/uploads/2021/08/hal_201408Tiergerechte-Haltung-Maus.pdf

  112. Bahougne, T., Kretz, M., Angelopoulou, E., Jeandidier, N. & Simonneaux, V. Impact of circadian disruption on female mice reproductive function. Endocrinology 161, bqaa028 (2020).

    PubMed  Article  Google Scholar 

  113. Gaskill, B. N. et al. Energy reallocation to breeding performance through improved nest building in laboratory mice. PLoS ONE 8, e74153 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. Nutrient Requirements of Laboratory Animals: Fourth Revised Edition, 1995. 4758 (National Academies Press, 1995); https://doi.org/10.17226/4758

  115. Hurst, J. L. & West, R. S. Taming anxiety in laboratory mice. Nat. Methods 7, 825–826 (2010).

    CAS  PubMed  Article  Google Scholar 

  116. Gouveia, K. & Hurst, J. L. Optimising reliability of mouse performance in behavioural testing: the major role of non-aversive handling. Sci Rep. 7, 44999 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. Gouveia, K. & Hurst, J. L. Reducing mouse anxiety during handling: effect of experience with handling tunnels. PLoS ONE 8, e66401 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. Cederwall, M. Positive reinforcement training for laboratory mice. (Swedish Univ. Agricultural Sciences, 2014); https://www.semanticscholar.org/paper/Positive-reinforcement-training-for-laboratory-mice-Cederwall/bbdd52e182cd3bc8431d4cc5fdff24700f924e76

  119. Saunders, T. 2019 ISTT 3Rs awardee - Pawel Pelczar. ISTT Blog https://www.transtechsociety.org/index.php?src=blog&srctype=detail&blogid=17 (2019).

  120. Suthersan, D., Kennedy, S. & Chapman, M. Physical symptoms throughout IVF cycles. Hum. Fertil. 14, 122–128 (2011).

    CAS  Article  Google Scholar 

  121. Byers, S. L., Payson, S. J. & Taft, R. A. Performance of ten inbred mouse strains following assisted reproductive technologies (ARTs). Theriogenology 65, 1716–1726 (2006).

    PubMed  Article  Google Scholar 

  122. Luo, C. et al. Superovulation strategies for 6 commonly used mouse strains. J. Am. Assoc. Lab. Anim. Sci. 50, 471–478 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Takeo, T. & Nakagata, N. Superovulation using the combined administration of inhibin antiserum and equine chorionic gonadotropin increases the number of ovulated oocytes in C57BL/6 female mice. PLoS ONE 10, e0128330 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  124. Manteca Vilanova, X., De Briyne, N., Beaver, B. & Turner, P. V. Horse welfare during equine chorionic gonadotropin (eCG) production. Animals 9, 1053 (2019).

    PubMed Central  Article  Google Scholar 

  125. Hasegawa, A. et al. High-yield superovulation in adult mice by anti-inhibin serum treatment combined with estrous cycle synchronization. Biol. Reprod. 94, 21 (2016).

    PubMed  Article  CAS  Google Scholar 

  126. Crispo, M., Meikle, M. N., Schlapp, G. & Menchaca, A. Ovarian superstimulatory response and embryo development using a new recombinant glycoprotein with eCG-like activity in mice. Theriogenology 164, 31–35 (2021).

    CAS  PubMed  Article  Google Scholar 

  127. Kolbe, T., Sheety, S., Walter, I., Palme, R. & Rülicke, T. Impact of superovulation and mating on the wellbeing of juvenile and adult C57BL/6N mice. Reprod. Fertil. Dev. 28, 969–973 (2016).

    CAS  PubMed  Article  Google Scholar 

  128. Esmail, M. Y., Qi, P., Connor, A. B., Fox, J. G. & García, A. Generating chimeric mice by using embryos from nonsuperovulated BALB/c mice compared with superovulated BALB/c and albino C57BL/6 mice. J. Am. Assoc. Lab. Anim. Sci. 55, 400–405 (2016).

    PubMed  PubMed Central  Google Scholar 

  129. Diamond, M. Intromission pattern and species vaginal code in relation to induction of pseudopregnancy. Science 169, 995–997 (1970).

    CAS  PubMed  Article  Google Scholar 

  130. Miller, A. L., Wright-Williams, S. L., Flecknell, P. A. & Roughan, J. V. A comparison of abdominal and scrotal approach methods of vasectomy and the influence of analgesic treatment in laboratory mice. Lab. Anim. 46, 304–310 (2012).

    CAS  PubMed  Article  Google Scholar 

  131. Haueter, S. et al. Genetic vasectomy-overexpression of Prm1-EGFP fusion protein in elongating spermatids causes dominant male sterility in mice. Genesis 48, 151–160 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Garrels, W. et al. Direct comparison of vasectomized males and genetically sterile Gapdhs knockout males for the induction of pseudopregnancy in mice. Lab. Anim. 52, 365–372 (2018).

    CAS  PubMed  Article  Google Scholar 

  133. Preece, C. et al. Replacement of surgical vasectomy through the use of wild-type sterile hybrids. Lab. Anim. 50, 49–52 (2021).

    Article  Google Scholar 

  134. Program and Abstracts of the 15th Transgenic Technology Meeting (TT2019). Transgenic Res. 28 (Suppl. 1), 1–33 (2019).

  135. Byers, S. L., Wiles, M. V., Dunn, S. L. & Taft, R. A. Mouse estrous cycle identification tool and images. PLoS ONE 7, e35538 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. Whitten, W. K. Modification of the oestrous cycle of the mouse by external stimuli associated with the male; changes in the oestrous cycle determined by vaginal smears. J. Endocrinol. 17, 307–313 (1958).

    CAS  PubMed  Article  Google Scholar 

  137. Steele, K. H. et al. Nonsurgical embryo transfer device compared with surgery for embryo transfer in mice. J. Am. Assoc. Lab. Anim. Sci. 52, 17–21 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Green, M. A., Bass, S. & Spear, B. T. A device for the simple and rapid transcervical transfer of mouse embryos eliminates the need for surgery and potential post-operative complications. Biotechniques 47, 919–924 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  139. Bin Ali, R. et al. Improved pregnancy and birth rates with routine application of nonsurgical embryo transfer. Transgenic Res. 23, 691–695 (2014).

    Article  CAS  Google Scholar 

  140. Kolbe, T., Palme, R., Touma, C. & Rülicke, T. Repeated use of surrogate mothers for embryo transfer in the mouse. Biol. Reprod. 86, 1–6 (2012).

    PubMed  Article  CAS  Google Scholar 

  141. Koutroli, E. et al. Effects of using the analgesic tramadol in mice undergoing embryo transfer surgery. Lab. Anim. 43, 167–172 (2014).

    Article  Google Scholar 

  142. Schlapp, G., Goyeneche, L., Fernandez, G., Menchaca, A. & Crispo, M. Administration of the nonsteroidal anti-inflammatory drug tolfenamic acid at embryo transfer improves maintenance of pregnancy and embryo survival in recipient mice. J. Assist. Reprod. Genet. 32, 271–275 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  143. Krueger, K. L. & Fujiwara, Y. The use of buprenorphine as an analgesic after rodent embryo transfer. Lab. Anim. 37, 87–90 (2008).

    Article  Google Scholar 

  144. Goulding, D. R. et al. The effects of perioperative analgesia on litter size in Crl:CD1(ICR) mice undergoing embryo transfer. J. Am. Assoc. Lab. Anim. Sci. 49, 423–426 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Arras, M. et al. Pain Management for laboratory animals. (GV-SOLAS Society for Laboratory Animal Science Committee for Anaesthesia, 2020); https://www.gv-solas.de/wp-content/uploads/2021/08/2021-04_Pain_Management_for_laboratory_animals.pdf

  146. Norton, W. B. et al. Refinements for embryo implantation surgery in the mouse: comparison of injectable and inhalant anesthesias—tribromoethanol, ketamine and isoflurane—on pregnancy and pup survival. Lab. Anim. 50, 335–343 (2016).

    CAS  PubMed  Article  Google Scholar 

  147. Bagis, H., Odaman Mercan, H. & Dinnyes, A. Exposure to warmer postoperative temperatures reduces hypothermia caused by anaesthesia and significantly increases the implantation rate of transferred embryos in the mouse. Lab. Anim. 38, 50–54 (2004).

    CAS  PubMed  Article  Google Scholar 

  148. Wixson, S. K., White, W. J., Hughes, H. C., Lang, C. M. & Marshall, W. K. The effects of pentobarbital, fentanyl-droperidol, ketamine-xylazine and ketamine-diazepam on core and surface body temperature regulation in adult male rats. Lab. Anim. Sci. 37, 743–749 (1987).

    CAS  PubMed  Google Scholar 

  149. Langford, D. J. et al. Coding of facial expressions of pain in the laboratory mouse. Nat. Methods 7, 447–449 (2010).

    CAS  PubMed  Article  Google Scholar 

  150. Leach, M. C. et al. The assessment of post-vasectomy pain in mice using behaviour and the Mouse Grimace Scale. PLoS ONE 7, e35656 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  151. Hawkins, P. et al. A guide to defining and implementing protocols for the welfare assessment of laboratory animals: eleventh report of the BVAAWF/FRAME/RSPCA/UFAW Joint Working Group on Refinement. Lab. Anim. 45, 1–13 (2011).

    CAS  PubMed  Article  Google Scholar 

  152. Scarborough, J. et al. Preclinical validation of the micropipette-guided drug administration (MDA) method in the maternal immune activation model of neurodevelopmental disorders. Brain Behav. Immun. 88, 461–470 (2020).

    CAS  PubMed  Article  Google Scholar 

  153. Evangelista-Vaz, R., Bergadano, A., Arras, M. & Jirkof, P. D. Analgesic efficacy of subcutaneous-oral dosage of tramadol after surgery in C57BL/6J mice. J. Am. Assoc. Lab. Anim. Sci. https://doi.org/10.30802/AALAS-JAALAS-17-000118 (2018).

  154. Ingrao, J. C. et al. Aqueous stability and oral pharmacokinetics of meloxicam and carprofen in male C57BL/6 mice. J. Am. Assoc. Lab. Anim. Sci. 52, 553–559 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Wells, D. J. et al. Assessing the welfare of genetically altered mice. Lab. Anim. 40, 111–114 (2006).

    CAS  PubMed  Article  Google Scholar 

  156. Galichet, C. & Lovell-Badge, R. Applications of genome editing on laboratory animals. Lab. Anim. https://doi.org/10.1177/0023677221993141 (2021).

  157. Okano, H. & Kishi, N. Investigation of brain science and neurological/psychiatric disorders using genetically modified non-human primates. Curr. Opin. Neurobiol. 50, 1–6 (2018).

    CAS  PubMed  Article  Google Scholar 

  158. Eggel, M. & Walker, R. Replacement or reduction of gene-edited animals in biomedical research: a comparative ethics and policy analysis. N. C. Law Rev. 97, 1241 (2019).

    Google Scholar 

  159. Devolder, K. & Eggel, M. No pain, no gain? In defence of genetically disenhancing (most) research animals. Animals 9, 154 (2019).

    PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This Review has been prepared on behalf of the Committee on Genetics and Breeding of the German Society for Laboratory Animal Science (GV-SOLAS). We especially thank our committee colleagues N. Baumgart, J. Davidson, F. Iglauer, S. Nagel-Riedasch, I. Renner-Müller and J. Schenkel for their multiple inputs, discussions and corrections. We would like to thank T. Hennek, I. Hermans-Borgmeyer, T. Kolbe, G. Michels, R. Naumann, J. Parker-Thornburg, T. Rülicke, T. Saunders, S. Sonntag and S. Tröder for their very helpful review and comments. We are grateful to A. Bergadano and P. Jirkof for supporting us with their expertise on analgesic regimens.

Author information

Authors and Affiliations

Authors

Contributions

B.Z., B.J. and T.B. wrote the Review.

Corresponding author

Correspondence to Thorsten Buch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Lab Animal thanks Lydia Teboul and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zevnik, B., Jerchow, B. & Buch, T. 3R measures in facilities for the production of genetically modified rodents. Lab Anim 51, 162–177 (2022). https://doi.org/10.1038/s41684-022-00978-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41684-022-00978-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing