Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Animal models of male subfertility targeted on LanCL1-regulated spermatogenic redox homeostasis

Abstract

Oxidative stress in spermatozoa is a major contributor to male subfertility, which makes it an informed choice to generate animal models of male subfertility with targeted modifications of the antioxidant systems. However, the critical male germ cell-specific antioxidant mechanisms have not been well defined yet. Here we identify LanCL1 as a major male germ cell-specific antioxidant gene, reduced expression of which is related to human male infertility. Mice deficient in LanCL1 display spermatozoal oxidative damage and impaired male fertility. Histopathological studies reveal that LanCL1-mediated antioxidant response is required for mouse testicular homeostasis, from the initiation of spermatogenesis to the maintenance of viability and functionality of male germ cells. Conversely, a mouse model expressing LanCL1 transgene is protected against high-fat-diet/obesity-induced oxidative damage and subfertility. We further show that germ cell-expressed LanCL1, in response to spermatogenic reactive oxygen species, is regulated by transcription factor specific protein 1 (SP1) during spermatogenesis. This study demonstrates a critical role for the SP1–LanCL1 axis in regulating testicular homeostasis and male fertility mediated by redox balance, and provides evidence that LanCL1 genetically modified mice have attractive applications as animal models of male subfertility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reduced LanCL1 expression is related to human infertility.
Fig. 2: Correlated expression of LanCL1 with male germ cell maturation.
Fig. 3: LanCL1 deficiency results in poor male fertility.
Fig. 4: Loss of LanCL1 promotes ROS accumulation and proliferation/differentiation of SSCs at juvenile age.
Fig. 5: LanCL1 deficiency causes testicular oxidative stress and affects maturing germ cell survival.
Fig. 6: LanCL1 transgene expression protects mice from HFD-induced oxidative stress and spermatogenic defects.
Fig. 7: Transcription factor Sp1 mediates ROS-induced LanCL1 expression.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding authors upon reasonable request.

References

  1. Agarwal, A., Mulgund, A., Hamada, A. & Chyatte, M. R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol. 13, 37 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Inoue, S. et al. TAp73 is required for spermatogenesis and the maintenance of male fertility. Proc. Natl Acad. Sci. USA 111, 1843–1848 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bisht, S., Faiq, M., Tolahunase, M. & Dada, R. Oxidative stress and male infertility. Nat. Rev. Urol. 14, 470 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Hermann, B. P. et al. The mammalian spermatogenesis single-cell transcriptome, from spermatogonial stem cells to spermatids. Cell Rep. 25, 1650–1667 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rato, L. et al. Metabolic regulation is important for spermatogenesis. Nat. Rev. Urol. 9, 330–338 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Endo, T., Freinkman, E., de Rooij, D. G. & Page, D. C. Periodic production of retinoic acid by meiotic and somatic cells coordinates four transitions in mouse spermatogenesis. Proc. Natl Acad. Sci. USA 114, E10132–E10141 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Morimoto, H. et al. ROS are required for mouse spermatogonial stem cell self-renewal. Cell Stem Cell 12, 774–786 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Guerriero, G., Trocchia, S., Abdel-Gawad, F. K. & Ciarcia, G. Roles of reactive oxygen species in the spermatogenesis regulation. Front. Endocrinol. 5, 56 (2014).

    Article  Google Scholar 

  9. Lenzi, A. et al. Fatty acid composition of spermatozoa and immature germ cells. Mol. Hum. Reprod. 6, 226–231 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. WS, O., Chen, H. & Chow, P. H. Male genital tract antioxidant enzymes–their ability to preserve sperm DNA integrity. Mol. Cell. Endocrinol. 250, 80–83 (2006).

    Article  CAS  Google Scholar 

  11. Myatt, S. S., Brosens, J. J. & Lam, E. W.-F. Sense and sensitivity: FOXO and ROS in cancer development and treatment. Antioxid. Redox Signal. 14, 675–687 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Dalton, T. P., Shertzer, H. G. & Puga, A. Regulation of gene expression by reactive oxygen. Annu. Rev. Pharmacol. Toxicol. 39, 67–101 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Jaiswal, A. K. Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic. Biol. Med. 36, 1199–1207 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S. & Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 5, 9–19 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gong, S., San Gabriel, M. C., Zini, A., Chan, P. & O’Flaherty, C. Low amounts and high thiol oxidation of peroxiredoxins in spermatozoa from infertile men. J. Androl. 33, 1342–1351 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Wu, W. et al. GSTM1 and GSTT1 null polymorphisms and male infertility risk: an updated meta-analysis encompassing 6934 subjects. Sci. Rep. 3, 2258 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Naghavi, A., Fazeli, F., Salimi, S. & Nemati, B. M. Glutathione-S-transferase P1 Ile105Val polymorphism and idiopathic male infertility. Eur. Urol. Suppl. 12, e1133, S1125 (2013).

    Article  Google Scholar 

  18. Faure, C. et al. Are superoxide dismutase 2 and nitric oxide synthase polymorphisms associated with idiopathic infertility? Antioxid. Redox Signal. 21, 565–569 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Ji, G. et al. Genetic variants in antioxidant genes are associated with sperm DNA damage and risk of male infertility in a Chinese population. Free Radic. Biol. Med. 52, 775–780 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Ozkosem, B., Feinstein, S. I., Fisher, A. B. & O’Flaherty, C. Advancing age increases sperm chromatin damage and impairs fertility in peroxiredoxin 6 null mice. Redox Biol. 5, 15–23 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ishii, T. et al. Accelerated impairment of spermatogenic cells in SOD1-knockout mice under heat stress. Free Radic. Res. 39, 697–705 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Smith, T. B., Baker, M. A., Connaughton, H. S., Habenicht, U. & Aitken, R. J. Functional deletion of Txndc2 and Txndc3 increases the susceptibility of spermatozoa to age-related oxidative stress. Free Radic. Biol. Med. 65, 872–881 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Iuchi, Y. et al. Peroxiredoxin 4 knockout results in elevated spermatogenic cell death via oxidative stress. Biochem. J. 419, 149–158 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Tsunoda, S., Kawano, N., Miyado, K., Kimura, N. & Fujii, J. Impaired fertilizing ability of superoxide dismutase 1-deficient mouse sperm during in vitro fertilization. Biol. Reprod. 87, 121 (2012).

    Article  PubMed  CAS  Google Scholar 

  25. Ho, Y. S. et al. Reduced fertility in female mice lacking copper–zinc superoxide dismutase. J. Biol. Chem. 273, 7765–7769 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Carlsson, L. M., Jonsson, J., Edlund, T. & Marklund, S. L. Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc. Natl Acad. Sci USA. 92, 6264–6268 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ho, Y. S. et al. Mice deficient in cellular glutathione peroxidase develop normally and show no increased sensitivity to hyperoxia. J. Biol. Chem. 272, 16644–16651 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Neumann, C. A. et al. Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 424, 561 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Argyropoulou, V. et al. Peroxiredoxin-5 as a novel actor in inflammation and tumor suppression. Free Radical Biol. Med. 100, S92 (2016).

    Article  Google Scholar 

  30. Henderson, C. J. et al. Increased skin tumorigenesis in mice lacking pi class glutathione S-transferases. Proc. Natl Acad. Sci USA. 95, 5275–5280 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Engle, M. R. et al. Physiological role of mGSTA4-4, a glutathione S-transferase metabolizing 4-hydroxynonenal: generation and analysis of mGsta4 null mouse. Toxicol. Appl. Pharmacol. 194, 296–308 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Lim, C. E. et al. Mice deficient in glutathione transferase zeta/maleylacetoacetate isomerase exhibit a range of pathological changes and elevated expression of alpha, mu, and pi class glutathione transferases. Am. J. Pathol. 165, 679–693 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang, C. et al. Developmental and activity-dependent expression of LanCL1 confers antioxidant activity required for neuronal survival. Dev. Cell 30, 479–487 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Mayer, H., Bauer, H., Breuss, J., Ziegler, S. & Prohaska, R. Characterization of rat LANCL1, a novel member of the lanthionine synthetase C-like protein family, highly expressed in testis and brain. Gene 269, 73–80 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Chung, C. H. et al. Identification of lanthionine synthase C-like protein-1 as a prominent glutathione binding protein expressed in the mammalian central nervous system. Biochemistry 46, 3262–3269 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Tan, H. et al. LanCL1 promotes motor neuron survival and extends the lifespan of amyotrophic lateral sclerosis mice. Cell Death Differ. https://doi.org/10.1038/s41418-019-0422-6 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nielsen, J. E. et al. Germ cell differentiation-dependent and stage-specific expression of LANCL1 in rodent testis. Eur. J. Histochem. 47, 215–222 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Hanley, J. A. & McNeil, B. J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36 (1982).

    Article  CAS  PubMed  Google Scholar 

  39. Ernst, C., Eling, N., Martinez-Jimenez, C. P., Marioni, J. C. & Odom, D. T. Staged developmental mapping and X chromosome transcriptional dynamics during mouse spermatogenesis. Nat. Commun. 10, 1251 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Griswold, M. D. Spermatogenesis: the commitment to meiosis. Physiol. Rev. 96, 1–17 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Conrad, M., Ingold, I., Buday, K., Kobayashi, S. & Angeli, J. P. ROS, thiols and thiol-regulating systems in male gametogenesis. Biochim. Biophys. Acta 1850, 1566–1574 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. World-Health-Organization. WHO laboratory manual for the examination and processing of human semen. (2010).

  43. Gallardo, T., Shirley, L., John, G. B. & Castrillon, D. H. Generation of a germ cell-specific mouse transgenic Cre line, Vasa-Cre. Genesis 45, 413–417 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Morimoto, H. et al. ROS amplification drives mouse spermatogonial stem cell self-renewal. Life Sci. Alliance 2, https://doi.org/10.26508/lsa.201900374 (2019)

  45. Morimoto, H., Kanatsu-Shinohara, M. & Shinohara, T. ROS-generating oxidase Nox3 regulates the self-renewal of mouse spermatogonial stem cells. Biol. Reprod. 92, 147 (2015).

    Article  PubMed  CAS  Google Scholar 

  46. Takashima, S. et al. Rac mediates mouse spermatogonial stem cell homing to germline niches by regulating transmigration through the blood–testis barrier. Cell Stem Cell 9, 463–475 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Manova, K., Nocka, K., Besmer, P. & Bachvarova, R. F. Gonadal expression of c-kit encoded at the W locus of the mouse. Development 110, 1057–1069 (1990).

    Article  CAS  PubMed  Google Scholar 

  48. Kanatsu-Shinohara, M., Toyokuni, S. & Shinohara, T. CD9 is a surface marker on mouse and rat male germline stem cells. Biol. Reprod. 70, 70–75 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Johnsen, S. G. Testicular biopsy score count–a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males. Hormones 1, 2–25 (1970).

    CAS  PubMed  Google Scholar 

  50. Osuru, H. P. et al. The acrosomal protein SP-10 (Acrv1) is an ideal marker for staging of the cycle of seminiferous epithelium in the mouse. Mol. Reprod. Dev. 81, 896–907 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Du Plessis, S. S., Cabler, S., McAlister, D. A., Sabanegh, E. & Agarwal, A. The effect of obesity on sperm disorders and male infertility. Nat. Rev. Urol. 7, 153 (2010).

    Article  PubMed  Google Scholar 

  52. Khan, A. et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 46, D260–D266 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Farré, D. et al. Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res. 31, 3651–3653 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Saffer, J. D., Jackson, S. P. & Annarella, M. B. Developmental expression of Sp1 in the mouse. Mol. Cell. Biol. 11, 2189–2199 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ryu, H. et al. Sp1 and Sp3 are oxidative stress-inducible, antideath transcription factors in cortical neurons. J. Neurosci. 23, 3597–3606 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Thomas, K. et al. Identification, characterization, and functional analysis of sp1 transcript variants expressed in germ cells during mouse spermatogenesis. Biol. Reprod. 72, 898–907 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Sleiman, S. F., Langley, B. C., Basso, M. & Berlin, J. Mithramycin is a gene-selective Sp1 inhibitor that identifies a biological intersection between cancer and neurodegeneration. J. Neurosci. 31, 6858–6870 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nakamura, B. N. et al. Knockout of the transcription factor NRF2 disrupts spermatogenesis in an age-dependent manner. Free Radic. Biol. Med. 49, 1368–1379 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fujimoto, K. et al. Generation and functional characterization of mice with a disrupted glutathione S-transferase, theta 1 gene. Drug Metab. Dispos. 35, 2196–2202 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Fujimoto, K. et al. Characterization of phenotypes in Gstm1-null mice by cytosolic and in vivo metabolic studies using 1,2-dichloro-4-nitrobenzene. Drug Metab. Dispos. 34, 1495–1501 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Ilic, Z., Crawford, D., Vakharia, D., Egner, P. A. & Sell, S. Glutathione-S-transferase A3 knockout mice are sensitive to acute cytotoxic and genotoxic effects of aflatoxin B1. Toxicol. Appl. Pharmacol. 242, 241–246 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Imai, H. et al. Depletion of selenoprotein GPx4 in spermatocytes causes male infertility in mice. J. Biol. Chem. 284, 32522–32532 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ursini, F. et al. Dual function of the selenoprotein PHGPx during sperm maturation. Science 285, 1393–1396 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Deshpande, S. S., Nemani, H., Pothani, S. & Balasinor, N. H. Altered endocrine, cytokine signaling and oxidative stress: a plausible reason for differential changes in testicular cells in diet-induced and genetically-inherited - obesity in adult rats. Reprod. Biol. 19, 303–308 (2019).

    Article  PubMed  Google Scholar 

  65. Erdemir, F. et al. The effect of diet induced obesity on testicular tissue and serum oxidative stress parameters. Actas Urol. Esp. 36, 153–159 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Zhao, J., Zhai, L., Liu, Z., Wu, S. & Xu, L. Leptin level and oxidative stress contribute to obesity-induced low testosterone in murine testicular tissue. Oxid. Med. Cell Longev. 2014, 190945 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Atilgan, D. et al. Weight loss and melatonin reduce obesity-induced oxidative damage in rat testis. Adv. Urol. 2013, 836121 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Marin, M., Karis, A., Visser, P., Grosveld, F. & Philipsen, S. Transcription factor Sp1 is essential for early embryonic development but dispensable for cell growth and differentiation. Cell 89, 619–628 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Hensley, K., Olcott, M., Downey, A., Spector, D. & Munsell, A. CRISPR–Cas9 knockout of lanthionine synthase-like protein-1 (LanCL1) in HeLa cells renders the cells hypersensitive to oxidative stress despite inducing an upregulation of glutathione-dependent antioxidant defense mechanisms. Free Radic. Biol. Med. 128, S131 (2018).

    Article  Google Scholar 

  70. Wang, J. et al. LanCL1 protects prostate cancer cells from oxidative stress via suppression of JNK pathway. Cell Death Dis. 9, 1–12 (2018).

    CAS  Google Scholar 

  71. Xie, Z. et al. LanCL1 attenuates ischemia-induced oxidative stress by Sirt3-mediated preservation of mitochondrial function. Brain Res. Bull. 142, 216–223 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Downey, A. et al. Stable knockout of lanthionine synthase C-like protein-1 (LanCL1) from HeLa cells indicates a role for LanCL1 in redox regulation of deubiquitinating enzymes. Free Radic. Biol. Med. 161, 115–124 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Lai, K.-Y. et al. LanCLs add glutathione to dehydroamino acids generated at phosphorylated sites in the proteome. Cell 184, 2680–2695 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Ravina, C. G. et al. A role for tachykinins in the regulation of human sperm motility. Hum. Reprod. 22, 1617–1625 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Preece, C. et al. Replacement of surgical vasectomy through the use of wild-type sterile hybrids. Lab Anim. 50, 49–52 (2021).

    Article  Google Scholar 

  76. Rio, D. C., Ares, M., Hannon, G. J. & Nilsen, T. W. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harbor Protoc. 2010, pdb. prot5439 (2010).

    Article  Google Scholar 

  77. Liu, Z. Q., Mahmood, T. & Yang, P. C. Western blot: technique, theory and trouble shooting. N. Am. J. Med. Sci. 6, 160 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gallo-Oller, G., Ordonez, R. & Dotor, J. A new background subtraction method for Western blot densitometry band quantification through image analysis software. J. Immunol. Methods 457, 1–5 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Biggers, J., Whitten, W. & Whittingham, D. in Methods in Mammalian Embryology (ed. Daniel, J. C. Jr) 86–116 (WH Freeman Co., 1971).

  80. Chang, Y.-F., Lee-Chang, J. S., Panneerdoss, S., MacLean, J. A. & Rao, M. K. Isolation of Sertoli, Leydig, and spermatogenic cells from the mouse testis. Biotechniques 51, 341–342 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sherf, B. A., Navarro, S. L., Hannah, R. R. & Wood, K. V. Dual-luciferase reporter assay: an advanced co-reporter technology integrating firefly and Renilla luciferase assays. Promega Notes 57, 2–8 (1996).

    Google Scholar 

  82. Zaffagnini, M. et al. Glutathionylation in the photosynthetic model organism Chlamydomonas reinhardtii: a proteomic survey. Mol. Cell Proteomics 11, M111 014142 (2012).

    Article  PubMed  CAS  Google Scholar 

  83. Butturini, E., Boriero, D., Carcereri de Prati, A. & Mariotto, S. Immunoprecipitation methods to identify S-glutathionylation in target proteins. MethodsX 6, 1992–1998 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (31501200, 31871179 and 32071161 to C.H.), Key Research Project from Sichuan Provincial Department of Education, China (16ZA0029 to C.H.), Disciplines and Talents Support Program of Sichuan Agricultural University (2015–2019 to C.H.) and in part by the National Key Technology Support Program of China (2014BAI03B01 to Z.C). We thank P. Zhong for helping with illustration drawing.

Author information

Authors and Affiliations

Authors

Contributions

C.H., Z.C. and B.X. designed the experiments and interpreted the data; C.Y. performed most of the staining experiments with the help of H.G.; D.P. did most of the in vitro studies and biochemistry assays with the help of C.L.; Y.C. and M.C. generated the LanCL1 KO and transgenic mice, while X. Cao initiated this project, generated the conditional LanCL1 KO/KI mice and performed studies with human samples; X.H. collected the seminal samples; X. Chen generated the LanCL1 antibody; B.M., W.L. and Q.L. executed the other experiments; C.H. and Z.C. supervised the project; C.H. and B.X. wrote the manuscript.

Corresponding authors

Correspondence to Mina Chen, Bo Xiao or Zhengli Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Lab Animal thanks Elizabeth Bromfield and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Table 1.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Yang, C., Pang, D. et al. Animal models of male subfertility targeted on LanCL1-regulated spermatogenic redox homeostasis. Lab Anim 51, 133–145 (2022). https://doi.org/10.1038/s41684-022-00961-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41684-022-00961-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing