Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Using touchscreen-delivered cognitive assessments to address the principles of the 3Rs in behavioral sciences

Abstract

Despite considerable advances in both in silico and in vitro approaches, in vivo studies that involve animal model systems remain necessary in many research disciplines. Neuroscience is one such area, with studies often requiring access to a complete nervous system capable of dynamically selecting between and then executing a full range of cognitive and behavioral outputs in response to a given stimulus or other manipulation. The involvement of animals in research studies is an issue of active public debate and concern and is therefore carefully regulated. Such regulations are based on the principles of the 3Rs of Replacement, Reduction and Refinement. In the sub-specialty of behavioral neuroscience, Full/Absolute Replacement remains a major challenge, as the complete ex vivo recapitulation of a system as complex and dynamic as the nervous system has yet to be achieved. However, a number of very positive developments have occurred in this area with respect to Relative Replacement and to both Refinement and Reduction. In this review, we discuss the Refinement- and Reduction-related benefits yielded by the introduction of touchscreen-based behavioral assessment apparatus. We also discuss how data generated by a specific panel of behavioral tasks developed for this platform might substantially enhance monitoring of laboratory animal welfare and provide robust, quantitative comparisons of husbandry techniques to define and ensure maintenance of best practice.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Bennett, A. J. & Ringach, D. L. Animal research in neuroscience: a duty to engage. Neuron 92, 653–657 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Blakemore, C., MaCarthur Clark, J., Nevalainen, T., Oberdorfer, M. & Sussman, A. Implementing the 3Rs in neuroscience research: a reasoned approach. Neuron 75, 948–950 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Russell, W. M. S. & Burch, R. L. The Principles of Humane Experimental Technique. https://caat.jhsph.edu/principles/the-principles-of-humane-experimental-technique (Methuen, 1959).

  4. Toni, M. et al. Review: assessing fish welfare in research and aquaculture, with a focus on European directives. Animal 13, 161–170 (2018).

    Article  PubMed  Google Scholar 

  5. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Environment, housing, and management. in Guide for the Care and Use of Laboratory Animals 8th edn, 41–104 (National Academies Press, 2011).

  6. Hawkins, P. et al. Guidance on the severity classification of scientific procedures involving fish: report of a Working Group appointed by the Norwegian Consensus-Platform for the Replacement, Reduction and Refinement of animal experiments (Norecopa). Lab Anim. 45, 219–224 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. CCAC Strategic Plan 2021–2026. Ottawa, Ontario, Canada: Canadian Council on Animal Care. https://ccac.ca/Documents/Publications/CCAC_Strategic_Plan_2021-2026.pdf (2020).

  8. Our mission statement. Berlin, Germany: German Centre for the Protection of Laboratory Animals (Bf3R). https://www.bfr.bund.de/epaper/bfr_leitbild_englisch/files/assets/basic-html/page-1.html (2017).

  9. Diamantara, K., Retter, I. & Biederlack, J. One year Charité 3R—results and perspectives. ALTEX 37, 307–308 (2020).

    Article  PubMed  Google Scholar 

  10. Mortell, N. The 3Rs revisited. Lab Anim. 38, 353 (2009).

    Article  Google Scholar 

  11. Tannenbaum, J. & Bennett, B. T. Russell and Burch’s 3Rs then and now: the need for clarity in definition and purpose. J. Am. Assoc. Lab. Anim. Sci. 54, 120–132 (2015).

    PubMed  PubMed Central  Google Scholar 

  12. Burden, N., Chapman, K., Sewell, F. & Robinson, V. Pioneering better science through the 3Rs: an introduction to the national centre for the replacement, refinement, and reduction of animals in research (NC3Rs). J. Am. Assoc. Lab. Anim. Sci. 54, 198–208 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use ofLaboratory Animals. (National Academies Press, 2011).

  14. Dwyer, D. S. Crossing the worm-brain barrier by using Caenorhabditis elegans to explore fundamentals of human psychiatric illness. Mol. Neuropsychiatry 3, 170–179 (2018).

    PubMed  PubMed Central  Google Scholar 

  15. Ugur, B., Chen, K. & Bellen, H. J. Drosophila tools and assays for the study of human diseases. Dis. Model. Mech. 9, 235–244 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Falugi, C., Lammerding-Koppel, M. & Aluigi, M. G. Sea urchin development: an alternative model for mechanistic understanding of neurodevelopment and neurotoxicity. Birth Defects Res. C Embryo Today 84, 188–203 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Prescott, M. J., Langermans, J. A. & Ragan, I. Applying the 3Rs to non-human primate research: barriers and solutions. Drug Discov. Today Dis. Models 23, 51–56 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Scientific Committee on Health and Environment Risks. The Need for Non-human Primates in Biomedical Research, Production and Testing of Products and Devices. https://ec.europa.eu/health/ph_risk/committees/04_scher/docs/scher_o_110.pdf (2009).

  19. Vitale, A., Manciocco, A. & Alleva, E. The 3R principle and the use of non-human primates in the study of neurodegenerative diseases: the case of Parkinson’s disease. Neurosci. Biobehav. Rev. 33, 33–47 (2009).

    Article  PubMed  Google Scholar 

  20. Manciocco, A. et al. The application of Russell and Burch 3R principle in rodent models of neurodegenerative disease: the case of Parkinson’s disease. Neurosci. Biobehav. Rev. 33, 18–32 (2009).

    Article  PubMed  Google Scholar 

  21. Fiorito, G. et al. Cephalopods in neuroscience: regulations, research and the 3Rs. Invert. Neurosci. 14, 13–36 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bussey, T. J., Everitt, B. J. & Robbins, T. W. Dissociable effects of cingulate and medial frontal cortex lesions on stimulus-reward learning using a novel Pavlovian autoshaping procedure for the rat: implications for the neurobiology of emotion. Behav. Neurosci. 111, 908–919 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Bussey, T. J., Muir, J. L. & Robbins, T. W. A novel automated touchscreen procedure for assessing learning in the rat using computer graphic stimuli. Neurosci. Res. Commun. 15, 103–110 (1994).

    Google Scholar 

  24. Sahgal, A. & Steckler, T. TouchWindows and operant behaviour in rats. J. Neurosci. Methods 55, 59–64 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Nithianantharajah, J. et al. Bridging the translational divide: identical cognitive touchscreen testing in mice and humans carrying mutations in a disease-relevant homologous gene. Sci. Rep. 5, 14613 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kangas, B. D., Bergman, J. & Coyle, J. T. Touchscreen assays of learning, response inhibition, and motivation in the marmoset (Callithrix jacchus). Anim. Cogn. 19, 673–677 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bethell, E. J., Holmes, A., MacLarnon, A. & Semple, S. Emotion evaluation and response slowing in a Non-Human Primate: new directions for cognitive bias measures of animal emotion? Behav. Sci. (Basel) 6, 2 (2016).

    Article  Google Scholar 

  28. Kangas, B. D. & Bergman, J. Touchscreen technology in the study of cognition-related behavior. Behav. Pharmacol. 28, 623–629 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Horner, A. E. et al. The touchscreen operant platform for testing learning and memory in rats and mice. Nat. Protoc. 8, 1961–1984 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Crawley, J. N. Designing mouse behavioral tasks relevant to autistic-like behaviors. Ment. Retard. Dev. Disabil. Res. Rev. 10, 248–258 (2004).

    Article  PubMed  Google Scholar 

  31. Bussey, T. J. et al. New translational assays for preclinical modelling of cognition in schizophrenia: the touchscreen testing method for mice and rats. Neuropharmacology 62, 1191–1203 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Robinson, E. S. J. Improving the translational validity of methods used to study depression in animals. Psychopathol. Rev. a3, 41–63 (2016).

    Article  Google Scholar 

  33. Turner, P. V., Brabb, T., Pekow, C. & Vasbinder, M. A. Administration of substances to laboratory animals: routes of administration and factors to consider. J. Am. Assoc. Lab. Anim. Sci. 50, 600–613 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. André, V. et al. Laboratory mouse housing conditions can be improved using common environmental enrichment without compromising data. PLoS Biol. 16, e2005019 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gouveia, K. & Hurst, J. L. Reducing mouse anxiety during handling: effect of experience with handling tunnels. PLoS ONE 8, e66401 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ameen-Ali, K. E., Eacott, M. J. & Easton, A. A new behavioural apparatus to reduce animal numbers in multiple types of spontaneous object recognition paradigms in rats. J. Neurosci. Methods 211, 66–76 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Festing, M. F. W. & Altman, D. G. Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J. 43, 244–258 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Percie du Sert, N. et al. The experimental design assistant. PLoS Biol. 15, e2003779 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Arroyo-Araujo, M. et al. Reproducibility via coordinated standardization: a multi-center study in a shank2 genetic rat model for autism spectrum disorders. Sci. Rep. 9, 11602 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Garner, J. P. The significance of meaning: why do over 90% of behavioral neuroscience results fail to translate to humans, and what can we do to fix it? ILAR J. 55, 438–456 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Robbins, T. W. et al. Cambridge neuropsychological test automated battery (CANTAB): a factor analytic study of a large sample of normal elderly volunteers. Dementia 5, 266–281 (1994).

    CAS  PubMed  Google Scholar 

  42. Sahakian, B. J. & Owen, A. M. Computerized assessment in neuropsychiatry using CANTAB: discussion paper. J. R. Soc. Med. 85, 399–402 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Weed, M. R. et al. Performance norms for a rhesus monkey neuropsychological testing battery: acquisition and long-term performance. Brain Res. Cogn. Brain Res. 8, 185–201 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Bland, A. R. et al. EMOTICOM: a neuropsychological test battery to evaluate emotion, motivation, impulsivity, and social cognition. Front. Behav. Neurosci. 10, 25 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bussey, T. J. et al. The touchscreen cognitive testing method for rodents: how to get the best out of your rat. Learn. Mem. 15, 516–523 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hvoslef-Eide, M., Nilsson, S. R. O., Saksida, L. M. & Bussey, T. J. Cognitive translation using the rodent touchscreen testing approach. Curr. Top. Behav. Neurosci. 28, 423–447 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Phillips, B. U. et al. Translational approaches to evaluating motivation in laboratory rodents: conventional and touchscreen-based procedures. Curr. Opin. Behav. Sci. 22, 21–27 (2018).

    Article  Google Scholar 

  48. Nithianantharajah, J. et al. Synaptic scaffold evolution generated components of vertebrate cognitive complexity. Nat. Neurosci. 16, 16–24 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Romberg, C., Mattson, M. P., Mughal, M. R., Bussey, T. J. & Saksida, L. M. Impaired attention in the 3xTgAD mouse model of Alzheimer’s disease: rescue by donepezil (Aricept). J. Neurosci. 31, 3500–3507 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Romberg, C., Bussey, T. J. & Saksida, L. M. Paying more attention to attention: towards more comprehensive cognitive translation using mouse models of Alzheimer’s disease. Brain Res. Bull. 92, 49–55 (2013).

    Article  PubMed  Google Scholar 

  51. Saifullah, M. A. B. et al. Touchscreen-based location discrimination and paired associate learning tasks detect cognitive impairment at an early stage in an App knock-in mouse model of Alzheimer’s disease. Mol. Brain 13, 147 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Heath, C. J. et al. A touchscreen motivation assessment evaluated in Huntington’s disease patients and R6/1 model mice. Front. Neurol. 10, 858 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kangas, B. D., Wooldridge, L. M., Luc, O. T., Bergman, J. & Pizzagalli, D. A. Empirical validation of a touchscreen probabilistic reward task in rats. Transl. Psychiatry 10, 285 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kim, C. H. et al. The continuous performance test (rCPT) for mice: a novel operant touchscreen test of attentional function. Psychopharmacology 232, 3947–3966 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Golub, M. S. et al. Cognitive performance of juvenile monkeys after chronic fluoxetine treatment. Dev. Cogn. Neurosci. 26, 52–61 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Young, J. W., Light, G. A., Marston, H. M., Sharp, R. & Geyer, M. A. The 5-choice continuous performance test: evidence for a translational test of vigilance for mice. PLoS ONE 4, e4227 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Caballero-Puntiverio, M. et al. Effect of ADHD medication in male C57BL/6J mice performing the rodent Continuous Performance Test. Psychopharmacology 236, 1839–1851 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Mar, A. C. et al. MAM-E17 rat model impairments on a novel continuous performance task: effects of potential cognitive enhancing drugs. Psychopharmacology 234, 2837–2857 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ding, Z., Brown, J. W., Rueter, L. E. & Mohler, E. G. Profiling attention and cognition enhancing drugs in a rat touchscreen-based continuous performance test. Psychopharmacology 235, 1093–1105 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. MacQueen, D. A. et al. Amphetamine improves mouse and human attention in the 5-choice continuous performance test. Neuropharmacology 138, 87–96 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Olguin, S. L., Thompson, S. M., Young, J. W. & Brigman, J. L. Moderate prenatal alcohol exposure impairs cognitive control, but not attention, on a rodent touchscreen continuous performance task. Genes Brain Behav. 20, e12652 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Elsilä, L. V., Korhonen, N., Hyytiä, P. & Korpi, E. R. Acute lysergic acid diethylamide does not influence reward-driven decision making of C57BL/6 mice in the Iowa Gambling Task. Front. Pharmacol. 11, 602770 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hailwood, J. M., Heath, C. J., Robbins, T. W., Saksida, L. M. & Bussey, T. J. Validation and optimisation of a touchscreen progressive ratio test of motivation in male rats. Psychopharmacology 235, 2739–2753 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rendall, A. R., Tarkar, A., Contreras-Mora, H. M., LoTurco, J. J. & Fitch, R. H. Deficits in learning and memory in mice with a mutation of the candidate dyslexia susceptibility gene Dyx1c1. Brain Lang. 172, 30–38 (2017).

    Article  PubMed  Google Scholar 

  65. Mar, A. C. et al. The touchscreen operant platform for assessing executive function in rats and mice. Nat. Protoc. 8, 1985–2005 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zoccolan, D., Cox, D. D. & Benucci, A. Editorial: what can simple brains teach us about how vision works. Front. Neural Circuits 9, 51 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Rosselli, F. B., Alemi, A., Ansuini, A. & Zoccolan, D. Object similarity affects the perceptual strategy underlying invariant visual object recognition in rats. Front. Neural Circuits 9, 10 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zoccolan, D., Oertelt, N., DiCarlo, J. J. & Cox, D. D. A rodent model for the study of invariant visual object recognition. Proc. Natl. Acad. Sci. USA 106, 8748–8753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Crijns, E. & Op de Beeck, H. The visual acuity of rats in touchscreen setups. Vision (Basel) 4, 4 (2019).

    Article  Google Scholar 

  70. Nomura, Y. et al. Evaluation of critical flicker-fusion frequency measurement methods using a touchscreen-based visual temporal discrimination task in the behaving mouse. Neurosci. Res. 148, 28–33 (2019).

    Article  PubMed  Google Scholar 

  71. Buscher, N., van Dorsselaer, P., Steckler, T. & Talpos, J. C. Evaluating aged mice in three touchscreen tests that differ in visual demands: impaired cognitive function and impaired visual abilities. Behav. Brain Res. 333, 142–149 (2017).

    Article  PubMed  Google Scholar 

  72. Mitchnick, K. A. et al. Development of novel tasks for studying view-invariant object recognition in rodents: sensitivity to scopolamine. Behav. Brain Res. 344, 48–56 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Rendall, A. R., Perrino, P. A., LoTurco, J. J. & Fitch, R. H. Evaluation of visual motion perception ability in mice with knockout of the dyslexia candidate susceptibility gene Dcdc2. Genes Brain Behav. 18, e12450 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Stirman, J., Townsend, L. B. & Smith, S. A touchscreen based global motion perception task for mice. Vision Res. 127, 74–83 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yu, Y. et al. Mice use robust and common strategies to discriminate natural scenes. Sci. Rep. 8, 1379 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Castelhano-Carlos, M. J. & Baumans, V. The impact of light, noise, cage cleaning and in-house transport on welfare and stress of laboratory rats. Lab Anim. 43, 311–327 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Delotterie, D. F. et al. Touchscreen tasks in mice to demonstrate differences between hippocampal and striatal functions. Neurobiol. Learn. Mem. 120, 16–27 (2015).

    Article  PubMed  Google Scholar 

  78. Oomen, C. A. et al. The touchscreen operant platform for testing working memory and pattern separation in rats and mice. Nat. Protoc. 8, 2006–2021 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Oomen, C. A. et al. A novel 2- and 3-choice touchscreen-based continuous trial-unique nonmatching-to-location task (cTUNL) sensitive to functional differences between dentate gyrus and CA3 subregions of the hippocampus. Psychopharmacology 232, 3921–3933 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sbisa, A. M., Gogos, A. & van den Buuse, M. Spatial working memory in the touchscreen operant platform is disrupted in female rats by ovariectomy but not estrous cycle. Neurobiol. Learn. Mem. 144, 147–154 (2017).

    Article  PubMed  Google Scholar 

  81. Schneider, J. S., Williams, C., Ault, M. & Guilarte, T. R. Effects of chronic manganese exposure on attention and working memory in non-human primates. Neurotoxicology 48, 217–222 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Harrison, F. E., Hosseini, A. H. & McDonald, M. P. Endogenous anxiety and stress responses in water maze and Barnes maze spatial memory tasks. Behav. Brain Res. 198, 247–251 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Janickova, H. et al. Selective decrease of cholinergic signaling from pedunculopontine and laterodorsal tegmental nuclei has little impact on cognition but markedly increases susceptibility to stress. FASEB J. 33, 7018–7036 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Van den Broeck, L. et al. Comparison between touchscreen operant chambers and water maze to detect early prefrontal dysfunction in mice. Genes Brain Behav. 20, e12695 (2021).

    PubMed  Google Scholar 

  85. Maalouf, M., Rho, J. M. & Mattson, M. P. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Res. Rev. 59, 293–315 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Martin, B., Ji, S., Maudsley, S. & Mattson, M. P. ‘Control’ laboratory rodents are metabolically morbid: why it matters. Proc. Natl. Acad. Sci. USA 107, 6127–6133 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wahl, D. et al. Cognitive and behavioral evaluation of nutritional interventions in rodent models of brain aging and dementia. Clin. Interv. Aging 12, 1419–1428 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mattson, M. P. Neuroprotective signaling and the aging brain: take away my food and let me run. Brain Res. 886, 47–53 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Masoro, E. J. Caloric restriction-induced life extension of rats and mice: a critique of proposed mechanisms. Biochim. Biophys. Acta 1790, 1040–1048 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Dirx, M. J. M., Zeegers, M. P. A., Dagnelie, P. C., van den Bogaard, T. & van den Brandt, P. A. Energy restriction and the risk of spontaneous mammary tumors in mice: a meta-analysis. Int. J. Cancer 106, 766–770 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Moustafa, A. A. et al. A model of amygdala-hippocampal-prefrontal interaction in fear conditioning and extinction in animals. Brain Cogn. 81, 29–43 (2013).

    Article  PubMed  Google Scholar 

  92. Cardinal, R. N. et al. Effects of selective excitotoxic lesions of the nucleus accumbens core, anterior cingulate cortex, and central nucleus of the amygdala on autoshaping performance in rats. Behav. Neurosci. 116, 553–567 (2002).

    Article  PubMed  Google Scholar 

  93. Harding, E. J., Paul, E. S. & Mendl, M. Animal behaviour: cognitive bias and affective state. Nature 427, 312 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Papciak, J. & Rygula, R. Measuring cognitive judgement bias in rats using the ambiguous-cue interpretation test. Curr. Protoc. Neurosci. 78, 9.57.1–9.57.22 (2017).

    Article  Google Scholar 

  95. Krakenberg, V. et al. Technology or ecology? New tools to assess cognitive judgement bias in mice. Behav. Brain Res. 362, 279–287 (2019).

    Article  PubMed  Google Scholar 

  96. Krakenberg, V. et al. Effects of different social experiences on emotional state in mice. Sci. Rep. 10, 15255 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bhakta, S. G. & Young, J. W. The 5 choice continuous performance test (5C-CPT): a novel tool to assess cognitive control across species. J. Neurosci. Methods 292, 53–60 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Talpos, J. C., McTighe, S. M., Dias, R., Saksida, L. M. & Bussey, T. J. Trial-unique, delayed nonmatching-to-location (TUNL): a novel, highly hippocampus-dependent automated touchscreen test of location memory and pattern separation. Neurobiol. Learn. Mem. 94, 341–352 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kim, C. H. et al. Trial-unique, delayed nonmatching-to-location (TUNL) touchscreen testing for mice: sensitivity to dorsal hippocampal dysfunction. Psychopharmacology 232, 3935–3945 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. McTighe, S. M., Mar, A. C., Romberg, C., Bussey, T. J. & Saksida, L. M. A new touchscreen test of pattern separation: effect of hippocampal lesions. Neuroreport 20, 881–885 (2009).

    Article  PubMed  Google Scholar 

  101. Chudasama, Y. & Muir, J. L. A behavioural analysis of the delayed non-matching to position task: the effects of scopolamine, lesions of the fornix and of the prelimbic region on mediating behaviours by rats. Psychopharmacology 134, 73–82 (1997).

    Article  CAS  PubMed  Google Scholar 

  102. Rogó, Z. & Kabziñski, M. Enhancement of the anti-immobility action. Pharmacol. Rep. 63, 1533–1538 (2011).

    Google Scholar 

  103. Jin, Z.-L. et al. Mouse strain differences in SSRI sensitivity correlate with serotonin transporter binding and function. Sci. Rep. 7, 8631 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Delotterie, D., Mathis, C., Cassel, J.-C., Dorner-Ciossek, C. & Marti, A. Optimization of touchscreen-based behavioral paradigms in mice: implications for building a battery of tasks taxing learning and memory functions. PLoS ONE 9, e100817 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kim, E. et al. Coexistence of perseveration and apathy in the TDP-43Q331K knock-in mouse model of ALS-FTD. Transl. Psychiatry 10, 377 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Luo, J., Tan, J. M. & Nithianantharajah, J. A molecular insight into the dissociable regulation of associative learning and motivation by the synaptic protein neuroligin-1. BMC Biol. 18, 118 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Whoolery, C. W. et al. Multi-domain cognitive assessment of male mice shows space radiation is not harmful to high-level cognition and actually improves pattern separation. Sci. Rep. 10, 2737 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Crawley, J. N. What’s Wrong with My Mouse? 2nd edn (John Wiley & Sons, 2007).

  109. Nilsson, S. R. et al. Assessing the cognitive translational potential of a mouse model of the 22q11.2 microdeletion syndrome. Cereb. Cortex 26, 3991–4003 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Nilsson, S. R. O. et al. A mouse model of the 15q13.3 microdeletion syndrome shows prefrontal neurophysiological dysfunctions and attentional impairment. Psychopharmacology 233, 2151–2163 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hvoslef-Eide, M. et al. The NEWMEDS rodent touchscreen test battery for cognition relevant to schizophrenia. Psychopharmacology 232, 3853–3872 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Chesler, E. J., Wilson, S. G., Lariviere, W. R., Rodriguez-Zas, S. L. & Mogil, J. S. Influences of laboratory environment on behavior. Nat. Neurosci. 5, 1101–1102 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Sullivan, J. A. et al. New frontiers in translational research: touchscreens, open science, and the mouse translational research accelerator platform. Genes Brain Behav. 20, e12705 (2021).

    Article  PubMed  Google Scholar 

  115. Dumont, J. R., Salewski, R. & Beraldo, F. Critical mass: the rise of a touchscreen technology community for rodent cognitive testing. Genes Brain Behav. 20, e12650 (2021).

    Article  PubMed  Google Scholar 

  116. Beraldo, F. H. et al. MouseBytes, an open-access high-throughput pipeline and database for rodent touchscreen-based cognitive assessment. eLife 8, e49630 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Holleman, E., Mąka, J., Schröder, T. & Battaglia, F. An incremental training method with automated, extendable maze for training spatial behavioral tasks in rodents. Sci. Rep. 9, 12589 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Chan, M. et al. Continual trials spontaneous recognition tasks in mice: reducing animal numbers and improving our understanding of the mechanisms underlying memory. Front. Behav. Neurosci. 12, 214 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  119. van den Boom, B. J. G., Pavlidi, P., Wolf, C. J. H., Mooij, A. H. & Willuhn, I. Automated classification of self-grooming in mice using open-source software. J. Neurosci. Methods 289, 48–56 (2017).

    Article  PubMed  Google Scholar 

  120. Antunes, F. D., Goes, T. C., Vígaro, M. G. & Teixeira-Silva, F. Automation of the free-exploratory paradigm. J. Neurosci. Methods 197, 216–220 (2011).

    Article  PubMed  Google Scholar 

  121. Wahlsten, D. et al. Different data from different labs: lessons from studies of gene-environment interaction. J. Neurobiol. 54, 283–311 (2003).

    Article  PubMed  Google Scholar 

  122. Kim, E. W. et al. Optimizing reproducibility of operant testing through reinforcer standardization: identification of key nutritional constituents determining reward strength in touchscreens. Mol. Brain 10, 31 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Lim, J. et al. Assessment of mGluR5 KO mice under conditions of low stress using a rodent touchscreen apparatus reveals impaired behavioural flexibility driven by perseverative responses. Mol. Brain 12, 37 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Zeleznikow-Johnston, A. M. et al. Touchscreen testing reveals clinically relevant cognitive abnormalities in a mouse model of schizophrenia lacking metabotropic glutamate receptor 5. Sci. Rep. 8, 16412 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Pritt, S. L. & Hammer, R. E. The interplay of ethics, animal welfare, and IACUC oversight on the reproducibility of animal studies. Comp. Med. 67, 101–105 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Phillips, B. U. et al. Selective effects of 5-HT2C receptor modulation on performance of a novel valence-probe visual discrimination task and probabilistic reversal learning in mice. Psychopharmacology 235, 2101–2111 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bethell, E. J., Holmes, A., Maclarnon, A. & Semple, S. Cognitive bias in a non-human primate: husbandry procedures influence cognitive indicators of psychological well-being in captive rhesus macaques. Anim. Welf. 21, 185–195 (2012).

    Article  CAS  Google Scholar 

  128. Heath, C. J., Phillips, B. U., Bussey, T. J. & Saksida, L. M. Measuring motivation and reward-related decision making in the rodent operant touchscreen system. Curr. Protoc. Neurosci. 74, 8.34.1–8.34.20 (2016).

    Article  Google Scholar 

  129. Hailwood, J. M. et al. Blockade of muscarinic acetylcholine receptors facilitates motivated behaviour and rescues a model of antipsychotic-induced amotivation. Neuropsychopharmacology 44, 1068–1075 (2019).

    Article  CAS  PubMed  Google Scholar 

  130. Aguirre, C. G. et al. Sex-dependent effects of chronic intermittent voluntary alcohol consumption on attentional, not motivational, measures during probabilistic learning and reversal. PLoS ONE 15, e0234729 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wilkinson, M. P., Grogan, J. P., Mellor, J. R. & Robinson, E. S. J. Comparison of conventional and rapid-acting antidepressants in a rodent probabilistic reversal learning task. Brain Neurosci. Adv. 4, 2398212820907177 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Porsolt, R. D., Bertin, A. & Jalfre, M. Behavioral despair in mice: a primary screening test for antidepressants. Arch. Int. Pharmacodyn. Ther. 229, 327–336 (1977).

    CAS  PubMed  Google Scholar 

  133. Petit-Demouliere, B., Chenu, F. & Bourin, M. Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology 177, 245–255 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Castagné, V., Moser, P., Roux, S. & Porsolt, R. D. Rodent models of depression: forced swim and tail suspension behavioral despair tests in rats and mice. Curr. Protoc. Neurosci. Ch. 8, Unit 8.10A (2011).

  135. Kara, N. Z., Stukalin, Y. & Einat, H. Revisiting the validity of the mouse forced swim test: systematic review and meta-analysis of the effects of prototypic antidepressants. Neurosci. Biobehav. Rev. 84, 1–11 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Reardon, S. Depression researchers rethink popular mouse swim tests. Nature 571, 456–457 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Molendijk, M. L. & de Kloet, E. R. Immobility in the forced swim test is adaptive and does not reflect depression. Psychoneuroendocrinology 62, 389–391 (2015).

    Article  PubMed  Google Scholar 

  138. Commons, K. G., Cholanians, A. B., Babb, J. A. & Ehlinger, D. G. The rodent forced swim test measures stress-coping strategy, not depression-like behavior. ACS Chem. Neurosci. 8, 955–960 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Graybeal, C. et al. Paradoxical reversal learning enhancement by stress or prefrontal cortical damage: rescue with BDNF. Nat. Neurosci. 14, 1507–1509 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Solich, J., Pałach, P., Budziszewska, B. & Dziedzicka-Wasylewska, M. Effect of two behavioral tests on corticosterone level in plasma of mice lacking the noradrenaline transporter. Pharmacol. Rep. 60, 1008–1013 (2008).

    CAS  PubMed  Google Scholar 

  141. Rivalan, M., Munawar, H., Fuchs, A. & Winter, Y. An automated, experimenter-free method for the standardised, operant cognitive testing of rats. PLoS ONE 12, e0176807 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Whitehouse, J., Micheletta, J., Powell, L. E., Bordier, C. & Waller, B. M. The impact of cognitive testing on the welfare of group housed primates. PLoS ONE 8, e78308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Gazes, R. P., Brown, E. K., Basile, B. M. & Hampton, R. R. Automated cognitive testing of monkeys in social groups yields results comparable to individual laboratory-based testing. Anim. Cogn. 16, 445–458 (2013).

    Article  PubMed  Google Scholar 

  144. Fagot, J. & Bonté, E. Automated testing of cognitive performance in monkeys: use of a battery of computerized test systems by a troop of semi-free-ranging baboons (Papio papio). Behav. Res. Methods 42, 507–516 (2010).

    Article  PubMed  Google Scholar 

  145. Fizet, J. et al. An autonomous, automated and mobile device to concurrently assess several cognitive functions in group-living non-human primates. Neurobiol. Learn. Mem. 145, 45–58 (2017).

    Article  PubMed  Google Scholar 

  146. Dahlborn, K. et al. Report of the Federation of European Laboratory Animal Science Associations Working Group on animal identification. Lab Anim. 47, 2–11 (2013).

    Article  CAS  PubMed  Google Scholar 

  147. Elcock, L. E. et al. Tumors in long-term rat studies associated with microchip animal identification devices. Exp. Toxicol. Pathol. 52, 483–491 (2001).

    Article  CAS  PubMed  Google Scholar 

  148. Butler, J. L. & Kennerley, S. W. Mymou: a low-cost, wireless touchscreen system for automated training of nonhuman primates. Behav. Res. Methods 51, 2559–2572 (2019).

    Article  PubMed  Google Scholar 

  149. Cronin, K. A., Jacobson, S. L., Bonnie, K. E. & Hopper, L. M. Studying primate cognition in a social setting to improve validity and welfare: a literature review highlighting successful approaches. PeerJ 5, e3649 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Hawkins, P. et al. A guide to defining and implementing protocols for the welfare assessment of laboratory animals: eleventh report of the BVAAWF/FRAME/RSPCA/UFAW Joint Working Group on Refinement. Lab Anim. 45, 1–13 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. National Research Council. Recognition and Alleviation of Distress in Laboratory Animals. https://www.nap.edu/catalog/11931/recognition-and-alleviation-of-distress-in-laboratory-animals (National Academies Press, 2008).

  152. Langford, D. J. et al. Coding of facial expressions of pain in the laboratory mouse. Nat. Methods 7, 447–449 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Keating, S. C. J., Thomas, A. A., Flecknell, P. A. & Leach, M. C. Evaluation of EMLA cream for preventing pain during tattooing of rabbits: changes in physiological, behavioural and facial expression responses. PLoS ONE 7, e44437 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Miller, A. L. & Leach, M. C. Using the mouse grimace scale to assess pain associated with routine ear notching and the effect of analgesia in laboratory mice. Lab Anim. 49, 117–120 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Kent, B. A. et al. Longitudinal evaluation of Tau-P301L transgenic mice reveals no cognitive impairments at 17 months of age. Brain Behav. 8, e00896 (2018).

    Article  PubMed  Google Scholar 

  156. Morton, A. J., Skillings, E., Bussey, T. J. & Saksida, L. M. Measuring cognitive deficits in disabled mice using an automated interactive touchscreen system. Nat. Methods 3, 767 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Hales, C. A., Stuart, S. A., Anderson, M. H. & Robinson, E. S. J. Modelling cognitive affective biases in major depressive disorder using rodents. Br. J. Pharmacol. 171, 4524–4538 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Schick, A., Wessa, M., Vollmayr, B., Kuehner, C. & Kanske, P. Indirect assessment of an interpretation bias in humans: neurophysiological and behavioral correlates. Front. Hum. Neurosci. 7, 272 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Parker, R. M. A., Paul, E. S., Burman, O. H. P., Browne, W. J. & Mendl, M. Housing conditions affect rat responses to two types of ambiguity in a reward-reward discrimination cognitive bias task. Behav. Brain Res. 274, 73–83 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Brydges, N. M., Leach, M., Nicol, K., Wright, R. & Bateson, M. Environmental enrichment induces optimistic cognitive bias in rats. Anim. Behav. 81, 169–175 (2011).

    Article  Google Scholar 

  161. Stuart, S. A. & Robinson, E. S. J. Reducing the stress of drug administration: implications for the 3Rs. Sci. Rep. 5, 14288 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Novak, J., Bailoo, J. D., Melotti, L., Rommen, J. & Würbel, H. An exploration based cognitive bias test for mice: effects of handling method and stereotypic behaviour. PLoS ONE 10, e0130718 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Bateson, M. & Matheson, S. M. Performance on a categorisation task suggests that removal of environmental enrichment induces ‘pessimism’ in captive European starlings (Sturnus vulgaris). Anim. Welf. 16(Suppl 1), 33–36 (2007).

    CAS  Google Scholar 

  164. Enkel, T. et al. Ambiguous-cue interpretation is biased under stress- and depression-like states in rats. Neuropsychopharmacology 35, 1008–1015 (2010).

    Article  PubMed  Google Scholar 

  165. Bouhuys, A. L., Geerts, E. & Gordijn, M. C. Depressed patients’ perceptions of facial emotions in depressed and remitted states are associated with relapse: a longitudinal study. J. Nerv. Ment. Dis. 187, 595–602 (1999).

    Article  CAS  PubMed  Google Scholar 

  166. Hodos, W. Progressive ratio as a measure of reward strength. Science 134, 943–944 (1961).

    Article  CAS  PubMed  Google Scholar 

  167. Heath, C. J., Bussey, T. J. & Saksida, L. M. Motivational assessment of mice using the touchscreen operant testing system: effects of dopaminergic drugs. Psychopharmacology 232, 4043–4057 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Balcombe, J. P., Barnard, N. D. & Sandusky, C. Laboratory routines cause animal stress. Contemp. Top. Lab. Anim. Sci. 43, 42–51 (2004).

    CAS  PubMed  Google Scholar 

  169. Gourley, S. L., Kiraly, D. D., Howell, J. L., Olausson, P. & Taylor, J. R. Acute hippocampal brain-derived neurotrophic factor restores motivational and forced swim performance after corticosterone. Biol. Psychiatry 64, 884–890 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Olausson, P., Kiraly, D. D., Gourley, S. L. & Taylor, J. R. Persistent effects of prior chronic exposure to corticosterone on reward-related learning and motivation in rodents. Psychopharmacology 225, 569–577 (2013).

    Article  CAS  PubMed  Google Scholar 

  171. Lopez-Cruz, L. Effects of chronic corticosterone on motivation and feedback sensitivity: a battery approach for evaluating depressive-like state in mice. https://touchscreencognition.org/2021/03/12/effects-of-chronic-corticosterone-on-motivation-and-feedback-sensitivity-a-battery-approach-for-evaluating-depressive-like-state-in-mice (2021; accessed 4 September 2020).

  172. Lloyd, K. R., Yaghoubi, S. K., Makinson, R. A., McKee, S. E. & Reyes, T. M. Housing and testing in mixed-sex rooms increases motivation and accuracy during operant testing in both male and female mice. Neurobiol. Learn. Mem. 150, 20–24 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Hotchkiss, C. E. & Paule, M. G. Effect of pair-housing on operant behavior task performance by rhesus monkeys. Contemp. Top. Lab. Anim. Sci. 42, 38–41 (2003).

    CAS  PubMed  Google Scholar 

  174. Phillips, B. U., Heath, C. J., Ossowska, Z., Bussey, T. J. & Saksida, L. M. Optimisation of cognitive performance in rodent operant (touchscreen) testing: evaluation and effects of reinforcer strength. Learn. Behav. 45, 252–262 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Prescott, M. J. & Lidster, K. Improving quality of science through better animal welfare: the NC3Rs strategy. Lab Anim. 46, 152–156 (2017).

    Article  Google Scholar 

  176. The principles of humane experimental technique. Med. J. Aust. 1, 500 (1960).

  177. Cardinal, R. N. & Aitken, M. R. F. Whisker: a client-server high-performance multimedia research control system. Behav. Res. Methods 42, 1059–1071 (2010).

    Article  PubMed  Google Scholar 

  178. Leising, K. J., Wolf, J. E. & Ruprecht, C. M. Visual discrimination learning with an iPad-equipped apparatus. Behav. Processes 93, 140–147 (2013).

    Article  PubMed  Google Scholar 

  179. O’Leary, J. D., O’Leary, O. F., Cryan, J. F. & Nolan, Y. M. A low-cost touchscreen operant chamber using a Raspberry PiTM. Behav. Res. Methods 50, 2523–2530 (2018).

    Article  PubMed  Google Scholar 

  180. Wolf, J. E., Urbano, C. M., Ruprecht, C. M. & Leising, K. J. Need to train your rat? There is an App for that: a touchscreen behavioral evaluation system. Behav. Res. Methods 46, 206–214 (2014).

    Article  PubMed  Google Scholar 

  181. Gurley, K. Two open source designs for a low-cost operant chamber using Raspberry PiTM. J. Exp. Anal. Behav. 111, 508–518 (2019).

    Article  PubMed  Google Scholar 

  182. Gibson, B. M., Wasserman, E. A., Frei, L. & Miller, K. Recent advances in operant conditioning technology: a versatile and affordable computerized touchscreen system. Behav. Res. Methods Instrum. Comput. 36, 355–362 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

L.L.-C., T.J.B., L.M.S. and C.J.H. were supported by an NC3Rs project grant (NC/N001451/1) awarded to C.J.H., L.M.S. and T.J.B. T.J.B. and L.M.S. consult for Campden Instruments, Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Lopez-Cruz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lopez-Cruz, L., Bussey, T.J., Saksida, L.M. et al. Using touchscreen-delivered cognitive assessments to address the principles of the 3Rs in behavioral sciences. Lab Anim 50, 174–184 (2021). https://doi.org/10.1038/s41684-021-00791-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41684-021-00791-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing