Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Shared and distinctive features of the gut microbiome of C57BL/6 mice from different vendors and production sites, and in response to a new vivarium

Abstract

Animal models play a critical role in establishing causal relationships between gut microbiota and disease. The laboratory mouse is widely used to study the role of microbes in various disorders; however, differences between mouse vendors, genetic lineages and husbandry protocols have been shown to contribute to variation in phenotypes and to non-reproducibility of experimental results. We sought to understand how gut microbiome profiles of mice vary by vendor, vendor production facility and health status upon receipt into an academic facility and how they change over 12 weeks in the new environment. C57BL/6 mice were sourced from two different production sites for each of three different vendors. Mice were shipped to an academic research vivarium, and fresh-catch stool samples were collected from mice immediately from the shipping box upon receipt, and again after 2, 6 and 12 weeks in the new facility. Substantial variation in bacterial proportional abundance was observed among mice from each vendor at the time of receipt, but shared microbes accounted for most sequence reads. Vendor-specific microbes were generally of low abundance. Microbial profiles of mice from all vendors exhibited shifts over time, highlighting the importance of environmental conditions on microbial dynamics. Our results emphasize the need for continued efforts to account for sources of variation in animal models and understand how they contribute to experimental reproducibility.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Study design and high-level overview of community composition between groups.
Fig. 2: Comparison of microbial profiles at intake and over time.
Fig. 3: Differential abundance of OTUs for each vendor location at intake.
Fig. 4: Shift in microbial community composition over time.
Fig. 5: Examination of OTU overlap by vendor and location at intake (T0) and over time (T12).

Data availability

All sequence read data have been deposited in the NCBI Sequence Read Archive database under BioProject accession number PRJNA622479. OTU sequences used for analysis are available as Supplementary Dataset 1.

References

  1. 1.

    Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Sofi, M. H. et al. pH of drinking water influences the composition of gut microbiome and type 1 diabetes incidence. Diabetes 63, 632–644 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Tai, N., Wong, F. S. & Wen, L. The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity. Rev. Endocr. Metab. Disord. 16, 55–65 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Kreznar, J. H. et al. Host genotype and gut microbiome modulate insulin secretion and diet-induced metabolic phenotypes. Cell Rep. 18, 1739–1750 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    CAS  Google Scholar 

  6. 6.

    Grochowska, M., Laskus, T. & Radkowski, M. Gut microbiota in neurological disorders. Arch. Immunol. Ther. Exp. (Warsz.) 67, 375–383 (2019).

    CAS  Google Scholar 

  7. 7.

    Minter, M. R. et al. Antibiotic-induced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APPSWE/PS1DeltaE9 murine model of Alzheimer’s disease. Sci. Rep. 7, 10411 (2017).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Sampson, T. R. et al. A gut bacterial amyloid promotes α-synuclein aggregation and motor impairment in mice. Elife 9, e53111 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Shen, L. Gut, oral and nasal microbiota and Parkinson’s disease. Microb. Cell Fact. 19, 50 (2020).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Valles-Colomer, M. et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 4, 623–632 (2019).

    CAS  PubMed  Google Scholar 

  11. 11.

    Kong, H. H. et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 22, 850–859 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Shui, L. et al. Gut microbiome as a potential factor for modulating resistance to cancer immunotherapy. Front. Immunol. 10, 2989 (2019).

    CAS  PubMed  Google Scholar 

  13. 13.

    Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Vetizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Yi, M. et al. Gut microbiome modulates efficacy of immune checkpoint inhibitors. J. Hematol. Oncol. 11, 47 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Ericsson, A. C. et al. Effects of vendor and genetic background on the composition of the fecal microbiota of inbred mice. PLoS One 10, e0116704 (2015).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    McIntosh, C. M., Chen, L., Shaiber, A., Eren, A. M. & Alegre, M. L. Gut microbes contribute to variation in solid organ transplant outcomes in mice. Microbiome 6, 96 (2018).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Ivanov, I. I. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4, 337–349 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    CAS  Google Scholar 

  21. 21.

    Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Velazquez, E. M. et al. Endogenous Enterobacteriaceae underlie variation in susceptibility to Salmonella infection. Nat. Microbiol. 4, 1057–1064 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Franklin, C. L. & Ericsson, A. C. Microbiota and reproducibility of rodent models. Lab Anim. (NY) 46, 114–122 (2017).

    Google Scholar 

  25. 25.

    Goodrich, J. K. et al. Conducting a microbiome study. Cell 158, 250–262 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Caruso, R., Ono, M., Bunker, M. E., Nunez, G. & Inohara, N. Dynamic and asymmetric changes of the microbial communities after cohousing in laboratory mice. Cell Rep. 27, 3401–3412.e3 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Friswell, M. K. et al. Site and strain-specific variation in gut microbiota profiles and metabolism in experimental mice. PLoS One 5, e8584 (2010).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Hufeldt, M. R., Nielsen, D. S., Vogensen, F. K., Midtvedt, T. & Hansen, A. K. Family relationship of female breeders reduce the systematic inter-individual variation in the gut microbiota of inbred laboratory mice. Lab Anim. 44, 283–289 (2010).

    CAS  PubMed  Google Scholar 

  29. 29.

    Montonye, D. R. et al. Acclimation and institutionalization of the mouse microbiota following transportation. Front. Microbiol. 9, 1085 (2018).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Parker, K. D., Albeke, S. E., Gigley, J. P., Goldstein, A. M. & Ward, N. L. Microbiome composition in both wild-type and disease model mice is heavily influenced by mouse facility. Front. Microbiol. 9, 1598 (2018).

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Rasmussen, T. S. et al. Mouse vendor influence on the bacterial and viral gut composition exceeds the effect of diet. Viruses 11, 435 (2019).

    CAS  PubMed Central  Google Scholar 

  32. 32.

    Bryant, C. D. The blessings and curses of C57BL/6 substrains in mouse genetic studies. Ann. N. Y. Acad. Sci. 1245, 31–33 (2011).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Collins, F. S. & Tabak, L. A. Policy: NIH plans to enhance reproducibility. Nature 505, 612–613 (2014).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Angoa-Perez, M. et al. Differential effects of synthetic psychoactive cathinones and amphetamine stimulants on the gut microbiome in mice. PLoS One 15, e0227774 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Madsen, M. S. A. et al. Metabolic and gut microbiome changes following GLP-1 or dual GLP-1/GLP-2 receptor agonist treatment in diet-induced obese mice. Sci. Rep. 9, 15582 (2019).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Separating host and microbiome contributions to drug pharmacokinetics and toxicity. Science 363, eaat9931 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Denny, J. E. et al. Differential sensitivity to Plasmodium yoelii infection in C57BL/6 mice impacts gut-liver axis homeostasis. Sci. Rep. 9, 3472 (2019).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Villarino, N. F. et al. Composition of the gut microbiota modulates the severity of malaria. Proc. Natl. Acad. Sci. U. S. A. 113, 2235–2240 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Barnett, J. A. & Gibson, D. L. H2Oh no! The importance of reporting your water source in your in vivo microbiome studies. Gut Microbes 10, 261–269 (2019).

    CAS  PubMed  Google Scholar 

  40. 40.

    Ericsson, A. C. et al. The influence of caging, bedding, and diet on the composition of the microbiota in different regions of the mouse gut. Sci. Rep. 8, 4065 (2018).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Rausch, P. et al. Analysis of factors contributing to variation in the C57BL/6J fecal microbiota across German animal facilities. Int. J. Med. Microbiol. 306, 343–355 (2016).

    PubMed  Google Scholar 

  42. 42.

    Siersbaek, M. S. et al. C57BL/6J substrain differences in response to high-fat diet intervention. Sci. Rep. 10, 14052 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Robertson, S. J. et al. Nod1 and Nod2 signaling does not alter the composition of intestinal bacterial communities at homeostasis. Gut Microbes 4, 222–231 (2013).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Ubeda, C. et al. Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. J. Exp. Med. 209, 1445–1456 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Mamantopoulos, M. et al. Nlrp6- and ASC-dependent inflammasomes do not shape the commensal gut microbiota composition. Immunity 47, 339–348.e4 (2017).

    CAS  PubMed  Google Scholar 

  46. 46.

    Bidot, W. A., Ericsson, A. C. & Franklin, C. L. Effects of water decontamination methods and bedding material on the gut microbiota. PLoS One 13, e0198305 (2018).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Ericsson, A. C., Montonye, D. R., Smith, C. R. & Franklin, C. L. Modeling a superorganism—considerations regarding the use of “dirty” mice in biomedical research. Yale J. Biol. Med. 90, 361–371 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Jain, N. & Walker, W. A. Diet and host-microbial crosstalk in postnatal intestinal immune homeostasis. Nat. Rev. Gastroenterol. Hepatol. 12, 14–25 (2015).

    CAS  PubMed  Google Scholar 

  49. 49.

    Xiang, Q. et al. Early-life intervention using fecal microbiota combined with probiotics promotes gut microbiota maturation, regulates immune system development, and alleviates weaning stress in piglets. Int. J. Mol. Sci. 21, 503 (2020).

    CAS  PubMed Central  Google Scholar 

  50. 50.

    Rogers, G. B. et al. Functional divergence in gastrointestinal microbiota in physically-separated genetically identical mice. Sci. Rep. 4, 5437 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Asshauer, K. P., Wemheuer, B., Daniel, R. & Meinicke, P. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31, 2882–2884 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Ward, T. et al. BugBase predicts organism-level microbiome phenotypes. Preprint at https://www.biorxiv.org/content/10.1101/133462v1.article-info (2017).

  54. 54.

    Sun, S., Jones, R. B. & Fodor, A. A. Inference-based accuracy of metagenome prediction tools varies across sample types and functional categories. Microbiome 8, 46 (2020).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Ju, T., Kong, J. Y., Stothard, P. & Willing, B. P. Defining the role of Parasutterella, a previously uncharacterized member of the core gut microbiota. ISME J. 13, 1520–1534 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Daillere, R. et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity 45, 931–943 (2016).

    CAS  PubMed  Google Scholar 

  57. 57.

    Ubeda, C. et al. Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization. Infect. Immun. 81, 965–973 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Hoy, Y. E. et al. Variation in taxonomic composition of the fecal microbiota in an inbred mouse strain across individuals and time. PLoS One 10, e0142825 (2015).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Magoc, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Cole, J. R. et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2014).

    CAS  PubMed  Google Scholar 

  63. 63.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Anderson, M. J. Permanova: A Fortran Computer Program for Permutational Multivariate Analysis of Variance. (Department of Statistics, University of Aukland, Aukland, New Zealand, 2005).

    Google Scholar 

  66. 66.

    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-3. Available at https://CRAN.R-project.org/package=vegan (2018).

  67. 67.

    Anderson, M. J. et al. Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Tina Bishop, Paul Phillips and Justin Brouty of JAX for skillful and coordinated sample collection. We gratefully acknowledge Joseph S. Brown, Daniel Phillips and Purva Vats of the Microbial Genomics Scientific Service at JAX for expert assistance with DNA extraction and library preparation and the Genome Technologies Scientific Service for sequencing. We thank Benjamin Leopold and Sai Lek of the Microbial Genomic Scientific Service for processing and quality control of sequencing data. We acknowledge Adam SanMiguel of JAX for his insight and input on the data and organization of this manuscript. All funding was provided by JAX.

Author information

Affiliations

Authors

Contributions

L.W., K.L.V., J.R.F., A.J.M., L.L.L. and M.D.A. conceived and designed the current study. M.M. contributed to experimental organization and collection of all data. L.L.L. performed all of the data analysis. L.W., K.L.V., J.R.F., A.M., L.L.L., K.L.S. and M.D.A. interpreted the data. L.L.L., K.L.S. and M.D.A. wrote the manuscript. L.W., K.L.V., J.R.F., A.J.M., L.L.L., K.L.S. and M.D.A. reviewed the manuscript.

Corresponding author

Correspondence to Mark D. Adams.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Lab Animal thanks Deanna Gibson, Francesca Ronchi, Axel Kornerup Hansen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Material

Supplementary Figures 1–6

Reporting Summary

Supplementary Dataset 1

16 S rRNA v1–v3 OTU sequences used for analysis (zipped fasta file)

Supplementary Dataset 2

OTU taxonomic classifications and counts per sample

Supplementary Tables

Supplementary Tables 1–15

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Long, L.L., Svenson, K.L., Mourino, A.J. et al. Shared and distinctive features of the gut microbiome of C57BL/6 mice from different vendors and production sites, and in response to a new vivarium. Lab Anim 50, 185–195 (2021). https://doi.org/10.1038/s41684-021-00777-0

Download citation

Search

Quick links