Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Zebrafish microbiome studies make waves

Abstract

Zebrafish have a 50-year history as a model organism for studying vertebrate developmental biology and more recently have emerged as a powerful model system for studying vertebrate microbiome assembly, dynamics and function. In this Review, we discuss the strengths of the zebrafish model for both observational and manipulative microbiome studies, and we highlight some of the important insights gleaned from zebrafish gut microbiome research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental paradigms for studying zebrafish microbiome assembly, dynamics and function.

Similar content being viewed by others

References

  1. Grunwald, D. J. & Eisen, J. S. Headwaters of the zebrafish—emergence of a new model vertebrate. Nat. Rev. Genet. 3, 717–724 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Burns, A. R. & Guillemin, K. The scales of the zebrafish: host–microbiota interactions from proteins to populations. Curr. Opin. Microbiol. 38, 137–141 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stephens, W. Z. et al. The composition of the zebrafish intestinal microbial community varies across development. ISME J. 10, 644–654 (2016).

    Article  PubMed  CAS  Google Scholar 

  4. Gaulke, C. A., Barton, C. L., Proffitt, S., Tanguay, R. L. & Sharpton, T. J. Triclosan exposure is associated with rapid restructuring of the microbiome in adult zebrafish. PLoS One 11, e0154632 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hill, J. H., Franzosa, E. A., Huttenhower, C. & Guillemin, K. A conserved bacterial protein induces pancreatic beta cell expansion during zebrafish development. Elife 5, e20145 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rolig, A. S. et al. A bacterial immunomodulatory protein with lipocalin-like domains facilitates host–bacteria mutualism in larval zebrafish. Elife 7, e37172 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rawls, J. F., Samuel, B. S. & Gordon, J. I. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc. Natl Acad. Sci. USA 101, 4596–4601 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bates, J. M. et al. Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Dev. Biol. 297, 374–386 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Melancon, E. et al. Best practices for germ-free derivation and gnotobiotic zebrafish husbandry. Methods Cell Biol. 138, 61–100 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lewis, K. L., Del Cid, N. & Traver, D. Perspectives on antigen presenting cells in zebrafish. Dev. Comp. Immunol. 46, 63–73 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stednitz, S. J. et al. Forebrain control of behaviorally driven social orienting in zebrafish. Curr. Biol. 28(2445-2451), e3 (2018).

    Google Scholar 

  12. Davis, D. J. et al. Lactobacillus plantarum attenuates anxiety-related behavior and protects against stress-induced dysbiosis in adult zebrafish. Sci. Rep. 6, 33726 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Borrelli, L. et al. Probiotic modulation of the microbiota-gut-brain axis and behaviour in zebrafish. Sci. Rep. 6, 30046 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Truong, L. et al. Multidimensional in vivo hazard assessment using zebrafish. Toxicol. Sci. 137, 212–233 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Phelps, D. et al. Microbial colonization is required for normal neurobehavioral development in zebrafish. Sci. Rep. 7, 11244 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Bates, J. M., Akerlund, J., Mittge, E. & Guillemin, K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2, 371–382 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cheesman, S. E., Neal, J. T., Mittge, E., Seredick, B. M. & Guillemin, K. Epithelial cell proliferation in the developing zebrafish intestine is regulated by the Wnt pathway and microbial signaling via Myd88. Proc. Natl Acad. Sci. USA 108, 4570–4577 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Troll, J. V. et al. Microbiota promote secretory cell determination in the intestinal epithelium by modulating host Notch signaling. Development 145, dev155317 (2018).

  19. Murdoch, C. C. & Rawls, J. F. Commensal microbiota regulate vertebrate innate immunity—insights from the zebrafish. Front. Immunol. 10, 2100 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ye, L. et al. High fat diet induces microbiota-dependent silencing of enteroendocrine cells. Elife 8, e48479 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Semova, I. et al. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe 12, 277–288 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Davis, D. J., Bryda, E. C., Gillespie, C. H. & Ericsson, A. C. Microbial modulation of behavior and stress responses in zebrafish larvae. Behav. Brain Res. 311, 219–227 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bosch, T. C. G., Guillemin, K. & McFall-Ngai, M. Evolutionary ‘experiments’ in symbiosis: the study of model animals provides insights into the mechanisms underlying the diversity of host-microbe interactions. Bioessays 41, e1800256 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wiles, T. J. et al. Modernized tools for streamlined genetic manipulation and comparative study of wild and diverse proteobacterial lineages. mBio 9, e01877–18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Taormina, M. J. et al. Investigating bacterial-animal symbioses with light sheet microscopy. Biol. Bull. 223, 7–20 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jemielita, M. et al. Spatial and temporal features of the growth of a bacterial species colonizing the zebrafish gut. mBio 5, e01751–14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wiles, T. J. et al. Host gut motility promotes competitive exclusion within a model intestinal microbiota. PLoS Biol. 14, e1002517 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Schlomann, B. H., Wiles, T. J., Wall, E. S., Guillemin, K. & Parthasarathy, R. Sublethal antibiotics collapse gut bacterial populations by enhancing aggregation and expulsion. Proc. Natl Acad. Sci. USA 116, 21392–21400 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wiles, T. J. et al. Swimming motility of a gut bacterial symbiont promotes resistance to intestinal expulsion and enhances inflammation. PLoS Biol. 18, e3000661 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schlomann, B. H., Wiles, T. J., Wall, E. S., Guillemin, K. & Parthasarathy, R. Bacterial cohesion predicts spatial distribution in the larval zebrafish intestine. Biophys. J. 115, 2271–2277 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stephens, W. Z. et al. Identification of population bottlenecks and colonization factors during assembly of bacterial communities within the zebrafish intestine. mBio 6, e01163–15 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bae, S., Mueller, O., Wong, S., Rawls, J. F. & Valdivia, R. H. Genomic sequencing-based mutational enrichment analysis identifies motility genes in a genetically intractable gut microbe. Proc. Natl Acad. Sci. USA 113, 14127–14132 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rawls, J. F., Mahowald, M. A., Ley, R. E. & Gordon, J. I. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127, 423–433 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burns, A. R. et al. Interhost dispersal alters microbiome assembly and can overwhelm host innate immunity in an experimental zebrafish model. Proc. Natl Acad. Sci. USA 114, 11181–11186 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stagaman, K., Burns, A. R., Guillemin, K. & Bohannan, B. J. The role of adaptive immunity as an ecological filter on the gut microbiota in zebrafish. ISME J. 11, 1630–1639 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Roeselers, G. et al. Evidence for a core gut microbiota in the zebrafish. ISME J. 5, 1595–1608 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Spence, R., Gerlach, G., Lawrence, C. & Smith, C. The behaviour and ecology of the zebrafish, Danio rerio. Biol. Rev. Camb. Philos. Soc. 83, 13–34 (2008).

    Article  PubMed  Google Scholar 

  38. Wong, S. et al. Ontogenetic differences in dietary fat influence microbiota assembly in the zebrafish gut. mBio 6, e00687–15 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Givens, C., Ransom, B., Bano, N. & Hollibaugh, J. Comparison of the gut microbiomes of 12 bony fish and 3 shark species. Mar. Ecol. Prog. Ser. 518, 209–223 (2015).

    Article  Google Scholar 

  40. Egerton, S., Culloty, S., Whooley, J., Stanton, C. & Ross, R. P. The gut microbiota of marine fish. Front. Microbiol. 9, 873 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ding, Q. et al. The hepatotoxicity of palmitic acid in zebrafish involves the intestinal microbiota. J. Nutr. 148, 1217–1228 (2018).

    Article  PubMed  Google Scholar 

  42. Guo, X. et al. The growth-promoting effect of dietary nucleotides in fish is associated with an intestinal microbiota-mediated reduction in energy expenditure. J. Nutr. 147, 781–788 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Teame, T. et al. The use of zebrafish (Danio rerio) as biomedical models. Anim. Front. 9, 68–77 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Burns, A. R. et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 10, 655–664 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Brito, I. L. & Alm, E. J. Tracking strains in the microbiome: insights from metagenomics and models. Front. Microbiol. 7, 712 (2016).

    PubMed  PubMed Central  Google Scholar 

  46. Merrifield, D. L. et al. Ingestion of metal-nanoparticle contaminated food disrupts endogenous microbiota in zebrafish (Danio rerio). Environ. Pollut. 174, 157–163 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Catron, T. R. et al. Host developmental toxicity of BPA and BPA alternatives is inversely related to microbiota disruption in zebrafish. Toxicol. Sci. 167, 468–483 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Liu, Y. et al. Influence of endogenous and exogenous estrogenic endocrine on intestinal microbiota in zebrafish. PLoS One 11, e0163895 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Zang, L. et al. Dietary Lactobacillus plantarum ST-III alleviates the toxic effects of triclosan on zebrafish (Danio rerio) via gut microbiota modulation. Fish Shellfish Immunol. 84, 1157–1169 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Gaulke, C. A. et al. A longitudinal assessment of host-microbe-parasite interactions resolves the zebrafish gut microbiome’s link to Pseudocapillaria tomentosa infection and pathology. Microbiome 7, 10 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Paquette, C. E. et al. A retrospective study of the prevalence and classification of intestinal neoplasia in zebrafish (Danio rerio). Zebrafish 10, 228–236 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Burns, A. R. et al. Transmission of a common intestinal neoplasm in zebrafish by cohabitation. J. Fish Dis. 41, 569–579 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Rolig, A. S. et al. The enteric nervous system promotes intestinal health by constraining microbiota composition. PLoS Biol. 15, e2000689 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Ran, C. et al. Aeromonas veronii and aerolysin are important for the pathogenesis of motile aeromonad septicemia in cyprinid fish. Environ. Microbiol. 20, 3442–3456 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Institutes of Health, under P01GM125576 to K.G., the National Institutes of Environmental Health Sciences (1R01ES030226) to T.J.S. K.S. was supported in part by the NIEHS Integrated Regional Training Program in Environmental Health Sciences grant (PI R.L. Tanguay, T32-ES007060-38).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Guillemin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stagaman, K., Sharpton, T.J. & Guillemin, K. Zebrafish microbiome studies make waves. Lab Anim 49, 201–207 (2020). https://doi.org/10.1038/s41684-020-0573-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41684-020-0573-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing