Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

NEUROSCIENCE

Cloaked caged glutamate eliminates off-target GABA-A receptor antagonism and opens a new door in neuroscience

Caged neurotransmitters are widely used to study neurobiological processes such as synaptic transmission and plasticity. However, uncaging has been primarily restricted to in vitro and ex vivo experimental systems. Using caged neurotransmitters in vivo has posed a huge hurdle because photoactivatable cages bind to GABA-A receptors, acting as competitive antagonists towards GABA. This reduced inhibition leads to epileptiform-like activity, which can cause problems for circuit level studies in vivo. To circumvent this off-target effect, a recent publication introduces a new caged glutamate: G5-MNI-glutamate. Using a novel technique called ‘cloaking,’ GABA-A receptor antagonism is abolished, opening up new possibilities for future in vivo studies with caged neurotransmitters.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cloaked G5-MNI-glutamate abolishes the GABA-A receptor antagonism of MNI-glutamate.

References

  1. Barltrop, J. A., Plant, P. J. & Schofield, P. Chemical Communications (London), 822-823, https://doi.org/10.1039/C19660000822 (1966).

  2. Kaplan, J. H., Forbush, B. 3rd & Hoffman, J. F. Biochemistry 17, 1929–1935, https://doi.org/10.1021/bi00603a020 (1978).

    Article  CAS  PubMed  Google Scholar 

  3. Kaplan, J. H. & Hollis, R. J. Nature 288, 587–589, https://doi.org/10.1038/288587a0 (1980).

    Article  CAS  PubMed  Google Scholar 

  4. Lester, H. A., Krouse, M. E., Nass, M. M., Wassermann, N. H. & Erlanger, B. F. Nature 280, 509–510, https://doi.org/10.1038/280509a0 (1979).

    Article  CAS  PubMed  Google Scholar 

  5. Denk, W., Strickler, J. H. & Webb, W. W. Science 248, 73–76, https://doi.org/10.1126/science.2321027 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Denk, W. & Svoboda, K. Neuron 18, 351–357, https://doi.org/10.1016/s0896-6273(00)81237-4 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Callaway, E. M. & Katz, L. C. Proc. Natl Acad. Sci. U S A 90, 7661–7665, https://doi.org/10.1073/pnas.90.16.7661 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kwon, H. B. & Sabatini, B. L. Nature 474, 100–104, https://doi.org/10.1038/nature09986 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. & Kasai, H. Nature 429, 761–766, https://doi.org/10.1038/nature02617 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oh, W. C., Hill, T. C. & Zito, K. Proc. Natl Acad. Sci. U S A 110, E305–312, https://doi.org/10.1073/pnas.1214705110 (2013).

    Article  PubMed  Google Scholar 

  11. Oh, W. C., Lutzu, S., Castillo, P. E. & Kwon, H. B. Science 353, 1037–1040, https://doi.org/10.1126/science.aaf5206 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Carter, A. G. & Sabatini, B. L. Neuron 44, 483–493, https://doi.org/10.1016/j.neuron.2004.10.013 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Hedrick, N. G. & Yasuda, R. Curr. Opin. Neurobiol. 45, 193–201, https://doi.org/10.1016/j.conb.2017.06.002 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Ellis-Davies, G. C. R. Front Synaptic Neurosci. 10, 48, https://doi.org/10.3389/fnsyn.2018.00048 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Molnar, P. & Nadler, J. V. Eur J Pharmacol 391, 255–262, https://doi.org/10.1016/s0014-2999(00)00106-0 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Fino, E. et al. Front Neural Circuits 3, 2, https://doi.org/10.3389/neuro.04.002.2009 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Richers, M. T., Amatrudo, J. M., Olson, J. P. & Ellis-Davies, G. C. Angew Chem Int. Ed. Engl. 56, 193–197, https://doi.org/10.1002/anie.201609269 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Papageorgiou, G. & Corrie Tetrahedron 63, 9668, https://doi.org/10.1016/j.tet.2007.07.030 (2007).

    Article  CAS  Google Scholar 

  19. Kantevari, S. et al. Chembiochem 17, 953–961, https://doi.org/10.1002/cbic.201600019 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Durand-de Cuttoli, R. et al. Proc. Natl Acad. Sci. U S A 117, 6831–6835, https://doi.org/10.1073/pnas.1920869117 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Carlmark, A., Malmstrom, E. & Malkoch, M. Chem. Soc. Rev. 42, 5858–5879, https://doi.org/10.1039/c3cs60101c (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Feliu, N. et al. Biomaterials 33, 1970–1981, https://doi.org/10.1016/j.biomaterials.2011.11.054 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Richers, M. T., Passlick, S., Agarwal, H. & Ellis-Davies, G. C. R. Angew Chem Int. Ed. Engl. 58, 12086–12090, https://doi.org/10.1002/anie.201906067 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Durand-de Cuttoli, R. et al. Elife 7, https://doi.org/10.7554/eLife.37487 (2018).

  25. Tzschentke, T. M. Addict Biol. 12, 227–462, https://doi.org/10.1111/j.1369-1600.2007.00070.x (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Medina, S. H. & El-Sayed, M. E. Chem Rev. 109, 3141–3157, https://doi.org/10.1021/cr900174j (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a NARSAD Young Investigator Award (W.C.O.) and a Neuroscience Training Grant T32 NS099042 (R.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Chan Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogelman, R., Hwang, IW. & Oh, W.C. Cloaked caged glutamate eliminates off-target GABA-A receptor antagonism and opens a new door in neuroscience. Lab Anim 49, 177–179 (2020). https://doi.org/10.1038/s41684-020-0555-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41684-020-0555-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing