Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Experimental murine arteriovenous fistula model to study restenosis after transluminal angioplasty

Abstract

Percutaneous transluminal angioplasty (PTA) is a very common interventional treatment for treating stenosis in arteriovenous fistula (AVF) used for hemodialysis vascular access. Restenosis occurs after PTA, resulting in vascular lumen loss and a decrease in blood flow. Experimental animal models have been developed to study the pathogenesis of stenosis, but there is no restenosis model after PTA of stenotic AVF in mice. Here, we describe the creation of a murine model of restenosis after angioplasty of a stenosis in an AVF. The murine restenosis model has several advantages, including the rapid development of restenotic lesions in the vessel after angioplasty and the potential to evaluate endovascular and perivascular therapeutics for treating restenosis. The protocol includes a detailed description of the partial nephrectomy procedure to induce chronic kidney disease, the AVF procedure for development of de novo stenosis and the angioplasty treatment associated with progression of restenosis. We monitored the angioplasty-treated vessel for vascular patency and hemodynamic changes for a period of 28 d using ultrasound. Vessels were collected at different time points and processed for histological analysis and immunostaining. This angioplasty model, which can be performed with basic microvascular surgery skills, could be used to identify potential endovascular and perivascular therapies to reduce restenosis after angioplasty procedures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Materials required and technical procedures for CKD, AVF and angioplasty procedures.
Fig. 2: Time course of histomorphometric changes after the angioplasty procedure.
Fig. 3: Immunostaining for endothelial cells (CD31+ cells) at different time points.
Fig. 4: Immunostaining for smooth muscle cells (α-SMA+ cells) at different time points.
Fig. 5: Immunostaining for cellular proliferation (Ki-67) at different time points.
Fig. 6: Drug delivery using perivascular and endovascular methods in the murine angioplasty model.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Al-Jaishi, A. A. et al. Patency rates of the arteriovenous fistula for hemodialysis: a systematic review and meta-analysis. Am. J. Kidney Dis. 63, 464–478 (2014).

    Article  PubMed  Google Scholar 

  2. Brahmbhatt, A., Remuzzi, A., Franzoni, M. & Misra, S. The molecular mechanisms of hemodialysis vascular access failure. Kidney Int. 89, 303–316 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bountouris, I., Kritikou, G., Degermetzoglou, N. & Avgerinos, K. I. A review of percutaneous transluminal angioplasty in hemodialysis fistula. Int. J. Vasc. Med. 2018, 1420136 (2018).

    PubMed  PubMed Central  Google Scholar 

  4. Cai, C. et al. Evaluation of venous stenosis angioplasty in a murine arteriovenous fistula model. J. Vasc. Interv. Radiol. 30, 1512–1521.e3 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cai, C. et al. Effect of sex differences in treatment response to angioplasty in a murine arteriovenous fistula model. Am. J. Physiol. Renal Physiol. 318, F565–F575 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Cai, C. et al. Therapeutic effect of adipose derived mesenchymal stem cell transplantation in reducing restenosis in a murine angioplasty model. J. Am. Soc. Nephrol. 31, 1781–1795 (2020).

    Article  PubMed  Google Scholar 

  7. Geary, R. L. et al. Time course of cellular proliferation, intimal hyperplasia, and remodeling following angioplasty in monkeys with established atherosclerosis. A nonhuman primate model of restenosis. Arterioscler. Thromb. Vasc. Biol. 16, 34–43 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Somarathna, M., Isayeva-Waldrop, T., Al-Balas, A., Guo, L. & Lee, T. A novel model of balloon angioplasty injury in rat arteriovenous fistula. J. Vasc. Res. 57, 223–235 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Yamamoto, K., Li, X., Shu, C., Miyata, T. & Dardik, A. Technical aspects of the mouse aortocaval fistula. J. Vis. Exp. 77, e50449–e50449 (2013).

    Google Scholar 

  10. Yang, B., Shergill, U., Fu, A. A., Knudsen, B. & Misra, S. The mouse arteriovenous fistula model. J. Vasc. Interv. Radiol. 20, 946–950 (2009).

    Article  PubMed  Google Scholar 

  11. Liang, A., Wang, Y., Han, G., Truong, L. & Cheng, J. Chronic kidney disease accelerates endothelial barrier dysfunction in a mouse model of an arteriovenous fistula. Am. J. Physiol. Renal Physiol. 304, F1413–F1420 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Castier, Y. et al. Characterization of neointima lesions associated with arteriovenous fistulas in a mouse model. Kidney Int. 70, 315–320 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Kang, L. et al. A new model of an arteriovenous fistula in chronic kidney disease in the mouse: beneficial effects of upregulated heme oxygenase-1. Am. J. Physiol. Renal Physiol. 310, F466–F476 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Croatt, A. J. et al. Characterization of a model of an arteriovenous fistula in the rat: the effect of L-NAME. Am. J. Pathol. 176, 2530–2541 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Manning, E. et al. A new arteriovenous fistula model to study the development of neointimal hyperplasia. J. Vasc. Res. 49, 123–131 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lin, T., Horsfield, C. & Robson, M. G. Arteriovenous fistula in the rat tail: a new model of hemodialysis access dysfunction. Kidney Int. 74, 528–531 (2008).

    Article  PubMed  Google Scholar 

  17. Li, Z. et al. Hyperbaric oxygen inhibits venous neointimal hyperplasia following arteriovenous fistulization. Int. J. Mol. Med. 39, 1299–1306 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Masaki, T. et al. Inhibition of neointimal hyperplasia in vascular grafts by sustained perivascular delivery of paclitaxel. Kidney Int. 66, 2061–2069 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Florescu, M. C. et al. Sheep model of hemodialysis arteriovenous fistula using superficial veins. Semin. Dial. 28, 687–691 (2015).

    Article  PubMed  Google Scholar 

  20. Loveland-Jones, C. E. et al. A new model of arteriovenous fistula to study hemodialysis access complications. J. Vasc. Access 15, 351–357 (2014).

    Article  PubMed  Google Scholar 

  21. Kraiss, L. W. et al. Acute reductions in blood flow and shear stress induce platelet-derived growth factor-A expression in baboon prosthetic grafts. Circ. Res. 79, 45–53 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Lafont, A. & Faxon, D. Why do animal models of post-angioplasty restenosis sometimes poorly predict the outcome of clinical trials? Cardiovasc. Res. 39, 50–59 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Le Bras, A. A resource for selecting animal models of heart disease. Lab Anim. 48, 332 (2019).

    Article  Google Scholar 

  24. Hartung, T. Rebooting the generally recognized as safe (GRAS) approach for food additive safety in the US. ALTEX 35, 3–25 (2018).

    Article  PubMed  Google Scholar 

  25. Cai, C. et al. Differences in transforming growth factor-β1/BMP7 signaling and venous fibrosis contribute to female sex differences in arteriovenous fistulas. J. Am. Heart Assoc. 9, e017420 (2020).

    PubMed  Google Scholar 

  26. Gibbons, G. H. & Dzau, V. J. The emerging concept of vascular remodeling. N. Engl. J. Med. 330, 1431–1438 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Abedin, M., Tintut, Y. & Demer, L. L. Mesenchymal stem cells and the artery wall. Circ. Res. 95, 671–676 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Ross, R. Atherosclerosis—an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Jukema, J. W., Verschuren, J. J. W., Ahmed, T. A. N. & Quax, P. H. A. Restenosis after PCI. Part 1: pathophysiology and risk factors. Nat. Rev. Cardiol. 9, 53–62 (2012).

    Article  CAS  Google Scholar 

  30. De Marchi, S. et al. Risk factors for vascular disease and arteriovenous fistula dysfunction in hemodialysis patients. J. Am. Soc. Nephrol. 7, 1169–1177 (1996).

    PubMed  Google Scholar 

  31. Bertheau, P. et al. Variability of immunohistochemical reactivity on stored paraffin slides. J. Clin. Pathol. 51, 370–374 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ungvari, Z., Tarantini, S., Donato, A. J., Galvan, V. & Csiszar, A. Mechanisms of vascular aging. Circ. Res. 123, 849–867 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Caixeta, A. M. et al. [Analysis of elastic retraction in the 1st 15 minutes after coronary balloon angioplasty]. Arq. Bras. Cardiol. 66, 5–9 (1996).

    CAS  PubMed  Google Scholar 

  34. Meurice, T. et al. Role of endothelial cells in restenosis after coronary angioplasty. Fundam. Clin. Pharmacol. 10, 234–242 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Hanke, H., Strohschneider, T., Oberhoff, M., Betz, E. & Karsch, K. R. Time course of smooth muscle cell proliferation in the intima and media of arteries following experimental angioplasty. Circ. Res. 67, 651–659 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. Staab, M. E. et al. Arterial remodeling after experimental percutaneous injury is highly dependent on adventitial injury and histopathology. Int. J. Cardiol. 58, 31–40 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the assistance of Lucy Bahn, PhD for editing the manuscript. This research was supported by NIH grants to S.M. (HL098967 and DK107870).

Author information

Authors and Affiliations

Authors

Contributions

C.C. contributed to study design, animal surgeries, data collection, interpretation of data, and manuscript preparation. C.Z. contributed to study design, data analysis, and manuscript preparation. S.K. contributed to study design, interpretation of data, and manuscript review. A.S., A.K.S., M.L.S., A.M., and Y.L. contributed to interpretation of data, and manuscript review. S.M. contributed as a guarantor and to study design, interpretation of data and manuscript editing.

Corresponding author

Correspondence to Sanjay Misra.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2 and legends for Supplementary Videos 1 and 2.

Reporting Summary

Supplementary Video 1

Technique for AVF creation by anastomosing the end of the right external jugular vein to the side of the left common carotid artery in a mouse. All animal experiments were approved by the Institutional Animal Care and Use Committee of Mayo Clinic.

Supplementary Video 2

Technique for the angioplasty procedure in a stenotic arterialized external jugular vein by using a 1.25 mm × 6 mm coronary artery balloon catheter in a mouse. All animal experiments were approved by the Institutional Animal Care and Use Committee of Mayo Clinic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, C., Zhao, C., Kilari, S. et al. Experimental murine arteriovenous fistula model to study restenosis after transluminal angioplasty. Lab Anim 49, 320–334 (2020). https://doi.org/10.1038/s41684-020-00659-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41684-020-00659-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing