Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Microbiome

A wild microbiome improves mouse modeling of the human immune response

With the genetics of a laboratory strain but a more diverse microbiome, ‘wildling’ mice could be a novel complement to commonly used specific pathogen-free animals in preclinical studies.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Wildling mice, the offspring of pseudo-pregnant wild mice implanted with C57BL/6 mouse embryos, combine the shared genetics of traditional, specific pathogen free C57BL/6 laboratory mice (SPF) with the microbiome diversity and resilience found in wild mice.

References

  1. Wong, C. H., Siah, K. W. & Lo, A. W. Biostatistics 20, 273–286 (2019).

    Article  Google Scholar 

  2. Knight, R. et al. Annu Rev Genomics Hum. Genet 18, 65–86 (2017).

    Article  CAS  Google Scholar 

  3. Belkaid, Y. & Hand, T. W. Cell 157, 121–141 (2014).

    Article  CAS  Google Scholar 

  4. Rosshart, S. P. et al. Science 365, eaa24361 (2019).

    Article  Google Scholar 

  5. Suntharalingam, G. et al. N. Engl. J. Med. 355, 1018–1028 (2006).

    Article  CAS  Google Scholar 

  6. Tacke, M., Hanke, G., Hanke, T. & Hunig, T. Eur. J. Immunol 27, 239–247 (1997).

    Article  CAS  Google Scholar 

  7. Beutler, B., Milsark, I. W. & Cerami, A. C. Science 229, 869–871 (1985).

    Article  CAS  Google Scholar 

  8. Fisher, C. J. Jr. et al. N. Engl. J. Med. 334, 1697–1702 (1996).

    Article  CAS  Google Scholar 

  9. Huggins, M. A. et al. Cell Rep. 28, 1729–1743 (2019).

    Article  CAS  Google Scholar 

  10. Fink, M. P. Virulence 5, 143–153 (2014).

    Article  Google Scholar 

  11. Beura, L. K. et al. Nature 532, 512–516 (2016).

    Article  CAS  Google Scholar 

  12. Huggins, M. A., Jameson, S. C. & Hamilton, S. E. J. Leukoc. Biol. 105, 73–79 (2019).

    Article  CAS  Google Scholar 

  13. Masopust, D., Sivula, C. P. & Jameson, S. C. J. Immunol. 199, 383–388 (2017).

    Article  CAS  Google Scholar 

  14. Reese, T. A. et al. Cell Host Microbe 19, 713–719 (2016).

    Article  CAS  Google Scholar 

  15. Rosshart, S. P. et al. Cell 171, 1015–1028 e1013 (2017).

    Article  CAS  Google Scholar 

  16. Blekhman, R. et al. Genome Biol 16, 191 (2015).

    Article  Google Scholar 

  17. Goodrich, J. K. et al. Cell 159, 789–799 (2014).

    Article  CAS  Google Scholar 

  18. Korach-Rechtman, H. et al. App. Environ Microbiol (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sara E. Hamilton or Thomas S. Griffith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamilton, S.E., Griffith, T.S. A wild microbiome improves mouse modeling of the human immune response. Lab Anim 48, 337–338 (2019). https://doi.org/10.1038/s41684-019-0421-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41684-019-0421-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing