Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experiments done in Black-6 mice: what does it mean?

Abstract

Low replicability of animal experiments is perceived as a major hurdle in the field of biomedicine. Attempts to enhance the replicability and to reduce the variability in basic research has led to the recommendation to use isogenic mice. The C57BL/6 strain has evolved as a gold standard strain for this purpose. However, C57BL/6 mice are maintained as substrains by multiple vendors. Evidence exists that the subtle differences between these mouse lines have not been systematically investigated and are often ignored. In the present study, we characterized the female mice of two closely related substrains (C57BL/6J and C57BL/6N) from three vendors in Europe (Charles River Laboratories, Envigo, Janvier Labs) in a battery of behavioral tests. Our data show and confirm substantial behavioral differences between the C57BL/6J and C57BL/6N mice. Importantly, the substrain differences were largely affected by the origin of the animals, as a significant effect of vendor or interaction between the substrain and vendor occurred in all tests. This work highlights the importance of adhering to precise international nomenclature in all publications reporting animal experiments. Moreover, the generalization of research findings from a single mouse substrain can be seriously limited due to genetic drift and environmental variables occurring at different vendors. However, heterogenization of samples, by including animals of different substrains, can enhance generalizability. These issues need to be seriously addressed to improve reproducibility, replicability, and the translational potential of the mouse models.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimental design, transport boxes and mouse body weight.
Fig. 2: Elevated plus-maze, light-dark box and open field.
Fig. 3: Social approach, acoustic startle and pre-pulse inhibition, fear conditioning.
Fig. 4: Recording of circadian activity and stress-induced hyperthermia in individually caged mice.

References

  1. 1.

    Collins, F. S., Rossant, J. & Wurst, W. A mouse for all reasons. Cell 128, 9–13 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Gerlai, R. Gene-targeting studies of mammalian behavior: is it the mutation or the background genotype? Trends Neurosci. 19, 177–181 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Crawley, J. N. et al. Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology (Berl) 132, 107–124 (1997).

    Article  CAS  Google Scholar 

  4. 4.

    Silva, A. J. et al. Mutant mice and neuroscience: recommendations concerning genetic background. Banbury Conference on genetic background in mice. Neuron 19, 755–759 (1997).

    Article  Google Scholar 

  5. 5.

    Ayadi, A. et al. Mouse large-scale phenotyping initiatives: overview of the European Mouse Disease Clinic (EUMODIC) and of the Wellcome Trust Sanger Institute Mouse Genetics Project. Mamm. Genome 23, 600–610 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Brown, S. D. & Moore, M. W. The international mouse phenotyping consortium: past and future perspectives on mouse phenotyping. Mamm Genome 23, 632–640 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Pettitt, S. J. et al. Agouti C57BL/6N embryonic stem cells for mouse genetic resources. Nat. Methods 6, 493–495 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Bradley, A. et al. The mammalian gene function resource: the International Knockout Mouse Consortium. Mamm. Genome 23, 580–586 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Doetschman, T. Influence of genetic background on genetically engineered mouse phenotypes. Methods Mol. Biol. 530, 423–433 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Bourdi, M., Davies, J. S. & Pohl, L. R. Mispairing C57BL/6 substrains of genetically engineered mice and wild-type controls can lead to confounding results as it did in studies of JNK2 in acetaminophen and concanavalin A liver injury. Chemical research in toxicology 24, 794–796 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Wotjak, C. T. C57BLack/BOX? The importance of exact mouse strain nomenclature. Trends Genet. 19, 183–184 (2003).

    Article  CAS  Google Scholar 

  12. 12.

    Kiselycznyk, C. & Holmes, A. All (C57BL/6) mice are not created equal. Front. Neurosci 5, 10 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Bryant, C. D. The blessings and curses of C57BL/6 substrains in mouse genetic studies. Ann. N Y Acad. Sci. 1245, 31–33 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Fontaine, D. A. & Davis, D. B. Attention to background strain is essential for metabolic research: C57BL/6 and the international knockout mouse consortium. Diabetes 65, 25–33 (2016).

    Article  CAS  Google Scholar 

  15. 15.

    Kafkafi, N. et al. Reproducibility and replicability of rodent phenotyping in preclinical studies. Neurosci. Biobehav. Rev. 87, 218–232 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Bespalov, A. & Steckler, T. Lacking quality in research: Is behavioral neuroscience affected more than other areas of biomedical science? J. Neurosci. Methods 300, 4–9 (2018).

    Article  Google Scholar 

  18. 18.

    Perrin, S. Preclinical research: Make mouse studies work. Nature 507, 423–425 (2014).

    Article  Google Scholar 

  19. 19.

    Begley, C. G. & Ellis, L. M. Drug development: Raise standards for preclinical cancer research. Nature 483, 531–533 (2012).

    Article  CAS  Google Scholar 

  20. 20.

    Festing, M. F. Warning: the use of heterogeneous mice may seriously damage your research. Neurobiol. Aging 20, 237–244 (1999). discussion 245–236.

    Article  CAS  Google Scholar 

  21. 21.

    Festing, M. F. Inbred strains should replace outbred stocks in toxicology, safety testing, and drug development. Toxicologic pathology 38, 681–690 (2010).

    Article  CAS  Google Scholar 

  22. 22.

    Rivera, J. & Tessarollo, L. Genetic background and the dilemma of translating mouse studies to humans. Immunity 28, 1–4 (2008).

    Article  CAS  Google Scholar 

  23. 23.

    Sittig, L. J. et al. Genetic Background Limits Generalizability of Genotype-Phenotype Relationships. Neuron 91, 1253–1259 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Tuttle, A. H., Philip, V. M., Chesler, E. J. & Mogil, J. S. Comparing phenotypic variation between inbred and outbred mice. Nat. Methods 15, 994–996 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Mills, M. C. & Rahal, C. A scientometric review of genome-wide association studies. Commun. Biol 2, 9 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Haga, S. B. Impact of limited population diversity of genome-wide association studies. Genet. Med 12, 81–84 (2010).

    Article  Google Scholar 

  27. 27.

    Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Steward, O. & Balice-Gordon, R. Rigor or mortis: best practices for preclinical research in neuroscience. Neuron 84, 572–581 (2014).

    Article  CAS  Google Scholar 

  29. 29.

    Mogil, J. S. & Macleod, M. R. No publication without confirmation. Nature 542, 409–411 (2017).

    Article  CAS  Google Scholar 

  30. 30.

    Smith, A. J., Clutton, R. E., Lilley, E., Hansen, K. E. A. & Brattelid, T. PREPARE: guidelines for planning animal research and testing. Lab Anim 52, 135–141 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Ioannidis, J. P. A. The proposal to lower P value thresholds to .005. Jama 319, 1429–1430 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Steckler, T. et al. The preclinical data forum network: A new ECNP initiative to improve data quality and robustness for (preclinical) neuroscience. Eur. Neuropsychopharmacol. 25, 1803–1807 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Crabbe, J. C., Wahlsten, D. & Dudek, B. C. Genetics of mouse behavior: interactions with laboratory environment. Science 284, 1670–1672 (1999).

    Article  CAS  Google Scholar 

  34. 34.

    Wurbel, H. Behaviour and the standardization fallacy. Nat. Genet. 26, 263 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Richter, S. H., Garner, J. P. & Wurbel, H. Environmental standardization: cure or cause of poor reproducibility in animal experiments? Nat. Methods 6, 257–261 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Voelkl, B., Vogt, L., Sena, E. S. & Wurbel, H. Reproducibility of preclinical animal research improves with heterogeneity of study samples. PLoS Biol. 16, e2003693 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Voelkl, B. & Wurbel, H. Reproducibility crisis: Are we ignoring reaction norms? Trends Pharmacol. Sci. 37, 509–510 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Bailoo, J. D., Reichlin, T. S. & Wurbel, H. Refinement of experimental design and conduct in laboratory animal research. ILAR J. 55, 383–391 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Karp, N. A. Reproducible preclinical research-Is embracing variability the answer? PLoS Biol. 16, e2005413 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Ehrenreich, H. The impact of environment on abnormal behavior and mental disease: To alleviate the prevalence of mental disorders, we need to phenotype the environment for risk factors. EMBO Rep 18, 661–665 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Sundberg, J. P. & Schofield, P. N. Living inside the box: environmental effects on mouse models of human disease. Dis. Model Mech. 11, 1–7 (2018).

    Article  Google Scholar 

  42. 42.

    Editorial. Considerations for experimental design of behavioral studies using model organisms. J.Neurosci 39, 1–2 (2019).

  43. 43.

    Editorial. Building a better mouse test. Nat. Methods 8, 697–697 (2011).

  44. 44.

    Editorial. Troublesome variability in mouse studies. Nat. Neurosci. 12, 1075 (2009).

  45. 45.

    Garner, J. P. The significance of meaning: why do over 90% of behavioral neuroscience results fail to translate to humans, and what can we do to fix it? ILAR J. 55, 438–456 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Garner, J. P., Gaskill, B. N., Weber, E. M., Ahloy-Dallaire, J. & Pritchett-Corning, K. R. Introducing Therioepistemology: the study of how knowledge is gained from animal research. Lab Anim (NY) 46, 103–113 (2017).

    Article  Google Scholar 

  47. 47.

    Matsuo, N. et al. Behavioral profiles of three C57BL/6 substrains. Front. Behav. Neurosci. 4, 29 (2010).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Mekada, K. et al. Genetic differences among C57BL/6 substrains. Exp. Anim. 58, 141–149 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Zurita, E. et al. Genetic polymorphisms among C57BL/6 mouse inbred strains. Transgenic Res. 20, 481–489 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Mattapallil, M. J. et al. The Rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes. Invest. Ophthalmol Vis Sci 53, 2921–2927 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Huang, T. T. et al. Genetic modifiers of the phenotype of mice deficient in mitochondrial superoxide dismutase. Hum. Mol. Genet. 15, 1187–1194 (2006).

    Article  CAS  Google Scholar 

  52. 52.

    Specht, C. G. & Schoepfer, R. Deletion of the alpha-synuclein locus in a subpopulation of C57BL/6J inbred mice. BMC Neurosci. 2, 11 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Zeldovich, L. Genetic drift: the ghost in the genome. Lab Anim (NY) 46, 255–257 (2017).

    Article  Google Scholar 

  54. 54.

    Taft, R. A., Davisson, M. & Wiles, M. V. Know thy mouse. Trends Genet. 22, 649–653 (2006).

    Article  CAS  Google Scholar 

  55. 55.

    Simon, M. M. et al. A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. Genome Biol. 14, R82 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Fritz, A. K., Amrein, I. & Wolfer, D. P. Similar reliability and equivalent performance of female and male mice in the open field and water-maze place navigation task. Am. J. Med. Genet. C Semin. Med. Genet 175, 380–391 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Prendergast, B. J., Onishi, K. G. & Zucker, I. Female mice liberated for inclusion in neuroscience and biomedical research. Neurosci. Biobehav. Rev. 40, 1–5 (2014).

    Article  Google Scholar 

  58. 58.

    Deacon, R. M. Housing, husbandry and handling of rodents for behavioral experiments. Nat. Protoc. 1, 936–946 (2006).

    Article  Google Scholar 

  59. 59.

    Kappel, S., Hawkins, P. & Mendl, M. T. To group or not to group? Good practice for housing male laboratory mice. Animals 7, pii: E88 (2017).

  60. 60.

    Paylor, R., Spencer, C. M., Yuva-Paylor, L. A. & Pieke-Dahl, S. The use of behavioral test batteries, II: Effect of test interval. Physiol. Behav. 87, 95–102 (2006).

    Article  CAS  Google Scholar 

  61. 61.

    McIlwain, K. L., Merriweather, M. Y., Yuva-Paylor, L. A. & Paylor, R. The use of behavioral test batteries: Effects of training history. Physiol. Behav. 73, 705–717 (2001).

    Article  CAS  Google Scholar 

  62. 62.

    Crawley, J. N. & Paylor, R. A proposed test battery and constellations of specific behavioral paradigms to investigate the behavioral phenotypes of transgenic and knockout mice. Horm. Behav. 31, 197–211 (1997).

    Article  CAS  Google Scholar 

  63. 63.

    Bryant, C. D. et al. Behavioral differences among C57BL/6 substrains: implications for transgenic and knockout studies. J. Neurogenet. 22, 315–331 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Hager, T. et al. Display of individuality in avoidance behavior and risk assessment of inbred mice. Front. Behav. Neurosci. 8, 314 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Kumar, V. et al. C57BL/6N mutation in Cytoplasmic FMRP interacting protein 2 regulates cocaine response. Science 342, 1508–1512 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Mulligan, M. K. et al. Alcohol trait and transcriptional genomic analysis of C57BL/6 substrains. Genes Brain Behav. 7, 677–689 (2008).

    Article  CAS  Google Scholar 

  67. 67.

    Radulovic, J., Kammermeier, J. & Spiess, J. Generalization of fear responses in C57BL/6N mice subjected to one-trial foreground contextual fear conditioning. Behav. Brain Res. 95, 179–189 (1998).

    Article  CAS  Google Scholar 

  68. 68.

    Stiedl, O. et al. Strain and substrain differences in context- and tone-dependent fear conditioning of inbred mice. Behav. Brain Res. 104, 1–12 (1999).

    Article  CAS  Google Scholar 

  69. 69.

    Sturm, M., Becker, A., Schroeder, A., Bilkei-Gorzo, A. & Zimmer, A. Effect of chronic corticosterone application on depression-like behavior in C57BL/6N and C57BL/6J mice. Genes Brain Behav 14, 292–300 (2015).

    Article  CAS  Google Scholar 

  70. 70.

    Swallow, J. et al. Guidance on the transport of laboratory animals. Lab Anim. 39, 1–39 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Baumans, V. & Van Loo, P. L. How to improve housing conditions of laboratory animals: The possibilities of environmental refinement. Vet. J. 195, 24–32 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Kulesskaya, N., Rauvala, H. & Voikar, V. Evaluation of social and physical enrichment in modulation of behavioural phenotype in C57BL/6J female mice. PLoS ONE 6, e24755 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Gaskill, B. N. et al. Impact of nesting material on mouse body temperature and physiology. Physiol Behav 110-111C, 87–95 (2013).

    Article  CAS  Google Scholar 

  74. 74.

    Richter, S. H. et al. Effect of population heterogenization on the reproducibility of mouse behavior: a multi-laboratory study. PLoS ONE 6, e16461 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Harro, J. Animals, anxiety, and anxiety disorders: How to measure anxiety in rodents and why. Behav. Brain Res. 352, 81–93 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Siegmund, A., Langnaese, K. & Wotjak, C. T. Differences in extinction of conditioned fear in C57BL/6 substrains are unrelated to expression of alpha-synuclein. Behav. Brain Res. 157, 291–298 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Labots, M., Zheng, X., Moattari, G., Ohl, F. & van Lith, H. A. Effects of light regime and substrain on behavioral profiles of male C57BL/6 mice in three tests of unconditioned anxiety. J. Neurogenet. 30, 306–315 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Pinheiro, B. S. et al. Dyadic social interaction of C57BL/6 mice versus interaction with a toy mouse: conditioned place preference/aversion, substrain differences, and no development of a hierarchy. Behav. Pharmacol. 27, 279–288 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Grottick, A. J. et al. Neurotransmission- and cellular stress-related gene expression associated with prepulse inhibition in mice. Brain Res. Mol. Brain Res. 139, 153–162 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Martin, A. L. & Brown, R. E. The lonely mouse: Verification of a separation-induced model of depression in female mice. Behav. Brain Res. 207, 196–207 (2010).

    Article  CAS  Google Scholar 

  81. 81.

    Schipper, L., Harvey, L., van der Beek, E. M. & van Dijk, G. Home alone: a systematic review and meta-analysis on the effects of individual housing on body weight, food intake and visceral fat mass in rodents. Obesity Reviews 19, 614–637 (2018).

    Article  CAS  Google Scholar 

  82. 82.

    Wahlsten, D., Bachmanov, A., Finn, D. A. & Crabbe, J. C. Stability of inbred mouse strain differences in behavior and brain size between laboratories and across decades. Proc. Natl. Acad. Sci. U S A 103, 16364–16369 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Gulinello, M. et al. Rigor and reproducibility in rodent behavioral research. Neurobiol. Learn. Mem. in press, https://doi.org/10.1016/j.nlm.2018.01.001 (2018).

  84. 84.

    Tanila, H. Testing cognitive functions in rodent disease models: Present pitfalls and future perspectives. Behav. Brain Res. 352, 23–27 (2018).

    Article  Google Scholar 

  85. 85.

    Boleij, H., Salomons, A. R., van Sprundel, M., Arndt, S. S. & Ohl, F. Not all mice are equal: welfare implications of behavioural habituation profiles in four 129 mouse substrains. PLoS ONE 7, e42544 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Cook, M. N., Bolivar, V. J., McFadyen, M. P. & Flaherty, L. Behavioral differences among 129 substrains: implications for knockout and transgenic mice. Behav. Neurosci. 116, 600–611 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Sittig, L. J. et al. Phenotypic instability between the near isogenic substrains BALB/cJ and BALB/cBy. J. Mamm. Genome 25, 564–572 (2014).

    Article  Google Scholar 

  88. 88.

    Olfe, J., Domanska, G., Schuett, C. & Kiank, C. Different stress-related phenotypes of BALB/c mice from in-house or vendor: alterations of the sympathetic and HPA axis responsiveness. BMC Physiol. 10, 2 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Meehan, T. F. et al. Disease model discovery from 3,328 gene knockouts by The international mouse phenotyping consortium. Nat. Genet. 49, 1231–1238 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Kafkafi, N. et al. Addressing reproducibility in single-laboratory phenotyping experiments. Nat. Methods 14, 462–464 (2017).

    Article  CAS  Google Scholar 

  91. 91.

    Ashworth, A. et al. Comparison of neurological function in males and females from two substrains of C57BL/6 Mice. Toxics 3, 1–17 (2015).

    Article  CAS  Google Scholar 

  92. 92.

    Kirkpatrick, S. L. et al. Cytoplasmic FMR1-interacting protein 2 is a major genetic factor underlying binge eating. Biol. Psychiatry 81, 757–769 (2017).

    Article  CAS  Google Scholar 

  93. 93.

    Lister, R. G. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology 92, 180–185 (1987).

    CAS  PubMed  Google Scholar 

  94. 94.

    Crawley, J. N. & Goodwin, F. K. Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol. Biochem. Behav. 13, 167–170 (1980).

    Article  CAS  Google Scholar 

  95. 95.

    Moy, S. S. et al. Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav. 3, 287–302 (2004).

    Article  CAS  Google Scholar 

  96. 96.

    Golden, S. A., Covington, H. E. 3rd, Berton, O. & Russo, S. J. A standardized protocol for repeated social defeat stress in mice. Nat. Protoc. 6, 1183–1191 (2011).

  97. 97.

    Deacon, R. M. Assessing nest building in mice. Nat. Protoc. 1, 1117–1119 (2006).

    Article  Google Scholar 

  98. 98.

    Van der Heyden, J. A., Zethof, T. J. & Olivier, B. Stress-induced hyperthermia in singly housed mice. Physiol. Behav 62, 463–470 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Jane and Aatos Erkko foundation (VV), Biocenter Finland and Helsinki Institute of Life Science. Professors Iiris Hovatta and Jaan-Olle Andressoo are greatly acknowledged for their valuable comments and discussions during the preparation of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vootele Voikar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Åhlgren, J., Voikar, V. Experiments done in Black-6 mice: what does it mean?. Lab Anim 48, 171–180 (2019). https://doi.org/10.1038/s41684-019-0288-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing