Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Is maternal microbial metabolism an early-life determinant of health?

Abstract

Mounting evidence suggests that environmental stress experienced in utero (for example, maternal nutritional deficits) establishes a predisposition in the newborn to the development of chronic diseases later in life. This concept is often referred to as the “fetal origins hypothesis” or “developmental origins of health and disease”. Since its first proposal, epigenetics has emerged as an underlying mechanism explaining how environmental cues become gestationally “encoded”. Many of the enzymes that impart and maintain epigenetic modifications are highly sensitive to nutrient availability, which can be influenced by the metabolic activities of the intestinal microbiota. Therefore, the maternal microbiome has the potential to influence epigenetics in utero and modulate offspring’s long-term health trajectories. Here we summarize the current understanding of the interactions that occur between the maternal gut microbiome and the essential nutrient choline, that is not only required for fetal development and epigenetic regulation but is also a growth substrate for some microbes. Bacteria able to metabolize choline benefit from the presence of this nutrient and compete with the host for its access, which under extreme conditions may elicit signatures of choline deficiency. Another consequence of bacterial choline metabolism is the accumulation of the pro-inflammatory, pro-thrombotic metabolite trimethylamine-N-oxide (TMAO). Finally, we discuss how these different facets of microbial choline metabolism may influence infant development and health trajectories via epigenetic mechanisms and more broadly place a call to action to better understand how maternal microbial metabolism can shape their offspring’s propensity to chronic disease development later in life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Maloney, C. A. & Rees, W. D. Gene–nutrient interactions during fetal development. Reproduction 130, 401–410 (2005).

    Article  PubMed  CAS  Google Scholar 

  2. Barker, D. J. The fetal and infant origins of adult disease. Br. Med. J. 301, 1111 (1990).

    Article  CAS  Google Scholar 

  3. Barker, D. J. Fetal origins of coronary heart disease. Br. Med. J. 311, 171–174 (1995).

    Article  CAS  Google Scholar 

  4. Barker, D. J. P. Mothers, Babies, and Health in Later Life (Churchill Livingstone, London, UK, 1998).

    Google Scholar 

  5. Almond, D. & Currie, J. Killing me softly: the fetal origins hypothesis. J. Econ. Perspect. 25, 153–172 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rasmussen, K. M. The “fetal origins” hypothesis: challenges and opportunities for maternal and child nutrition. Annu. Rev. Nutr. 21, 73–95 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. Danese, A., Pariante, C. M., Caspi, A., Taylor, A. & Poulton, R. Childhood maltreatment predicts adult inflammation in a life-course study. Proc. Natl. Acad. Sci. USA 104, 1319–1324 (2007).

    Article  PubMed  CAS  Google Scholar 

  8. McDade, T. W., Hoke, M., Borja, J. B., Adair, L. S. & Kuzawa, C. Do environments in infancy moderate the association between stress and inflammation in adulthood? Initial evidence from a birth cohort in the Philippines. Brain Behav. Immun. 31, 23–30 (2013).

    Article  PubMed  Google Scholar 

  9. Miller, G. E. & Chen, E. Harsh family climate in early life presages the emergence of a proinflammatory phenotype in adolescence. Psychol. Sci. 21, 848–856 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Taylor, S. E., Lehman, B. J., Kiefe, C. I. & Seeman, T. E. Relationship of early life stress and psychological functioning to adult C-reactive protein in the Coronary Artery Risk Development in Young Adults study. Biol. Psychiatry 60, 819–824 (2006).

    Article  PubMed  CAS  Google Scholar 

  11. Bale, T. L. Epigenetic and transgenerational reprogramming of brain development. Nat. Rev. Neurosci. 16, 332–344 (2015).

    Article  PubMed  CAS  Google Scholar 

  12. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33(Suppl.), 245–254 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. Feng, J. et al. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat. Neurosci. 13, 423–430 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hitchings, G. H. et al. A new synthesis of cytosine and 5-methylcytosine. J. Biol. Chem. 177, 357–360 (1949).

    PubMed  CAS  Google Scholar 

  15. Hsieh, C.-L. The de novo methylation activity of Dnmt3a is distinctly different than that of Dnmt1. BMC Biochem. 6, 6 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kang, E. S., Park, C. W. & Chung, J. H. Dnmt3b, de novo DNA methyltransferase, interacts with SUMO-1 and Ubc9 through its N-terminal region and is subject to modification by SUMO-1. Biochem. Biophys. Res. Commun. 289, 862–868 (2001).

    Article  PubMed  CAS  Google Scholar 

  17. Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. Song, J., Rechkoblit, O., Bestor, T. H. & Patel, D. J. Structure of DNMT1–DNA complex reveals a role for autoinhibition in maintenance DNA methylation. Science 331, 1036–1040 (2011).

    Article  PubMed  CAS  Google Scholar 

  19. Wyatt, G. R. Occurrence of 5-methylcytosine in nucleic acids. Nature 166, 237–238 (1950).

    Article  PubMed  CAS  Google Scholar 

  20. Boyes, J. & Bird, A. Repression of genes by DNA methylation depends on CpG density and promoter strength: evidence for involvement of a methyl-CpG binding protein. EMBO J. 11, 327–333 (1992).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Yang, X. et al. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell 26, 577–590 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Reik, W., Dean, W. & Walter, J. Epigenetic reprogramming in mammalian development. Science 293, 1089–1093 (2001).

    Article  PubMed  CAS  Google Scholar 

  23. Dolinoy, D. C. The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr. Rev. 66(Suppl. 1), S7–S11 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hall, E. et al. Sex differences in the genome-wide DNA methylation pattern and impact on gene expression, microRNA levels and insulin secretion in human pancreatic islets. Genome Biol. 15, 522 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. McCarthy, M. M., Arnold, A. P., Ball, G. F., Blaustein, J. D. & De Vries, G. J. Sex differences in the brain: the not so inconvenient truth. J. Neurosci. 32, 2241–2247 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Paul, B. et al. Influences of diet and the gut microbiome on epigenetic modulation in cancer and other diseases. Clin. Epigenetics 7, 112 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Pogribny, I. P. & Beland, F. A. DNA hypomethylation in the origin and pathogenesis of human diseases. Cell. Mol. Life Sci. 66, 2249–2261 (2009).

    Article  PubMed  CAS  Google Scholar 

  28. Pogribny, I. P. et al. Epigenetic alterations in the brains of Fisher 344 rats induced by long-term administration of folate/methyl-deficient diet. Brain Res. 1237, 25–34 (2008).

    Article  PubMed  CAS  Google Scholar 

  29. Blumberg, J. B., Frei, B., Fulgoni, V. L. III, Weaver, C. M. & Zeisel, S. H. Vitamin and mineral intake is inadequate for most Americans: what should we advise patients about supplements? J. Fam. Pract. 65(Suppl.), S1–S8 (2016).

    PubMed  Google Scholar 

  30. LeBlanc, J. G. et al. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr. Opin. Biotechnol. 24, 160–168 (2013).

    Article  PubMed  CAS  Google Scholar 

  31. Müller, O. & Krawinkel, M. Malnutrition and health in developing countries. CMAJ 173, 279–286 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Blanton, L. V., Barratt, M. J., Charbonneau, M. R., Ahmed, T. & Gordon, J. I. Childhood undernutrition, the gut microbiota, and microbiota-directed therapeutics. Science 352, 1533 (2016).

    Article  PubMed  CAS  Google Scholar 

  33. Martorell, R. & Zongrone, A. Intergenerational influences on child growth and undernutrition. Paediatr. Perinat. Epidemiol. 26(Suppl. 1), 302–314 (2012).

    Article  PubMed  Google Scholar 

  34. Prendergast, A. J. & Humphrey, J. H. The stunting syndrome in developing countries. Paediatr. Int. Child Health 34, 250–265 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Romano, K. A., Vivas, E. I., Amador-Noguez, D. & Rey, F. E. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. MBio 6, e02481–e14 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Romano, K. A. et al. Metabolic, epigenetic, and transgenerational effects of gut bacterial choline consumption. Cell Host Microbe 22, 279–290 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Smith, M. I. et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339, 548–554 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. den Besten, G. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325–2340 (2013).

    Article  CAS  Google Scholar 

  39. Biesalski, H. K. Nutrition meets the microbiome: micronutrients and the microbiota. Ann. NY Acad. Sci. 1372, 53–64 (2016).

    Article  PubMed  Google Scholar 

  40. Culligan, E. P., Sleator, R. D., Marchesi, J. R. & Hill, C. Metagenomic identification of a novel salt tolerance gene from the human gut microbiome which encodes a membrane protein with homology to a brp/blh-family β-carotene 15,15′-monooxygenase. PLoS One 9, e103318 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Degnan, P. H., Barry, N. A., Mok, K. C., Taga, M. E. & Goodman, A. L. Human gut microbes use multiple transporters to distinguish vitamin B12 analogs and compete in the gut. Cell Host Microbe 15, 47–57 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Degnan, P. H., Taga, M. E. & Goodman, A. L. Vitamin B12 as a modulator of gut microbial ecology. Cell Metab. 20, 769–778 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Gustafsson, B. E. Vitamin K deficiency in germfree rats. Ann. NY Acad. Sci. 78, 166–174 (1959).

    Article  PubMed  CAS  Google Scholar 

  44. Karl, J. P. et al. Fecal menaquinone profiles of overweight adults are associated with gut microbiota composition during a gut microbiota-targeted dietary intervention. Am. J. Clin. Nutr. 102, 84–93 (2015).

    Article  PubMed  CAS  Google Scholar 

  45. Russell, W. R. et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am. J. Clin. Nutr. 93, 1062–1072 (2011).

    Article  PubMed  CAS  Google Scholar 

  46. Semova, I. et al. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe 12, 277–288 (2012).

    Article  PubMed  CAS  Google Scholar 

  47. Xu, J. et al. A genomic view of the human–Bacteroides thetaiotaomicron symbiosis. Science 299, 2074–2076 (2003).

    Article  PubMed  CAS  Google Scholar 

  48. Martens, E. C. et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 9, e1001221 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Donohoe, D. R. et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13, 517–526 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Bäckhed, F., Manchester, J. K., Semenkovich, C. F. & Gordon, J. I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl. Acad. Sci. USA 104, 979–984 (2007).

    Article  PubMed  CAS  Google Scholar 

  51. Vitaglione, P. et al. Protocatechuic acid is the major human metabolite of cyanidin-glucosides. J. Nutr. 137, 2043–2048 (2007).

    Article  PubMed  CAS  Google Scholar 

  52. Craciun, S. & Balskus, E. P. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc. Natl. Acad. Sci. USA 109, 21307–21312 (2012).

    Article  PubMed  Google Scholar 

  53. Baker, J. R. & Chaykin, S. The biosynthesis of trimethylamine-N-oxide. J. Biol. Chem. 237, 1309–1313 (1962).

    PubMed  CAS  Google Scholar 

  54. Velasquez, M. T., Ramezani, A., Manal, A. & Raj, D. S. Trimethylamine N-oxide: the food, the bad and the unknown. Toxins 8, E326 (2016).

    Article  PubMed  CAS  Google Scholar 

  55. Tang, W. H. W. & Hazen, S. L. Microbiome, trimethylamine N-oxide, and cardiometabolic disease. Transl. Res. 179, 108–115 (2017).

    Article  PubMed  CAS  Google Scholar 

  56. Fennema, D., Phillips, I. R. & Shephard, E. A. Trimethylamine and trimethylamine N-oxide, a flavin-containing monooxygenase 3 (FMO3)-mediated host–microbiome metabolic axis implicated in health and disease. Drug Metab. Dispos. 44, 1839–1850 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Nam, J. et al. Choline prevents fetal overgrowth and normalizes placental fatty acid and glucose metabolism in a mouse model of maternal obesity. J. Nutr. Biochem. 49, 80–88 (2017).

    Article  PubMed  CAS  Google Scholar 

  58. King, J. H. et al. Maternal choline supplementation alters fetal growth patterns in a mouse model of placental insufficiency. Nutrients 9, 765 (2017).

    Article  PubMed Central  Google Scholar 

  59. Craig, S. A. S. Betaine in human nutrition. Am. J. Clin. Nutr. 80, 539–549 (2004).

    Article  PubMed  CAS  Google Scholar 

  60. Jack-Roberts, C. et al. Choline supplementation normalizes fetal adiposity and reduces lipogenic gene expression in a mouse model of maternal obesity. Nutrients 9, 899 (2017).

    Article  PubMed Central  Google Scholar 

  61. Kennedy, E. P. & Weiss, S. B. The function of cytidine coenzymes in the biosynthesis of phospholipides. J. Biol. Chem. 222, 193–214 (1956).

    PubMed  CAS  Google Scholar 

  62. Fungwe, T. V., Cagen, L., Wilcox, H. G. & Heimberg, M. Regulation of hepatic secretion of very low density lipoprotein by dietary cholesterol. J. Lipid Res. 33, 179–191 (1992).

    PubMed  CAS  Google Scholar 

  63. Randrianarisoa, E. et al. Relationship of serum trimethylamine N-oxide (TMAO) levels with early atherosclerosis in humans. Sci. Rep. 6, 26745 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Ozarda Ilcol, Y., Uncu, G. & Ulus, I. H. Free and phospholipid-bound choline concentrations in serum during pregnancy, after delivery and in newborns. Arch. Physiol. Biochem. 110, 393–399 (2002).

    Article  PubMed  CAS  Google Scholar 

  65. McMahon, K. E. & Farrell, P. M. Measurement of free choline concentrations in maternal and neonatal blood by micropyrolysis gas chromatography. Clin. Chim. Acta 149, 1–12 (1985).

    Article  PubMed  CAS  Google Scholar 

  66. Brunst, K. J. et al. Racial/ethnic and sociodemographic factors associated with micronutrient intakes and inadequacies among pregnant women in an urban US population. Public Health Nutr. 17, 1960–1970 (2014).

    Article  PubMed  Google Scholar 

  67. Resseguie, M. et al. Phosphatidylethanolamine N-methyltransferase (PEMT) gene expression is induced by estrogen in human and mouse primary hepatocytes. FASEB J. 21, 2622–2632 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Kovacheva, V. P. et al. Gestational choline deficiency causes global and Igf2 gene DNA hypermethylation by up-regulation of Dnmt1 expression. J. Biol. Chem. 282, 31777–31788 (2007).

    Article  PubMed  CAS  Google Scholar 

  69. Zeisel, S. H. Dietary choline deficiency causes DNA strand breaks and alters epigenetic marks on DNA and histones. Mutat. Res. 733, 34–38 (2012).

    Article  PubMed  CAS  Google Scholar 

  70. Sun, X. et al. Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS–TXNIP–NLRP3 inflammasome. Biochem. Biophys. Res. Commun. 481, 63–70 (2016).

    Article  PubMed  CAS  Google Scholar 

  71. Ávila, J. G., Echeverri, I., de Plata, C. A. & Castillo, A. Impact of oxidative stress during pregnancy on fetal epigenetic patterns and early origin of vascular diseases. Nutr. Rev. 73, 12–21 (2015).

    Article  PubMed  Google Scholar 

  72. Wang, Y., Surzenko, N., Friday, W. B. & Zeisel, S. H. Maternal dietary intake of choline in mice regulates development of the cerebral cortex in the offspring. FASEB J. 30, 1566–1578 (2016).

    Article  PubMed  CAS  Google Scholar 

  73. Niculescu, M. D., Craciunescu, C. N. & Zeisel, S. H. Dietary choline deficiency alters global and gene-specific DNA methylation in the developing hippocampus of mouse fetal brains. FASEB J. 20, 43–49 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Ross, R. G. et al. Perinatal phosphatidylcholine supplementation and early childhood behavior problems: evidence for CHRNA7 moderation. Am. J. Psychiatry 173, 509–516 (2016).

    Article  PubMed  Google Scholar 

  75. Semba, R. D. et al. The association of serum choline with linear growth failure in young children from rural Malawi. Am. J. Clin. Nutr. 104, 191–197 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. da Costa, K.-A. et al. Common genetic polymorphisms affect the human requirement for the nutrient choline. FASEB J. 20, 1336–1344 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Kohlmeier, M., da Costa, K.-A., Fischer, L. M. & Zeisel, S. H. Genetic variation of folate-mediated one-carbon transfer pathway predicts susceptibility to choline deficiency in humans. Proc. Natl. Acad. Sci. USA 102, 16025–16030 (2005).

    Article  PubMed  CAS  Google Scholar 

  78. Resseguie, M. E. et al. Aberrant estrogen regulation of PEMT results in choline deficiency–associated liver dysfunction. J. Biol. Chem. 286, 1649–1658 (2011).

    Article  PubMed  CAS  Google Scholar 

  79. Sha, W. et al. Metabolomic profiling can predict which humans will develop liver dysfunction when deprived of dietary choline. FASEB J. 24, 2962–2975 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Kumar, H. et al. Gut microbiota as an epigenetic regulator: pilot study based on whole-genome methylation analysis. MBio 5, e02113–e02114 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Schulfer, A. F. et al. Intergenerational transfer of antibiotic-perturbed microbiota enhances colitis in susceptible mice. Nat. Microbiol. 3, 234–242 (2018).

    Article  PubMed  CAS  Google Scholar 

  82. Leclercq, S. et al. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nat. Commun. 8, 15062 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. McDade, T. W. et al. Social and physical environments early in development predict DNA methylation of inflammatory genes in young adulthood. Proc. Natl. Acad. Sci. USA 114, 7611–7616 (2017).

    Article  PubMed  CAS  Google Scholar 

  84. Lemas, D. J. et al. Alterations in human milk leptin and insulin are associated with early changes in the infant intestinal microbiome. Am. J. Clin. Nutr. 103, 1291–1300 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Canfora, E. E., Jocken, J. W. & Blaak, E. E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 11, 577–591 (2015).

    Article  PubMed  CAS  Google Scholar 

  86. Morrison, D. J. & Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7, 189–200 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ríos-Covián, D. et al. Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.00185 (2016).

  88. Perry, R. J. et al. Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature 534, 213–217 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Krautkramer, K. A. et al. Diet–microbiota interactions mediate global epigenetic programming in multiple host tissues. Mol. Cell 64, 982–992 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Trenteseaux, C. et al. Perinatal hypercholesterolemia exacerbates atherosclerosis lesions in offspring by altering metabolism of trimethylamine-N-oxide and bile acids. Arterioscler. Thromb. Vasc. Biol. 37, 2053–2063 (2017).

    Article  PubMed  CAS  Google Scholar 

  91. Hapfelmeier, S. et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 328, 1705–1709 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico E. Rey.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romano, K.A., Rey, F.E. Is maternal microbial metabolism an early-life determinant of health?. Lab Anim 47, 239–243 (2018). https://doi.org/10.1038/s41684-018-0129-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41684-018-0129-1

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology